
tf.data: A Machine Learning Data Processing Framework
Derek G. Murray

Lacework*

derek.murray@lacework.net

Jiří Šimša

Google

jsimsa@google.com

Ana Klimovic

ETH Zurich*

aklimovic@ethz.ch

Ihor Indyk

Google

iindyk@google.com

ABSTRACT

Training machine learning models requires feeding input data for

models to ingest. Input pipelines for machine learning jobs are often

challenging to implement efficiently as they require reading large

volumes of data, applying complex transformations, and transfer-

ring data to hardware accelerators while overlapping computation

and communication to achieve optimal performance. We present

tf.data, a framework for building and executing efficient input

pipelines for machine learning jobs. The tf.data API provides op-

erators that can be parameterized with user-defined computation,

composed, and reused across different machine learning domains.

These abstractions enable users to focus on the application logic

of data processing, while tf.data’s runtime ensures that pipelines

run efficiently.

We demonstrate that input pipeline performance is critical to

the end-to-end training time of state-of-the-art machine learning

models. tf.data delivers the high performance required, while

avoiding the need for manual tuning of performance knobs. We

show that tf.data features, such as parallelism, caching, static op-

timizations, and optional non-deterministic execution are essential

for high performance. Finally, we characterize machine learning

input pipelines for millions of jobs that ran in Google’s datacenter

fleet, showing that input data processing is highly diverse and con-

sumes a significant fraction of job resources. Our analysis motivates

future research directions, such as sharing computation across jobs

and pushing data projection to the storage layer.

PVLDB Reference Format:

Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. tf.data: A

Machine Learning Data Processing Framework. PVLDB, 14(12): 2945-2958,

2021.

doi:10.14778/3476311.3476374

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/tensorflow/tensorflow.

*Work done while at Google.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.

doi:10.14778/3476311.3476374

Figure 1: CDF showing the fraction of compute time that

millions of ML training jobs executed in our fleet over one

month spend in the input pipeline. 20% of jobs spend more

than a third of their compute time ingesting data.

1 INTRODUCTION

Data is the lifeblood of machine learning (ML). Training ML models

requires steadily pumping examples for models to ingest and learn

from. While prior work has focused on optimizing the accuracy and

speed of model training and serving, how we store and preprocess

data for machine learning jobs has received significantly less atten-

tion. Across the millions of ML jobs we run in Google’s datacenters

every month, we observe that the input data pipeline accounts

for significant resource usage and can greatly impact end-to-end

performance. Figure 1 shows how the fraction of compute time that

jobs spend in the input pipeline varies, where we define compute
time as the time spent on a hardware resource – such as a CPU or an

accelerator core – scaled by the compute capability of that resource.

The marked point shows that 20% of jobs spend more than a third of

their compute time in the input pipeline. When taking into account

the total compute time from all jobs in our analysis (§ 5), we find

that 30% of the total compute time is spent ingesting data. A com-

plementary study of ML model training with public datasets found

that preprocessing data accounts for up to 65% of epoch time [44].

This shows that input data pipelines consume a significant fraction

of ML job resources and are important to optimize.

Input pipelines of machine learning jobs are often challenging to

implement efficiently as they typically need to ingest large volumes

of data, apply complex transformations, overlap communication

and computation, and shuffle and batch data with various data

ordering guarantees. For example, some jobs require that each ex-

ample is visited exactly once before any example is visited a second

time during training. Moreover, to achieve good performance and

avoid input pipeline stalls, the data preprocessing should leverage

parallelism and pipelining to overlap preprocessing with model

2945

https://doi.org/10.14778/3476311.3476374
https://github.com/tensorflow/tensorflow
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476374


training computations. Determining the optimal degree of paral-

lelism and amount of data to prefetch is often challenging as it

depends on the nature of the workload and the hardware resources

available.

Hardware accelerators used for ML training further increase

the need for efficient input pipelines. Today’s accelerators, such as

GPUs and TPUs, are tailored towards executing the linear algebra

operations that are common in ML computations, but have limited

support for common data preprocessing operations. Hence, input

data is commonly processed on the CPU and feeding an accelerator

with data at a sufficient rate to saturate its compute capabilities is

becoming increasingly challenging. The high cost of accelerators

compared to their CPU hosts makes it particularly important to

ensure that accelerators operate at high utilization [6, 20].

We present tf.data, an API and a runtime for building and

executing efficient input data pipelines for machine learning jobs.

The tf.data API provides generic operators that can be param-

eterized by user-defined functions, composed, and reused across

ML domains. Inspired by the programming models of relational

databases [21, 24], declarative collection libraries [29, 42], and data-

parallel big-data systems [66, 67], the tf.data API consists of state-
less datasets, which are an abstraction for users to define their

input pipeline, and stateful iterators, which produce a sequence

of elements and maintain the current position within a dataset.

These abstractions allow users to focus on the application logic of

their input pipeline and leave the task of executing the pipeline

efficiently to the tf.data runtime. In particular, tf.data internally
represents an input pipeline dataset as a graph and applies static

optimizations using graph rewrites. Furthermore, tf.data can au-

tomatically tune parameters such as the degree of parallelism and

data prefetch buffer sizes, which are critical for performance yet

often challenging for an average ML user to tune by hand.

Our evaluation demonstrates that 1) input pipeline performance

is critical to end-to-end training time of state-of-the-art ML bench-

marks, 2) tf.data is capable of improving input pipeline latency

through a combination of software pipelining, parallelization, and

static optimizations, and 3) tf.data dynamic optimizations avoid

the need to manually tune performance knobs. For example, we

show that introducing parallelism and software pipelining to the

input pipeline of a Resnet50 model training on the ImageNet

dataset results in a 10.4× decrease in time to convergence. Apply-

ing further optimizations with tf.data, such as caching and static

optimizations, improves training time by an additional 2×. We also

demonstrate that tf.data’s auto-tuning matches the performance

of expert hand-tuned input pipelines.

The tf.data API and runtime are open source and integrated

in TensorFlow [3]. At Google, tf.data has been in production use

since 2017 for various ML training jobs, such as supervised learning,

federated learning, and reinforcement learning; with different data

modalities, including text, image, and video data. The system is

used daily by hundreds of thousands of ML jobs in our fleet.

We conduct a fleet-wide analysis of tf.data jobs to character-

ize the input pipelines of millions of real machine learning jobs

and identify opportunities for future work in data preprocessing

systems. We find that the set of transformations applied in input

pipelines varies greatly across jobs. For 75% of jobs, the materialized

dataset is smaller in size than the raw input data read from storage,

103 106 109 1012 1015 1018

Bytes read from storage
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n

Number of jobs
Job compute time

Figure 2: CDF of input data size across ML training jobs. 13%

of jobs readmore than 1TB of data. These jobs consume over

96% of total compute resources.

which implies that preprocessing commonly decreases the volume

of data. Most notably, we observe that identical input pipelines

are frequently re-executed within and across jobs, suggesting that

caching materialized datasets is a promising future direction to

explore to improve the performance and efficiency of input data

processing for ML. Our findings motivate several other directions

for future research, such as processing data closer to storage and

disaggregating input data processing from model training to avoid

host resource bottlenecks.

2 INPUT PIPELINE REQUIREMENTS

Raw input data, such as images, audio, and text files, undergo both

offline and online preprocessing before being ingested for model

training. Offline data preprocessing involves extracting features

from raw data, validating data [12], and converting data to binary

formats, such as Avro [8], Parquet [9], or TFRecord [58], to enable

higher throughput data ingestion. Batch computing frameworks

such as Apache Spark [67], Beam [1], and Flume [2] are well suited

to offline preprocessing. While some data transformations, such

as normalization, can be applied during offline preprocessing, ML

training also requires applying transformations online as examples

are fed to the model. For instance, image models commonly rely

on data augmentation, e.g. randomly distorting images, to improve

accuracy [17, 54]. Data augmentation multiplies the size of the

original dataset, making it prohibitive to store outputs in interme-

diate files. Our work focuses on online data preprocessing, which

executes as part of the input pipeline of ML training jobs.

The input pipeline of ML training can be characterized as a three-

stage extract, transform, load (ETL) process. The first stage reads

input data from a storage system. Machine learning jobs commonly

train on large data sets. Figure 2 shows that 13% of jobs, out of

the millions of jobs we analyzed, read at least 1 TB of input data.

This means that for a non-trivial fraction of training jobs, the input

data cannot fit in memory. Furthermore, over 96% of total compute

resources across jobs are spent in jobs that read over 1 TB of data.

The second stage transforms the data to a format amenable to

ML training computation. It applies transformations to the input

data, such as sampling, permuting, and filtering data to extract the

subset of most relevant features. When training image models, it

is common practice to apply data augmentation such as clipping,

2946



resizing, flipping, and blurring images. For text pipelines, training

examples commonly need to be grouped and batched based on

sequence length. Finally, the third stage loads the data onto the

accelerator device that executes the training computation.

