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ABSTRACT
The volume of data that is processed and produced by modern data-
intensive applications is constantly increasing. Of course, along
with the volume, the interest in analyzing and interpreting this data
increases as well. As a consequence, more and more DBMSs and
processing frameworks are specialized towards the efficient execu-
tion of long-running, read-only analytical queries. Unfortunately,
to enable analysis, the data first has to be moved from the source
application to the analytics tool via a lengthy ETL process, which
increases the runtime and complexity of the analysis pipeline.

In this work, we advocate to simply skip ETL altogether. With
AnyOLAP, we can perform online analysis of data directly within
the source application and while it is running. In the proposed
demonstration, the audience will get the chance to put AnyOLAP
to the test on a set of data-intensive applications that are supposed
to be analyzed while they are up and running. As the entire analysis
pipeline of AnyOLAP will be exposed to the audience in form of
live and interactive visualizations, users will be able to experience
the benefits of true online analysis firsthand.
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1 INTRODUCTION
Modern data-intensive applications process and produce more and
more data. They perform complex, often incremental computations
on large input datasets, potentially modify them, and produce corre-
spondingly large results. Of course, the produced data is supposed
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to be analyzed afterwards, which is often carried out in an analyt-
ical DBMS [8, 16, 18] or analytics framework [6, 7, 17]. However,
before this analysis can happen, a cumbersome ETL process must be
carried out, which consists of the following three steps: (1) Extract:
The application materializes the results externally, e.g. in form of
a CSV file. (2) Transform: The results are potentially transformed
so that they are ready to be loaded into the analytics system, e.g.
by reformatting all dates. (3) Load: The content of the CSV file is
loaded into the proprietary database of the system. After this ETL
process, the results are finally ready to be analyzed and interpreted
by running a corresponding query in the system.

A step in the right direction is in-situ query processing [5, 13],
which directly operates on raw text files. However we believe that
even extraction can be eliminated from the pipeline. Instead of
extracting the data from the application, it should be directly avail-
able for analysis within the application. Only this approach allows
true online analytical processing, which is happening side-by-side
with the running application. This is exactly the approach taken
by AnyOLAP, which drastically simplifies the analysis pipeline as
shown in Figure 1.
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Figure 1: A typical analysis pipeline including an ETL process
(top) vs our AnyOLAP pipeline without ETL (bottom).

But how can we access, analyze, and interpret the internal data of
an application during its runtime? One option would be to modify
the application such that it exposes its data in a shared memory
space. This shared data could then be analyzed by an external
system. Unfortunately, such a modification typically imposes deep
and complex changes in thememorymanagement of the application.
Moreover, each and every application to analyze would require
manual and careful adaptation for shared memory.
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In AnyOLAP, we follow a minimally invasive approach: Instead
of modifying the application that we want to analyze, we attach
AnyOLAP to it in order to gain access to its internal memory. The
key to do so lies in so-called function interposing, which is available
in different variants for Linux [1], Mac OSX [2], and Windows [3] –
here, we focus on the implementation in Linux. Interposing allows
AnyOLAP to intercept allocation requests and get a handle for the
virtual and physical memory that is in use by the application. Using
this handle, AnyOLAP can take virtual snapshots of the memory
regions of interest. AnyOLAP assures that these virtual snapshots
remain consistent and are not affected by the concurrent execution
of the host application. These virtual snapshots can then be trans-
formed and interpreted by user-written analytical tasks. To ease
usage and interpretation, AnyOLAP provides a GUI, which visual-
izes intercepted memory regions and the corresponding analysis
process in a live and interactive fashion.

2 ANY OLAP
To enable analytics in a minimally invasive fashion, AnyOLAP
utilizes a combination of rather exotic techniques, which we will
describe at a high level in the following section.

Function interposing [1–3] forms the basis of AnyOLAP. In gen-
eral, it works as follows: If an application calls a function from a
dynamic library, the definition of the function is resolved during
runtime. For example, if an application calls mmap(), the call is re-
solved at runtime by the definition ofmmap() in the GNU C Library.
The idea of function interposing is to preload a library containing
an alternative definition of mmap(). As a consequence, the call is
resolved by the alternative definition instead of the default one. In
AnyOLAP, interposing has one essential purpose: To get a handle
on the virtual and physical memory of the application. Precisely,
we hijack mmap(), mremap(), and munmap(), as these are typically
called by general-purpose allocators, such as malloc(), to allocate,
resize, and free large virtual memory regions. Of course, AnyOLAP
can be extended to hijack further calls if required, as long as the
called functions are linked dynamically. The goal of this approach
is to install a custom memory manager in the application, which
enables us to take virtual snapshots.

A call to mmap() returns a newly allocated virtual memory re-
gion. By default, this virtual memory region is backed by anonymous
physical memory. Anonymous means that the user cannot get a
handle on it – it is transparently managed by the OS. This is a
problem: To create efficient virtual snapshots [10, 11, 15], where
physical memory is shared between the virtual memory of the ap-
plication and the corresponding virtual snapshot, we need to get a
handle for the physical memory first. To get this handle, we provide
the following alternative definition of mmap(): Instead of return-
ing a virtual memory area that is backed by anonymous physical
memory, we return a virtual memory area that is backed by a so
called main-memory file 𝑓 . The pages of a main-memory file are
again mapped to anonymous physical pages by the OS. As we can
freely map virtual pages to file pages [14], this main-memory file
is effectively our handle to the physical memory of the application.

2.1 Virtual Snapshotting
With the physical memory at hand, we are now able to create
lightweight virtual snapshots: Assume we have a virtual memory

region 𝑤 of four virtual pages 𝑤0 to 𝑤3 that are mapped to the
four file pages 𝑓0 to 𝑓3. If we now take a virtual snapshot 𝑠 with
respect to𝑤 , then 𝑠0 to 𝑠3 will map to the same four file pages 𝑓0 to
𝑓3. Thus,𝑤 and 𝑠 share their physical memory. Figure 2 visualizes
the situation right after 𝑠 has been taken.
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Figure 2: AnyOLAP takes a virtual snapshot 𝒔 with respect
to𝒘. Both 𝒔 and𝒘 map to the same file pages.

Of course, 𝑠 should provide a consistent view for analysis while
the application is writing to𝑤 . To realize this behavior, we imple-
ment a manual copy-on-write (CoW) mechanism, as described in
detail in [14]. When creating the virtual snapshot 𝑠 with respect
to𝑤 , we set the memory protection of𝑤 to read-only. Thus, when
the application intends to write to a virtual page, a segmentation
fault is triggered. By default, this would terminate the application.
However, AnyOLAP installs a custom segmentation fault handler
that catches the fault. Then, we perform a manual CoW, which du-
plicates the physical page and adjusts the mapping as visualized in
Figure 3. As a consequence, no write to𝑤 will be visible through 𝑠 .
Of course, the same holds in the other direction as well: A write to
𝑠 , i.e., to transform the data of the snapshot, will not be visible in
the host application.
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Figure 3