ML training imposes unique requirements for input data pipelines.

We describe these requirements below and summarize why they

are not adequately addressed by other systems.

Data ordering Unlike many data-parallel data processing plat-

forms [16, 66, 67], ML training is sensitive to the order in which

records are delivered. The most common training algorithms are

derived from stochastic gradient descent [50], which accesses the

input examples pseudo-randomly. Empirically, convergence is more

rapid when the algorithm makes multiple passes over input exam-

ples (called epochs), and uses a different random permutation of the

input data on each pass (or equivalently, samples examples without

replacement within each epoch) [10]. Furthermore, to improve sys-

tem efficiency via vectorization and reduced communication, the

input pipeline typically concatenates consecutive examples into a

batch that is processed in a single training step.

The final parameters of a trained model can be sensitive to the

exact order in which the input examples were consumed. To aid

in debugging, especially when porting models between different

hardware architectures, tf.data must be able to produce random

results in a deterministic order, according to a given seed. While

such a feature is useful for debugging, it is in tension with high

performance, since any variability in the element processing time

could lead to head-of-line blocking. Therefore, while tf.data de-
faults to deterministic execution, a user can disable it to mitigate

the effect stragglers have on end-to-end performance.

Finally, both the end-to-end training computation and the indi-

vidual epochs can take a long time to complete. To provide ordering

guarantees in the presence of preemptions – commonplace in our

data centers – the data processing computation for ML training

jobs must be checkpointable.

Performance A single training step consumes a batch of input

elements and updates the current weights of the model. Often, the

step computation runs on an accelerator device – such as a GPU

or TPU [30] – that can compute vector floating point operations

efficiently, although the computation may also run on a multi-core

CPU. Ideally, the data processing computation is pipelined with the

training computation, minimizing the likelihood that the training

computation is blocked waiting for the next batch of elements and

hence maximizing the utilization of valuable accelerator resources.

The input pipeline is responsible for fetching the raw input data

from storage and transforming it into input features for the model.

For example, the raw input for an image classification model might

be a protocol buffer [19] containing a JPEG-encoded image, and

the input pipeline must convert the raw input into a dense three-

dimensional array of floating point values corresponding to the

RGB values of each pixel. Along the way, the input pipeline must

extract and decode the JPEG and apply additional transformations

such as affine transformations and colorspace changes to augment

the training data [54]. These activities are CPU-intensive, and must

make efficient use of available CPU resources to maximize input

pipeline throughput.

Ease of use Machine learning workloads in a typical large or-

ganization span different domains, storage systems, data formats,

and accelerator hardware. Therefore, it must be possible to com-

bine pipeline stages in unanticipated ways, and extend the system

with new data sources and transformations. To emphasize the im-

portance of flexibility, in our fleet-wide analysis of ML jobs, we

classified transformations into categories – such as reading input

data from storage, caching, batching, or shuffling – and recorded the

combination of transformation categories used by each job. While

the 10 most common combinations of transformations account for

over 75% of jobs, there is a heavy tail with over 1000 combinations

of transformations in total. In addition to supporting diverse input

pipelines, we also require the input pipeline framework to address

the tension between performance and ease-of-use. Optimizing an

input pipeline can require expertise in how to structure operations

and tune performance-related parameters, such as degrees of par-

allelism and pipeline buffer sizes. Hence, we require that tf.data
can optimize an input pipeline automatically.

Before designing tf.data, we evaluated several existing input

pipeline implementations, and found that they did not meet our

requirements in all of the above areas: 1) PyTorch’s DataLoader
API [14] is easy to use (it provides a simple Python interface), but

its reliance on Python on the critical path – despite the use of

multiprocessing to work around the interpreter lock bottleneck –

and assumption of uniform random access to all input data, do not

satisfy our performance requirement, especially for multi-terabyte

datasets. 2) MXNet’s DataIter API [47] uses a native C++ imple-

mentation for greater performance than PyTorch, but it requires

users to add native extensions in order to handle new preprocessing

schemes. Therefore it does not help our users with diverse data pro-

cessing needs, who tend to prefer writing Python, and who are often

restricted to memory-safe programming languages for security rea-

sons. 3) NVIDIA’s Data Loading Library (DALI) API [22] enables

some preprocessing, such as image decoding, to be offloaded to a

GPU. This offloading partially fulfils our performance requirement,

but it lacks the flexibility to support heterogeneous preprocessing

workloads and different types of accelerators.

In the next section, we present the tf.data programming model,

which is based on chaining higher-order functional transformations,

and inspired by LINQ [42]. Several data processing systems offer a

similar programming model, including DryadLINQ [66], Spark [67],

and Naiad [46]. We discuss them in more detail in § 6. For prag-

matic reasons, we did not consider using any of these systems,

because the impedance mismatch with TensorFlow’s C++ codebase

would severely limit performance. Furthermore, these systems are

designed to optimize data parallel computations, with a large num-

ber of independent values in each batch. This makes it difficult or

inefficient for them to produce values sequentially, to fulfill the

sequential ordering requirement. While one could use a system

like Spark Streaming [68] for online preprocessing and pass data

to the ML framework through an in-memory buffer, the additional

copies would have significant overhead due to the short step times

in ML training workloads. In the training workloads we have an-

alyzed, step times less than 1 ms are not uncommon and most

workloads have step times less than 10ms. The extra copy overhead

2947



would be especially significant in the common case where mem-

ory bandwidth is the bottleneck. By integrating tf.data directly
into TensorFlow, and sharing the same threadpools and memory

allocators, we avoid this overhead.

3 DESIGN AND IMPLEMENTATION

In § 3.1, we present tf.data’s API which enables users to compose

and parameterize operators. In § 3.2 and § 3.3 we discuss key aspects

of tf.data’s runtime.

3.1 Datasets and Iterators

The tf.dataDataset represents the stateless definition of an input
pipeline as a (potentially infinite) sequence of elements. A dataset

can either be a source dataset that is created from primitive values

(e.g. a matrix of floating-point numbers representing input exam-

ples, or a vector of strings representing filenames), or a transformed
dataset that transforms one or more input datasets into a new se-

quence of elements. The elements of a dataset are statically typed,

and valid element types include tensors (with a specific element

type and optional shape) and composite types (such as tuples, op-

tionals, and nested datasets). Together, source and transformed

datasets form an expression tree that represents the entire input

pipeline. Table 1 shows the Dataset interface.

tf.data includes source datasets that support common file for-

mats, and transformed datasets that implement functional trans-

formations and may be parameterized by user-defined functions

(UDFs). The UDFs can be written in Python, and tf.data uses

TensorFlow’s Autograph library to convert them into dataflow

graphs [45]. Table 2 summarizes the most common tf.data trans-

formations.

The tf.data Iterator represents the current state of traversing
a Dataset. An iterator provides sequential access to the elements of

a dataset via the get_next operation, which either returns a typed

element, or an error status such as "out-of-range" (EOF). In tf.data,
implementations of the Iterator interface are thread-safe, so multi-

ple threads can call get_next concurrently to improve throughput,

at the expense of determinism. The interface also includes save
and restore methods to support checkpointing.

The iterator interface (Table 3) abstracts all details of how the

elements are produced, including internal buffering and parallelism.

Before applying optimizations, there is a one-to-one correspon-

dence between dataset and iterator objects, but the optimizations

in § 3.3 exploit the iterator abstraction to change the underlying

dataset graph, and optimize how elements are produced, while

presenting the same interface.

Method Description

make_iterator Creates a new iterator over the dataset.

serialize Converts the dataset to a serialized expression.

element_spec Returns the type signature of dataset elements.

Table 1: Dataset interface

Dataset Description

batch Concatenates multiple elements into a single element.

cache Stores the input data in memory.

concatenate Concatenates two datasets.

from_file Reads elements from a file, e.g. TextFileDataset.
from_tensors Creates a singleton dataset from data in memory.

filter Returns elements matching a predicate.

flat_map Maps elements to datasets and flattens the result.

interleave Like flat_map, but mixes outputs from input elements.

map Transforms individual elements.

prefetch Adds a buffer to pipeline input production.

reduce Reduces a dataset to a single element.

repeat Produces the input dataset multiple times.

shard Selects a subset of elements from the dataset.

shuffle Randomizes the order of elements.

unbatch Splits input elements on the 0th dimension.

zip Combines elements of multiple datasets into tuples.

Table 2: Common tf.data source and transformed datasets.

The example in Figure 3 illustrates a training loop that uses

a tf.data input pipeline to read elements from files, apply user-

defined processing logic on each element and combine the processed

elements into a mini-batch.

3.2 Parallel and Distributed Execution

To efficiently utilize available host resources, tf.data provides

transformations that enable software pipelining, and parallel exe-

cution of computation and I/O. The prefetch transformation de-

couples the producer and consumer of data using an internal buffer,

making it possible to overlap their computation. Input pipelines can

use this transformation to overlap host computation, host-to-device

transfer, and device computation. The map transformation takes

an optional argument that specifies the degree of parallelism to

use for applying the user-defined computation to input elements

concurrently. The interleave transformation provides a similar

optional argument that specifies the degree of parallelism to use

for fetching data from input elements concurrently. In particular,

the interleave transformation can parallelize I/O by interleaving

data read from multiple files. By default, tf.data transformations

produce elements in a deterministic order. However, as determin-

istic ordering can lead to head-of-line blocking, the parallel map
and interleave transformations provide an option for enabling

non-deterministic ordering, which can result in better performance

at the expense of reproducibility.

To illustrate the benefits of the above transformations, we revisit

the example presented in Figure 3. Let us assume that it takes 5ms

to read an element from the file, 2ms to apply the user-defined logic

to an element, and 1ms to batch 10 elements. The accelerator would

Method Description

get_next Returns the next element, or raises EOF.

save Writes the iterator state to a file.

restore Reads the iterator state from a file.

Table 3: Iterator interface

2948



ds = tf.data.TextFileDataset(["a.txt", ...])
ds = ds.map(parse).batch(batch_size =10)
for elem in ds:

train_step(elem)

Figure 3: Example of a training loop using a tf.data input

pipeline that reads from a list of text files. parse is a user-

defined function for data preprocessing.

ds = tf.data.Dataset.from_tensors(["a.txt", ...])
ds = ds.interleave(

tf.data.TextFileDataset, cycle_length =2,
num_parallel_calls =2)

ds = ds.map(parse , num_parallel_calls =10)
ds = ds.batch(batch_size =10)
ds = ds.prefetch(buffer_size =1)
for elem in ds:

train_step(elem)

Figure 4: Optimized version of Figure 3 with a tf.data input
pipeline that employs parallelism (for I/O and parsing) and

software pipelining.

be idle for (5+2) ∗10+1 = 71ms at the start of each iteration before

data for the training computation becomes available.

The tf.data input pipeline in Figure 4 is semantically equivalent

to that of Figure 3. However, it uses 1) the optional num_parallel_-
calls argument of interleave and map to parallelize I/O and

computation respectively, and 2) prefetch to overlap the input

pipeline computation with the training computation. As a result, the

input pipeline in Figure 4 will take𝑚𝑎𝑥 (10∗5/2, 10∗2/10, 1) = 25ms

to produce a batch (assuming a sufficiently slow consumer) and the

input pipeline computation (of the next batch) will be overlapped

with the training computation on the accelerator (for the current

batch). If the training computation takes more than 25ms, the data

for each iteration of the training loop will be ready by the time the

iteration starts. In § 3.3.2 we describe a mechanism for auto-tuning

parallelism and buffer sizes so that users do not have to tune them

manually.

While interleave is typically used to parallelize I/O, it can also

be used for parallel execution of multiple copies of an arbitrary

input pipeline (operating over different shards of the input data).

We have found this mechanism useful to speed up input pipelines

bottlenecked by inherently sequential transformations, such as

filter or unbatch.
In addition to supporting efficient single-host execution, we also

designed tf.data for distributed ML training computation use-

cases, such as data parallel synchronous training, across multiple

hosts (and accelerators per host). In this setup, each host has a

tf.data input pipeline providing data for the accelerators attached
to the host. To provide for clean separation of epochs, the input data

can be sharded across multiple files and the shard transformation

ensures that different hosts operate over different shards of the data.

The sharded input pipelines do not communicate with each other.

3.3 Automatic Optimization

tf.data’s functional programming model enables it to provide

multiple different implementations for a single input pipeline. Au-

tomatic static (§3.3.1) and dynamic (§3.3.2) optimizations improve

tf.data’s performance and usability.

3.3.1 Static Optimizations. At run-time, tf.data can reflect on

the expression tree of any dataset and replace it with a more ef-

ficient version. We implemented static optimizations as a virtual

dataset transformation that converts the input dataset to an expres-

sion tree, applies a suite of rewriting rules, and then evaluates the

rewritten expression tree to produce an output dataset. The current

implementation uses TensorFlow’s GraphDef protocol buffer as the
representation and the Grappler optimization framework [56] to

manipulate these expression trees. We are investigating the use of

MLIR [37] as a richer representation that will enable us to reuse

optimizations from other domains.

As we gained experience with tf.data, we created several cus-

tom transformation that fuse commonly adjacent transformations

for performance reasons. These transformations are: map + batch
fusion, shuffle + repeat fusion, map + map fusion, map + filter
fusion, and filter + filter fusion. For example, the map + batch
fusion transforms d.map(𝑓 ) .batch(𝑏) into map_and_batch(𝑓 , 𝑏),
which is functionally equivalent but the implementation of the

fused operator parallelizes and pipelines the copies of each ele-

ment into the output batch with the processing of other batch

elements. Many of the fusion optimizations in tf.data are inspired
by deforestation in functional languages [60]. As the simplest exam-

ple, the map + map fusion transforms d.map(𝑓 ) .map(𝑔) expression
into d.map(𝑔 ◦ 𝑓 ). This eliminates the per-element overhead of

an iterator—a virtual call to get_next and one of two function

dispatches—and the composition 𝑔 ◦ 𝑓 may be optimized further

by Grappler’s standard optimization passes, such as arithmetic

optimization and dead code elimination.

tf.data static optimizations are not limited to fusions. Map
vectorization is an optimization that transforms d.map(𝑓 ) .batch(𝑏)
into themore efficient d.batch(𝑏) .map(pfor(𝑓 )). In the transformed

expression, pfor(𝑓 ) applies 𝑓 to every slice of the batch in par-

allel [4]. This increases the efficiency of the resulting code by

converting multiple invocations of a per-element operation (e.g.

tf.matmul() into a single invocation of a batched operation (e.g.

tf.batch_matmul()) that itself has an efficient vectorized imple-

mentation. It also reduces the framework-induced overhead by

replacing 𝑏 function invocations with a single invocation.

3.3.2 Dynamic Optimizations. In many cases, the optimal configu-

ration for a tf.data pipeline depends on properties of the input

data (e.g. raw image sizes) and the available resources (e.g. number

of CPU cores, RAM, and network bandwidth). Hence, tf.data pro-
vides configuration parameters such as the degree of parallelism

for map transformations and the size of the buffer for the prefetch
transformation.

To avoid the need for users tomanually tune performance-related

knobs, the tf.data runtime contains an auto-tuning mechanism

that allocates CPU and RAM resources across various parts of the

input pipeline in a way that minimizes the (expected) latency of

the input pipeline producing an element. In the rest of this section,

2949



we refer to the time it takes for an iterator to produce an element

as its output latency and the output latency of an input pipeline is

the output latency of the iterator for its final transformation.

To perform auto-tuning, tf.data executes the input pipeline in

a light-weight harness that maintains a tree representation of the

iterators currently executing as part of the input pipeline, and mea-

sures the processing time spent in each of the iterators. The root of

the tree is the iterator producing data for training computation, the

leaves of the tree correspond to source dataset iterators, and edges

are implied by the input-output relationship between transformed

datasets’ iterators and their inputs. The tree structure can change

over time as transformations such as interleave or repeat create
multiple iterators during their lifetime.

The auto-tuning implementation uses the processing time and

the input pipeline structure to build an analytical model that is used

to estimate how input pipeline parameters affect end-to-end latency.

The estimating function is a composition of the output latencies of

individual iterators as functions of tunable parameters, iterator’s

processing time and inputs’ output latency. The outermost function

of the composition is the one for the final iterator. For synchronous

transformations (i.e. transformations that do not decouple producer

and consumer), the output latency of an iterator is a linear function

of the output latencies of its inputs and the processing time spent in

the iterator. For asynchronous transformations, such as prefetch,
and the parallel map and interleave, the output latency of an iter-

ator is no longer linear and additionally depends on the parallelism,

buffer size, and the rate of the consumer. In particular, the expected

output latency of the iterator is computed as the output latency of

its input(s) multiplied by the probability that the buffer is empty,

which we model using an M/M/1/k queue [53] and estimate as:

𝑝𝑒𝑚𝑝𝑡𝑦 =


1

𝑛+1 if 𝑥 = 𝑦

1− 𝑥
𝑦

1−
(
𝑥
𝑦

)𝑛+1 otherwise

(1)

where 𝑛 is the buffer size, 𝑥 is the producer rate (computed from

the output latency of the input iterator(s)), and 𝑦 is the consumer

rate (computed from the frequency of get_next calls). Note that
the producer rate, 𝑥 , in general depends on upstream computation,

while the consumer rate, 𝑦, in general depends on downstream

computation. We traverse the iterator tree depth first to estimate

both 𝑥 and 𝑦 in a single traversal.

To illustrate how the estimation works, let’s revisit the example

from Figure 4, additionally assuming that 1) the num_parallel_-
calls and buffer_size arguments are set to the special AUTOTUNE
value to enable auto-tuning, 2) the training computation requests

data every 10ms on average, and 3) the auto-tuning harness is

estimating the following combination: interleave parallelism 1

and buffer size 1, map parallelism 5 and buffer size 5, and prefetch
buffer size 2. Figure 5 gives an example of how tf.data computes

the output latency for such a pipeline.

tf.data creates a background thread that periodically uses the

estimation process above to evaluate different combinations of par-

allelism and buffer sizes for tunable transformations. Parameters

are chosen to minimize the expected output latency of the input

pipeline

data consumer

prefetch
buffer size = 2

batch
batch size = 10

map
parallelism = 5

buffer size = 5

interleave
parallelism = 1

buffer size = 1

cycle length = 2

from_file

consumer rate,

get_next calls

per second

1

0.01 = 100

100

100 ∗ batch size

= 1000

1000

1000

cycle length
= 500

output

latency, ms

𝑥 = 1000

36.5 = 27.4,

𝑦 = 100, 𝑛 = 2

36.5 ∗ 𝑝𝑒𝑚𝑝𝑡𝑦 = 27

10 ∗ 3.55 + 1 = 36.5

producer time = 4.15+ 2

5
= 4.55

𝑥 = 1000

4.55 = 220,

𝑦 = 1000, 𝑛 = 5,

4.55 ∗ 𝑝𝑒𝑚𝑝𝑡𝑦 = 3.55

𝑥 = 1000

5
= 200,

𝑦 = 1000, 𝑛 = 1,

5 ∗ 𝑝𝑒𝑚𝑝𝑡𝑦 = 4.15

5

Figure 5: Output latency estimation: the downward traver-

sal computes the consumer rate starting with the root ad-

justing it by the number of concurrent get_next calls from

the consumer and the number of iterators. The upward tra-

versal can compute the output latency of each iterator in the

tree since by the time the traversal returns to an iterator, the

output latency of its inputs is known. Asynchronous trans-

formations prefetch, parallel map and interleave use (1) to

estimate the output latency, whereas a synchronous batch
produces an estimate with a linear function of its own pro-

cessing time and output latency of its input.

pipeline subject to CPU and RAM budget constraints. The optimiza-

tion uses a gradient descent algorithm and is depicted in Figure 6.

The optimization period ranges from milliseconds to seconds and

is determined automatically based on changes to the input pipeline

structure and execution time.

An important aspect of the optimization is its ability to mini-

mize output latency of the end-to-end input pipeline as opposed to

minimizing the output latency of individual transformations. As

different transformations share the same CPU and RAM resources,

locally optimal decisions may lead to excessive parallelism and

buffering, which in turn lead to inefficient thread scheduling and

poor cache locality, negatively affecting end-to-end performance.

The ability to perform the optimization analytically is essential;

it allows tf.data to quickly find a good configuration without

affecting the performance of the real input pipeline while evaluating

sub-optimal configurations. Once the background thread identifies

a configuration to use, it updates the parallelism and buffer sizes of

the actual input pipeline accordingly. For most input pipelines the

optimization takes less than a few milliseconds to complete.

2950



while True:
model = pipeline.get_analytical_model ()
params = model.get_tunable_parameters ()
best_latency = INFINITY
latency = model.latency ()
while (best_latency - latency >= EPS and

model.resource_usage () <= BUDGET):
best_latency = latency
params -= DELTA * model.latency_grad ()
latency = model.latency ()

pipeline.set_tunable_parameters(params)
sleep(OPTIMIZATION_PERIOD)

Figure 6: Periodic optimization of tunable parameters.

4 EVALUATION

To evaluate tf.data we seek to answer the following questions:

1) how do tf.data’s performance-related features affect input

pipeline throughput, 2) how do input pipeline optimizations im-

pact the end-to-end time to reach a target accuracy when training

state-of-the-art ML models, and 3) how does tf.data performance

compare to other systems?

For our evaluation, we used the open-source MLPerf benchmark

suite [41], which is the de facto standard for evaluating ML software

and hardware systems by measuring how fast a system can train

models to a target quality metric. We use tf.data to implement the

input pipelines for each of the MLPerf benchmarks. Our evaluation

considers the following combinations of model architectures and

input data: 1) Resnet50 [26] with ImageNet [17], 2) SSD [40] with

COCO [39], 3) Mask-RCNN [25] with COCO [39], 4) GNMT [64]

with WMT16 [62], and 5) Transformer [59] with WMT17 [63].

Table 4 summarizes the attributes of the MLPerf datasets, which

range from 135 MB to 140 GB in size. Though these public datasets

fit in memory before decompression and/or data augmentations,

in Section 5.1 we discuss our experience with production work-

loads which commonly preprocess larger-than-memory datasets

(Figure 2). When dealing with such datasets, tf.data’s prefetching
and software pipelining optimizations become even more critical

for end-to-end performance.

Table 5 shows the performance-related features of tf.data used
in the input pipelines of our MLPerf benchmark implementations.

All input pipelines used the map, interleave, and prefetch trans-

formations for parallel computation, parallel I/O, and software

pipelining, respectively. All pipelines also used non-deterministic

ordering to mitigate the effect of stragglers. With the exception

of Transformer, the input pipelines used static tf.data opti-

mizations to benefit from transformation fusion and the cache
transformation to materialize intermediate preprocessing artifacts

in memory to avoid their recomputation across epochs. Note that

intermediate artifacts cannot always be materialized as they may

be a result of a randomized transformation which produces a dif-

ferent result each epoch. Finally, the image-based input pipelines

(Resnet50, SSD, and Mask-RCNN) disabled intra-op parallelism for

tf.data computation. Intra-op parallelism makes it possible to par-

allelize execution of individual TensorFlow ops, such as tf.matmul,
but this comes at the expense of increased CPU usage. For tf.data

Dataset Domain Artifacts Size

ImageNet image classification 1.3M images 140GB

COCO object detection 330K images 19GB

WMT16 translation 4M pairs 1.3GB

WMT17 translation 4.5M pairs 720MB

Table 4: MLPerf input data overview.

ResNet-50 SSD Mask-RCNN GNMT Transformer0

10

20

30

40

50

60

70

In
pu

t P
ro

ce
ss

in
g 

Ep
oc

h 
Sp

ee
du

p

11.6

29.1

2.4 1.3
6.0

43.3

63.1

2.7 4.7 6.1

42.6

62.9

2.7 4.6 6.0

Expert-tuned Parallelism
Expert-tuned Parallelism + Optimizations
Autotune Parallelism + Optimizations

Figure 7: Speedup of input pipeline processing timewith dif-

ferent configurations, relative to a sequential input pipeline.

input pipelines, intra-op parallelism generally provides little ben-

efit, as there is plenty of inter-op and inter-element parallelism.

Superfluous fine-grained parallelism can actually hurt performance

due to poorer cache locality and additional synchronization.

4.1 Input Pipeline Experiments

Methodology: To evaluate the effect of tf.data performance-

related features on input pipeline throughput, we executed the input

pipeline portion of our MLPerf benchmark implementations in a

tight loop (with no model training computation) and measured the

time it takes to process an epoch’s worth of data. We used a single

machine with 56 Intel Xeon 2.60 GHz CPU cores, 128 GB of RAM,

and the input data stored on a 1 TB Samsung SM961 SSD.We limited

the Resnet50 experiment to only use 60% of the ImageNet data to

make sure that an epoch’s worth of data can be cached in memory.

For each of the input pipelines we ran the following experiments: 1)

a baseline which does not use any tf.data performance features

(i.e. sequential reading and processing), 2) a version that uses expert-

tuned
1
parallelism for I/O and compute, 3) a version that uses

all tf.data performance features in Table 5 with expert-tuned

parallelism, and 4) a version that uses all tf.data performance

features with auto-tuned parallelism. Note that even though the

baseline does not use input pipeline parallelism, TensorFlow may

still parallelize the user-defined computation in map.
Results: Figure 7 shows the mean duration of a single epoch,

normalized to the epoch duration of the baseline, which does not use

any tf.data performance-related features. On the 56-core machine

used for the experiment, the speedups ranged from 2.7× (Mask-

RCNN) to 63.1× (SSD). Since we are parallelizing both compute and

I/O we could achieve speedup greater than 56×.
1
Expert-tuned parallelism sets map parallelism to the number of CPU cores available

on the machine, interleave parallelism to a constant between 10 and 64 tuned based

on available I/O bandwidth, and the prefetch buffer size to an empirically tuned

multiple of batch size.

2951



Parallel

computation

Parallel I/O Software

pipelining

Non-

deterministic

Caching Static

Optimization

No intra-op

parallelism

Resnet50 ✓ ✓ ✓ ✓ ✓ ✓ ✓
SSD ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mask-RCNN ✓ ✓ ✓ ✓ ✓ ✓ ✓
GNMT ✓ ✓ ✓ ✓ ✓ ✓
Transformer ✓ ✓ ✓ ✓

Table 5: tf.data features used by different MLPerf benchmarks.

The performance of Resnet50 and SSD input pipelines benefits

significantly from tf.data’s performance optimizations, and the

input pipelines can fully utilize the available CPU. In particular, map
+ batch fusion yields the most significant speedup among static

optimizations for these two benchmarks, as it enables computing

multiple batches in parallel. In contrast, the performance of Mask-

RCNN, GNMT, and Transformer input pipelines sees less benefit

from the tf.data optimizations. For Mask-RCNN, the reason for

the limited speedup is two-fold: 1) the baseline employs parallelism

as the user-defined computation applied to each element can be

parallelized by TensorFlow and 2) the input pipeline is bottlenecked

by batching, which is performed sequentially because of an inter-

mediate step between map and batch in the pipeline that prevents

map + batch fusion. Similarly, the text pipelines (GNMT and Trans-

former) did not benefit from map + batch fusion as elements need

to be grouped based on size after the map operation before they

are batched, but the tf.data runtime does not currently support

map + groupby + batch fusion. Most benchmarks saw less than

4% improvement in training time with non-deterministic vs. deter-

ministic data ordering, however Resnet50 benefited more (approx.

40% higher throughput) as its dataset (ImageNet) has a wide dis-

tribution of image sizes, and non-deterministic ordering avoids

head-of-line blocking.

For all of the input pipelines, using auto-tuned parallelism re-

sults in comparable performance to the expert-tuned versions. This

demonstrates that the algorithm described in § 3.3 is able to auto-

matically configure performance knobs similar to a human expert.

4.2 End-to-End Experiments

Methodology: To evaluate how input pipeline performance opti-

mizations with tf.data translate to end-to-end performance bene-

fits when training state-of-the-artMLmodels, wemeasured the time

it takes to reach target accuracy with our tf.data-based implemen-

tation of the MLPerf benchmarks. We executed each benchmark

using 8 hosts with 112 CPU cores, 100 GB of RAM, and 8 TPUv3

accelerators each [30]. For the Mask-RCNN benchmark, we used

400 GB RAM per host to ensure that intermediate artifacts can

be fully cached in memory. We ran the following experiments for

each benchmark: 1) a baseline that trains the MLPerf model with

sequential reading and processing of input data, 2) a version that

uses expert-tuned parallelism for I/O and compute in the input

pipeline, 3) a version that uses all tf.data performance features

with expert-tuned parallelism, and 4) a version that uses all tf.data
performance features with auto-tuning.

ResNet-50 SSD Mask-RCNN GNMT Transformer0

5

10

15

20

25

En
d-

to
-e

nd
 T

ra
in

in
g 

Ti
m

e 
Sp

ee
du

p

10.4

17.9

3.1
1.4 2.0

20.8
21.9

4.3
1.6 2.0

21.0 22.0

4.4

1.5 2.0

Expert-tuned Parallelism
Expert-tuned Parallelism + Optimizations
Autotune Parallelism + Optimizations

Figure 8: Speedup of the time to convergence for MLPerf

workloads with tf.data optimizations, relative to execution

with a sequential input pipeline.

Results: Figure 8 shows the end-to-end training time speedup

(relative to the model training time with a sequential input pipeline)

for each MLPerf benchmark. We draw several insights from these

results. First and foremost, the performance of the input pipeline

significantly affects the end-to-end training performance. Second,

computation and I/O parallelism is necessary but not sufficient to

match the rate at which accelerators perform training computa-

tion. Compared to using a sequential input pipeline as the baseline,

adding software pipelining and parallelism in the input pipeline

improved end-to-end training time by 7× on average across the five

MLPerf benchmarks. For image-based input pipelines (Resnet50,

SSD, and Mask-RCNN), the end-to-end performance benefited fur-

ther from the application of tf.data performance-oriented fea-

tures, providing an additional 2×, 1.2×, 1.4×, speedup respectively.

For text-based input pipelines (GNMT and Transformer), paral-

lelism and software pipelining alone were sufficient to match the

rate at which data was consumed by the training computation.

Figure 8 also compares the training time with expert-tuned

tf.data configuration to training time with auto-tuned configura-

tion. Similarly to the input pipeline experiments, we find that using

tf.data’s dynamic optimizations to select parameters such as the

degree of parallelism and prefetch buffer sizes leads to similar per-

formance compared to the expert-tuned pipelines. The end-to-end

time to convergence with dynamic tuning is within 1% of the time

to convergence with expert-tuned input pipelines for Resnet50,

SSD, Mask-RCNN, and Transformer and within 4% for GNMT.

This demonstrates that tf.data can effectively relieve users from

the burden of hand-tuning input pipeline configurations.

Finally, we also verified that tf.data optimizations enable input

pipelines to match the rate at which accelerators perform training

2952



Input data framework Hardware Epoch duration (s)

PyTorch DataLoader CPU-only 213

NVIDIA DALI CPU-only 777

NVIDIA DALI CPU + 1 GPU 172

NVIDIA DALI CPU + 2 GPUs 107

tf.data CPU-only 110

Table 6: ImageNet-Resnet50 input data processing time

with tf.data vs. NVIDIA DALI and PyTorch DataLoader.

computations for state-of-the-art models. For each MLPerf bench-

mark, wemeasured the time it takes to ingest a batch of data and per-

form the model computation when using 1) an optimized tf.data
input pipeline versus 2) an artificial input pipeline that produces

data as fast as possible (by caching a single batch and repeating it

infinitely). The artificial pipeline does not perform any data pro-

cessing and hence serves as an upper bound on input pipeline

performance. Step times with optimized tf.data pipelines match

the upper-bound performance, hence the MLPerf benchmarks are

no longer input bound after tf.data optimizations.

4.3 Comparison to Other Systems

To evaluate how tf.data compares to other input data processing

systems for ML, we implement a standard ImageNet pipeline using

tf.data, PyTorch DataLoader [14], and NVIDIA DALI [22]. Table 6

shows the average time to process an epoch’s worth of data with

each framework running on a 64 core server (n2-standard-64
on Google Cloud) with 256 GB of RAM, 500 GB local SSD, and

NVIDIA Tesla T4 GPUs. The tf.data pipeline is 1.9× faster than

DataLoader, thanks to tf.data’s static and dynamic optimizations.

For example, if we disable map + batch fusion in tf.data, perfor-
mance drops to 448 seconds per epoch. Table 6 also shows that

tf.data outperforms DALI on CPU or even with one GPU. When

offloading computation to multiple GPUs, DALI achieves higher

throughput, however the use of GPUs adds to the cost of input

data processing and consumes GPU cores and memory that could

otherwise be dedicated to model training.

In addition to comparing input pipeline throughput, it is useful to

compare end-to-end model training time with different input data

frameworks across heterogeneous platforms. The MLPerf Training

competition provides the fairest comparison across ML systems as

each submission is optimized by experts familiar with their per-

formance knobs. For each benchmark, a cluster ranging from 8

accelerators to over 1000 accelerators was used to train the model

to a target accuracy. Table 7 summarizes the top MLPerf v0.7 train-

ing times achieved, categorized by the input pipeline framework

used [43]. The end-to-end training times in Table 7 do not pro-

vide an apples-to-apples performance comparison of input data

frameworks, since the competition entries used different software

frameworks (TensorFlow, PyTorch, MXNet) and hardware (TPUs,

GPUs) to run model training computations. However, we can still

draw two important takeaways from the end-to-end training times

in Table 7. First, tf.data is the only input processing framework

that was used across all MLPerf benchmarks, including image and

Resnet50 SSD Mask-

RCNN

GNMT Trans-

former

BERT

tf.data 28.8 27.6 487.8 77.4 15.6 23.4

DataLoader - - 627.6 42.6 37.2 48.6

DALI 49.8 49.2 - - - -

Table 7: Best end-to-end MLPerf v0.7 competition training

times (in seconds), categorized by the input data frame-

work used. Entries with tf.data, DataLoader, and DALI in-

put pipelines use TensorFlow, PyTorch, and MXNet, respec-

tively, for model training.

text workloads. This attests to tf.data’s flexibility. Other frame-

works only achieved competitive results for a subset of benchmarks

(e.g., DALI for image workloads and DataLoader for text workloads).

Second, tf.data is fast enough to avoid input bottlenecks across

state-of-the-art models and hardware configurations, enabling train-

ing Resnet50, SSD, Transformer, and BERT in under 30 seconds.

As shown in § 4.2, the MLPerf workloads are not input-bound after

applying tf.data optimizations. In particular, the higher end-to-

end training time with GNMT, is due to the TensorFlow model

computation being slower than the PyTorch implementation; the

tf.data part of the computation is not on the critical path.

5 EXPERIENCE

Our colleagues at Google have been using tf.data in training

research and production ML models since 2017. As of today, the

system implementation consists of over 21K lines of Python and

over 56k lines of C++ (excluding test code). The tf.data frame-

work is used for data processing by the majority of TensorFlow

training jobs in Google’s fleet. These jobs run in production clusters,

spanning a variety of application domains (e.g., image classification,

translation, and video content recommendation) and using various

types of ML training algorithms (e.g., supervised learning, rein-

forcement learning, and federated learning). tf.data’s generality
has also facilitated novel research. For example, a creative approach

to working around limited I/O bandwidth when training models

and was implemented using three standard tf.data transforma-

tions [13]. tf.data was also used to automatically generate a data

augmentation policy that achieved state-of-the-art results on image

classification tasks [15].

To understand the characteristics of machine learning input data

pipelines at scale, we studied millions of tf.data jobs in Google’s

fleet over a one month period in 2020. We show that input pipelines

are highly diverse and frequently re-executed. We also identify

several future research directions motivated by our findings, such

as the opportunity to re-use input pipeline computation across jobs.

5.1 Fleet-wide Input Pipeline Analysis

Methodology: We instrument tf.data to collect metrics such as

the set of transformations applied in each job’s input pipeline. For

each job, we also record the bytes consumed and produced by each

transformation in its input pipeline. 71% of jobs define their in-

put pipeline as a single tf.data dataset, while the remaining jobs

define their input processing logic across two or more tf.data
datasets. When an iterator is created for a tf.data dataset, we

2953



16.9%
14.6%

14.1%
12.3%

9.6%
9.2%

7.4%
7.3%

4.4%
1.6%

1.3%
0.9%

0.4%
0.1%

% of total bytes produced by input pipeline operations

Map
Batch

Prefetch
Repeat

Zip
Read from local mem

Read from storage
Interleave

Shuffle
Filter

Read from remote mem
Unbatch

Cache
Other

0.0% 5.0% 10.0% 15.0%

Figure 9: Types of input data pipeline operations and their

prevalence, based on the bytes produced by each type of op.

fingerprint the dataset by computing a hash of its dataflow graph.

We include the list of input file names in the hash calculation and

exclude random seed values. We track the number of iterator cre-

ations for each unique hash over time. We also measure the total

compute time for jobs and the compute time that jobs spend in

tf.data. The compute time is measured in normalized compute

units and is the product of the time spent on a hardware resource

– such as a CPU or an accelerator core – scaled by the compute

capability of that resource. Our compute time metric is analogous

to AWS’s Elastic Compute Units (ECUs) [5]. We collect the metrics

described above with full coverage for all tf.data jobs, with one ex-
ception. Measuring the fraction of compute time spent in tf.data
requires a configuration flag to be set when jobs are launched. Due

to configuration differences across jobs, we measured the fraction

of compute time spent in tf.data for 66% of jobs, accounting for

75% of total compute time across tf.data jobs. For the remaining

jobs, we assume that each job spends 10% of its total compute time

in tf.data, as this is the median time that jobs spend in the input

pipeline (see Figure 1).

Our analysis focuses on three key questions: 1) how frequently

are various transformations used in an input pipeline, 2) how does

the "shape" of data change as data flows through an input pipeline,

and 3) how much computation is shared across input pipeline exe-

cutions in our fleet?

Which datasets are most common? Figure 9 plots the relative
frequency of tf.data transformations across jobs, based on the

number of bytes each transformation is applied on. The map, batch,
prefetch, repeat, and zip transformations are the five most com-

monly applied types of transformations, followed by reading input

data from local memory and storage.We also study howmany input

pipelines rely on various tf.data optimizations. On average, 77%

of input pipelines rely on parallel I/O optimizations by using the

interleave transformation, 87% of input pipelines rely on pipeline

parallelism with the prefetch transformation, and 40% of pipelines

rely on parallelizing compute with the map transformation (and its

fusion with batch). Only 19% of jobs use the cache transformation

to cache input data in memory, though we later show that many

more jobs could benefit from caching since many input pipelines

are re-executed.

10−3 10−2 10−1 100 101 102 103 104 105

Bytes produced / Bytes read
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n

End-to-end
Map
Filter

Figure 10: CDF showing how the ratio of bytes produced vs.

bytes read varies for end-to-end input pipelines, map, and
filter transformations. For 75% of jobs, preprocessing re-

duces the volume of data end-to-end.

How does preprocessing affect data volume? Although some

transformations, such as filtering, decrease the size of input data,

machine learning jobs also commonly apply transformations that

increase the size of data, such as decompressing and augmenting

images to train image understanding models. To understand how

the volume of data flowing through ML input pipelines varies with

different transformations, we measure each input pipeline’s ratio

of bytes produced versus the bytes read from inputs sources. We

compute this ratio for the end-to-end input pipeline of each job, as

well as for each type of transformation applied in the job’s input

pipeline. When the bytes produced over bytes consumed ratio is

less than one, it means that the input pipeline or transformation

in this job decreases the data volume, whereas a ratio greater than

one implies that the volume of data increases.

Figure 10 plots the CDF of the bytes produced over bytes con-

sumed ratio across jobs for their end-to-end input pipeline, map
transformations, and filter transformations. For approximately

75% of jobs, the volume of data produced by the input pipeline and

fed to the model training stage is less than the volume of input

data read. In other words, for most jobs, the materialized dataset

used for training is smaller than the raw input data. For some jobs,

decompressing and augmenting data results in high expansion of

source data. Figure 10 shows that user-defined map transformations,

while preserving dataset cardinality, can decrease or expand data by

over an order of magnitude for 13% of jobs. filter transformations,

which can modify dataset cardinality, discard more than 10% of

input data volume for approximately 23% of jobs. For 8% of jobs,

more than half of the bytes fed into filter transformations are

discarded. filter is also used to sanitize data, hence in 70% of jobs,

the transformation reduces the data by less than 1%.

How often are input pipelines re-executed? We observe that

input pipelines are commonly re-executed and there is a sizeable

opportunity to reuse input pipeline computation both within and

across jobs. Some jobs rely on different permutations of the same

dataset across iterators to improve convergence. To conservatively

estimate the opportunity for computation reuse across input pipeline

executions, we have excluded datasets that use the shuffle trans-

formation (57% of tf.data jobs) in this part our analysis.

An input pipeline iteration begins by creating an iterator for a

dataset definition. We record the number of iterator creations at

2954



2020-04-17

2020-04-21

2020-04-25

2020-04-29

2020-05-01

2020-05-05

2020-05-09

2020-05-13

Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 in

pu
t p

ip
el

in
es

Executed > 1 time/hr
Executed > 2 times/hr

Executed > 5 times/hr
Executed > 10 times/hr

Executed >50 times/hr
Executed >100 times/hr

Figure 11: Fraction of input pipelines executed more than

𝑥 times per hour, over time. Approx. 75% of input pipelines

are executed more than once in the same hour.

the granularity of one hour time intervals for each dataset finger-

print (computed by hashing its dataflow graph). Figure 11 plots the

fraction of input pipelines that are executed more than 𝑥 times in

the same hour, over time. Approximately 75% of input pipelines

are executed more than once within the same hour and 5% of input

pipelines are executed more than 100 times within an hour. Re-

execution of input pipelines can occur across epochs of a training

job and also across jobs. For example, neural architecture search [69]

and hyper-parameter tuning both require training multiple models

using the same input pipeline.

Having found that many input pipelines are re-executed, we next

quantify the opportunity for reusing input pipeline computation

by caching materialized datasets. Figure 12 plots the cumulative

distribution of input pipeline executions over the one month time

span of our study, with input pipelines ordered from most to least

frequently executed. We also show the CDF of the compute re-

sources spent executing these pipelines. Figure 12 shows that by

caching the top 10% of materialized datasets, we can capture 72%

of CPU resources used for computing tf.data datasets across all
jobs that executed in the one month period. The steepness of the

CDF curves indicates that some datasets are particularly frequently

executed and consumed significant resources. Only 10% of input

pipelines are re-executed across multiple jobs. 1% of input pipelines

are executed by more than 25 different jobs and the largest cross-

job sharing we observed was approximately 50,000 jobs executing

the same input pipeline. However, our analysis conservatively esti-

mates the opportunity for reuse since it only counts re-executions

of pipelines with identical end-to-end transformation graphs. We

anticipate further opportunities to reuse computation across jobs

by considering input pipeline sub-graphs.

5.2 Implications for Future Research

We discuss the implications of our fleet-wide analysis and future

research directions based on our experience with tf.data.

Datasets as a service We showed that input pipelines are fre-

quently re-executed, yet only 19% of jobs in our analysis used the

cache transformation. It is often challenging for users to decide

if and where to apply caching as there are several factors to con-

sider: the cost-benefit of caching the data – spending RAM to save

10−5 10−4 10−3 10−2 10−1 100

Normalized # of Input Pipelines (ordered most to least frequently executed)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fra
ct

io
n

Input pipeline executions
Total input pipeline compute time

Figure 12: CDF of input pipeline executions over a one

month period. 10% of pipelines account for 77% of total in-

put pipeline executions and 72% of compute resources.

CPU and possibly improve throughput – and the impact of caching

on training quality – in general, results of randomized transfor-

mation (such as shuffle) should not be cached. Navigating the

compute-storage trade-off and estimating the benefit of caching on

end-to-end performance and downstream accelerator utilization for

ML training jobs is a complex task for users [23]. Hence, automating

cache insertion in input pipelines is important [65]. Furthermore,

since input pipelines can be shared across jobs, designing a dataset

caching service to re-use input pipeline computations across jobs

is a promising future direction. Quiver [36] and CoorDL [44] al-

ready optimize source dataset caching for ML training. Several

systems have shown that caching data across jobs greatly improves

performance for big data analytics [7, 18, 23, 38, 49].

Processing data closer to storage Figure 10 showed that data

preprocessing reduces the volume of data for 75% of jobs. For 14% of

jobs, the volume of data fed into the model for training is less than

10% of bytes read from storage. As input data for ML jobs commonly

resides in remote storage, such as a distributed file system or cloud

object store, this means that more data than necessary is sent over

the network during ML training. Designing ML data processing

systems that apply projections closer to storage is a promising way

to reduce data transfers. Using columnar data formats is another

well-known approach to enable reading only the relevant fields

in a record [9]. We are exploring this approach to improve data

ingestion efficiency for ML jobs.

Addressing host bottlenecks Some input pipelines require sig-

nificant CPU and memory resources to produce their data. When

a host machine isn’t powerful enough to generate input data at

the rate the attached accelerator(s) consume the data, the acceler-

ator(s) idle and slow down model training. To solve this problem,

we are currently exploring the disaggregation of data processing

from model training, by enabling users feed accelerators from input

workers distributed across multiple hosts [57]. The number of input

workers can scale up or down as needed to keep up with the accel-

erators, independent of the number of accelerators attached to one

host. Another approach to address host resource bottlenecks for

input data processing is to offload data preprocessing computations

to accelerators [22].

2955



Data processing for online inference We designed tf.data
to support ML training. However, efficient input processing is also

critical for ML inference. Inference involves less model computa-

tion per input element since only a forward pass of the model is

required, whereas training also requires backpropagation. Hence,

although not all input transformations applied during training –

such as data augmentations – are applied when serving a model,

the input pipeline for inference still presents a significant fraction

of total work. Inference jobs need a different input pipeline design

compared to training jobs as the primary performance objective is

to optimize the latency of individual requests rather than overall

throughput. This implies less buffering, no shuffling, and a different

approach to batching to balance request latency with accelerator

efficiency. Kang et al. propose jointly optimizing inference and data

preprocessing for DNN-based visual analytics [33].

6 RELATEDWORK

Kakarapathy et al. argue for building a single, unified system for

data loading that could be shared between multiple machine learn-

ing jobs, and potentially between different frameworks as well [31].

Their observation that much I/O and preprocessing work can be

shared between jobs agrees with our findings in § 5.2. By contrast,

our work on tf.data has focused on a more general programming

model, enabling users to build different preprocessing schemes.

Our inspiration for tf.data’s programming model drew from

the successful application of LINQ [42] to parallel processing with

PLINQ [55], big-data cluster processing with DryadLINQ [66], and

stream processing with Naiad [46]. Many tf.data transformations

have direct equivalents in LINQ, though we added order-sensitive

transformations (e.g., batch, shuffle, and interleave) to support
ML training algorithms. Optimus [35], which added dynamic graph

rewriting support to DryadLINQ, is similar to the automatic opti-

mization framework that we described in § 3.3. Optimus focused on

reducing network I/O in distributed big-data queries, whereas the

bottleneck in tf.data tends to be the host CPU, and our optimiza-

tions aim to reduce the wall-clock execution time of code within a

single machine. Dandelion extended LINQ with the ability to run

on GPU and FPGA accelerators [52], using the PTask abstraction to

manage the accelerators [51]. Dandelion and PTask provide a simple

programming model that hides data movement between the host

and accelerator devices, similar to how tf.data uses prefetch to

mask copies. Dandelion goes further than tf.data in using func-

tional transformations to represent all computation – not just the

input pipeline – while tf.data interoperates with existing ML

frameworks such as TensorFlow [3], Pytorch [48], and JAX [11] by

using their existing programming models for the training loop.

The design, implementation, and optimization of tf.data all

bear similarities to how SQL is used in a relational database manage-

ment system (RDBMS). A related strand of work has investigated

how to pushmachine learning computations into SQL, and optimize

across the boundary between relational data and linear algebra. The

MADlib analytics library pushes various learning algorithms into

an existing RDBMS [27]. MADlib uses existing SQL constructs for

orchestration – i.e. defining both the input pipeline and the “driver

program” (or training loop) – and provides a C++ abstraction layer

for plugging in user-defined functions that call high-performance

numerical libraries. By building tf.data into TensorFlow and us-

ing its Tensor type to represent values, we achieved efficient in-

teroperability for free. More recently, Karanasos et al. introduced
Raven, which integrates the ONNX Runtime for machine learning

into Microsoft SQL Server [34]. Raven focuses on ML inference

for SQL-based analytic pipelines, achieving better performance by

pushing linear algebra operators into earlier stages of the query plan

and using ONNX Runtime to offload computation to accelerators.

The model-related optimizations in tf.data are more conservative

than Raven’s, because the model is mutable at training time, but

the ideas in Raven would be useful for applications like knowledge

distillation [28] that perform inference at traning time.

Several related projects have investigated the problem of auto-

matically tuning dataflow workloads. SEDA dynamically allocates

threads to stages, using a simple scheme that adds threads to a

stage when its queue length exceeds a threshold, and removes them

when they idle for a period [61]. By contrast, tf.data tunes the

performance of each stage based on the predicted end-to-end per-

formance. The DS2 scaling controller for dataflow-based stream

processing attempts to find the minimum parallelism for each stage

in a dataflow graph that will enable it to consume data at the rates of

all the sources [32]. Like DS2, tf.data uses lightweight instrumen-

tation of “useful” processing time in each transformation to make

scaling decisions, but we additionally model memory consumption

as a possible bottleneck resource to avoid excessive buffering.

7 CONCLUSION

We presented tf.data, a framework for building and executing

efficient input data processing pipelines for machine learning jobs

at scale. tf.data’s programming model enables users to build di-

verse input pipelines by composing and customizing operators.

tf.data executes input pipelines as dataflow graphs and applies

static optimizations that improve end-to-end training time for state-

of-the-art models. For example, input pipeline parallelism and soft-

ware pipelining improve Resnet50 training time by over 10× and

other tf.data optimizations such as operator fusion provide an

additional 2× improvement. We developed an analytical approach

to automatically tune internal buffer sizes and the degree of par-

allelism in input pipelines. These dynamic optimizations achieve

comparable performance to expert-tuned input pipelines while

relieving users from the burden of manually tuning parameters.

The widespread deployment of tf.data across millions of ML

training jobs at Google enabled us to quantify several aspects of ML

data processing, namely its resource footprint, diversity, and the ex-

tent of redundant computation. On average, ML training jobs spend

30% of their total compute time in the input pipeline. Our findings

motivate future work on sharing input pipeline computation across

jobs and pushing data projection to the storage layer.

ACKNOWLEDGEMENTS

We thank Paul Barham, Chandu Thekkath, Vijay Vasudevan, Martín

Abadi, Sudip Roy, Dehao Chen, and our anonymous reviewers for

their helpful feedback on this work. We gratefully acknowledge

Andrew Audibert, Brennan Saeta, Fei Hu, Piotr Padlewski, Rachel

Lim, Rohan Jain, Saurabh Saxena, and Shivani Agrawal for their

engineering contributions to tf.data.

2956



REFERENCES

[1] 2020. Apache Beam: An advanced unified programming model. https://beam.

apache.org/.

[2] 2020. Apache Flume. https://flume.apache.org/.

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine

learning. In Proceedings of OSDI. 265–283.
[4] Ashish Agarwal. 2019. Static Automatic Batching In TensorFlow. In Proceedings

of ICML. 92–101.
[5] Amazon. 2020. Amazon EC2 FAQs. https://aws.amazon.com/ec2/faqs.

[6] Amazon. 2020. Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/.

[7] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur,

Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated

Memory Caching for Parallel Jobs. In Proceedings of NSDI. 20.
[8] Apache Software Foundation. 2012. Avro. https://avro.apache.org/docs/1.2.0.

[9] Apache Software Foundation. 2018. Parquet. https://parquet.apache.org/.

[10] Leon Bottou. 2009. Curiously Fast Convergence of some Stochastic Gradient

Descent Algorithms. In Proceedings of the Symposium on Learning and Data
Science.

[11] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, and Skye Wanderman-Milne. 2018. JAX: composable
transformations of Python+NumPy programs. http://github.com/google/jax

[12] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich.

2019. Data Validation for Machine Learning. In Proceedings of Machine Learning
and Systems (MLSys) 2019.

[13] Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. 2019.

Faster Neural Network Training with Data Echoing. arXiv:1907.05550 [cs.LG]

[14] Torch Contributors. 2019. PyTorch Docs: torch.utils.data. https://pytorch.org/

docs/stable/data.html.

[15] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. 2019. Ran-

dAugment: Practical automated data augmentation with a reduced search space.

arXiv:1909.13719 [cs.CV]

[16] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing

on Large Clusters. In Proceedings of OSDI. 137–150.
[17] Jia Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A

Large-Scale Hierarchical Image Database. In Proceedings of CVPR.
[18] Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, and

Angela Demke Brown. 2016. Quartet: Harmonizing Task Scheduling and Caching

for Cluster Computing. In Proceedings of HotStorage.
[19] Google. [n.d.]. Protocol Buffers. https://developers.google.com/protocol-buffers.

[20] Google. 2020. Google Cloud: All Pricing. https://cloud.google.com/compute/all-

pricing.

[21] Goetz Graefe. 1994. Volcano: An Extensible and Parallel Query Evaluation System.

IEEE Trans. on Knowledge and Data Engineering 6, 1 (Feb 1994), 120–135.

[22] Joaquin Anton Guirao, Krzysztof Łęcki, Janusz Lisiecki, Serge Panev, Michał

Szołucha, Albert Wolant, and Michał Zientkiewicz. 2019. Fast AI Data Preprocess-

ing with NVIDIA DALI. https://devblogs.nvidia.com/fast-ai-data-preprocessing-

with-nvidia-dali.

[23] Pradeep Kumar Gunda, Lenin Ravindranath, Chandu Thekkath, Yuan Yu, and

Li Zhuang. 2010. Nectar: Automatic Management of Data and Computation in

Datacenters. In Proceedings of OSDI.
[24] Donald J. Haderle and Robert D. Jackson. 1984. IBM Database 2 overview. IBM

Systems Journal 23, 2 (1984), 112–125.
[25] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask

R-CNN. CoRR (2017). http://arxiv.org/abs/1703.06870

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of CVPR. IEEE Computer Society,

770–778.

[27] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,

Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,

Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library: Or MAD Skills,

the SQL. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1700–1711.
[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in

a Neural Network. arXiv:1503.02531 [stat.ML]

[29] Java. 2020. Stream API. https://docs.oracle.com/javase/8/docs/api/java/util/

stream/package-summary.html.

[30] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James

Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific Supercom-

puter for Training Deep Neural Networks. Commun. ACM 63, 7 (June 2020),

67–78.

[31] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram

Venkataraman. 2019. The Case for Unifying Data Loading in Machine Learning

Clusters. In Proceedings of HotCloud. Renton, WA.

[32] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew

Forshaw, and Timothy Roscoe. 2018. Three Steps is All You Need: Fast, Accurate,

Automatic Scaling Decisions for Distributed Streaming Dataflows. In Proceedings
of OSDI. 783–798.

[33] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia.

2020. Jointly Optimizing Preprocessing and Inference for DNN-based Visual

Analytics. arXiv:2007.13005 [cs.DB]

[34] Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen,

Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus

Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino. 2020. Extending

Relational Query Processing with ML Inference. In Proceedings of CIDR.
[35] Qifa Ke, Michael Isard, and Yuan Yu. 2013. Optimus: a dynamic rewriting

framework for data-parallel execution plans. In Proceedings of EuroSys, Zdenek
Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek (Eds.). 15–28.

[36] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An Informed

Storage Cache for Deep Learning. In Proceedings of FAST. 283–296.
[37] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,

Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr

Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.

CoRR (2020). https://arxiv.org/abs/2002.11054

[38] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.

Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks.

In Proceedings of SoCC. 1–15.
[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common

Objects in Context. In Proceedings of ECCV.
[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector.

In Proceedings of ECCV. Springer, 21–37.
[41] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-

vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,

et al. 2019. MLPerf training benchmark. arXiv preprint arXiv:1910.01500 (2019).
[42] Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconciling Object,

Relations and XML in the .NET Framework. In Proceedings of SIGMOD. 706.
[43] MLPerf Training v0.7 Results. 2020. Designing Efficient Data Loaders for Deep

Learning. https://mlperf.org/training-results-0-7/.

[44] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.

2021. Analyzing and Mitigating Data Stalls in DNN Training. Proceedings of
VLDB Endow. 14, 5 (Jan. 2021), 771–784.

[45] Dan Moldovan, James Decker, Fei Wang, Andrew Johnson, Brian Lee, Zack

Nado, D Sculley, Tiark Rompf, and Alexander B Wiltschko. 2019. AutoGraph:

Imperative-style Coding with Graph-based Performance. In SysML.
[46] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP) (proceedings of the
24th acm symposium on operating systems principles (sosp) ed.). ACM.

[47] MXNET. 2018. Designing Efficient Data Loaders for Deep Learning. https:

//mxnet.apache.org/api/architecture/note_data_loading.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035.

[49] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ram-

chandran. 2016. EC-Cache: Load-Balanced, Low-Latency Cluster Caching with

Online Erasure Coding. In Proceedings of OSDI. 401–417.
[50] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method.

Ann. Math. Statist. 22, 3 (09 1951), 400–407.
[51] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Em-

mett Witchel. 2011. PTask: Operating System Abstractions to Manage GPUs as

Compute Devices. In Proceedings of SOSP. 233–248.
[52] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis

Fetterly. 2013. Dandelion: A Compiler and Runtime for Heterogeneous Systems.

In Proceedings of SOSP. 49–68.
[53] John E. Shore. 1980. The lazy repairman and other models: Performance collapse

due to overhead in simple, single-server queuing systems. ACM SIGMETRICS
Performance Evaluation Review 9, 2 (1980), 217–224.

[54] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. 2003. Best Practices

for Convolutional Neural Networks Applied to Visual Document Analysis. In

Proceedings of ICDAR. IEEE Computer Society, 958.

[55] Roy Patrick Tan, Pooja Nagpal, and Shaun Miller. 2009. Automated Black Box

Testing Tool for a Parallel Programming Library. In Proceedings of ICST. IEEE
Computer Society, 307–316.

[56] TensorFlow. 2019. TensorFlow Graph Optimizations. https://research.google/

pubs/pub48051.pdf.

2957

https://beam.apache.org/
https://beam.apache.org/
https://flume.apache.org/
https://aws.amazon.com/ec2/faqs
https://aws.amazon.com/ec2/pricing/
https://avro.apache.org/docs/1.2.0
https://parquet.apache.org/
http://github.com/google/jax
https://arxiv.org/abs/1907.05550
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://arxiv.org/abs/1909.13719
https://developers.google.com/protocol-buffers
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1503.02531
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://arxiv.org/abs/2007.13005
https://arxiv.org/abs/2002.11054
https://mlperf.org/training-results-0-7/
https://mxnet.apache.org/api/architecture/note_data_loading
https://mxnet.apache.org/api/architecture/note_data_loading
https://research.google/pubs/pub48051.pdf
https://research.google/pubs/pub48051.pdf


[57] TensorFlow. 2021. tf.data service. https://www.tensorflow.org/api_docs/python/

tf/data/experimental/service.

[58] TensorFlow. 2021. TFRecord and tf.Example. https://www.tensorflow.org/

tutorials/load_data/tfrecord.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30. 5998–6008.
[60] Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. In

Proceedings of the Second European Symposium on Programming. North-Holland
Publishing Co., NLD, 231–248.

[61] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: an architecture for

well-conditioned, scalable internet services. ACM SIGOPS Operating Systems
Review 35, 5 (2001), 230–243.

[62] WMT. 2016. 1st Conference on Machine Translation. http://statmt.org/wmt16.

[63] WMT. 2017. 2nd Conference on Machine Translation. http://statmt.org/wmt17.

[64] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

2016. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144 (2016).
[65] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, and Aditya

Parameswaran. 2018. Helix: Accelerating Human-in-the-Loop Machine Learning.

Proc. VLDB Endow. 11, 12 (Aug. 2018), 1958–1961.
[66] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System for General-

Purpose Distributed Data-Parallel Computing Using a High-Level Language. In

Proceedings of OSDI. 1–14.
[67] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of
HotCloud.

[68] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at

Scale. In Proceedings of SOSP. 423–438.
[69] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement

Learning. In Proceedings of ICLR.

2958

https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
http://statmt.org/wmt16
http://statmt.org/wmt17

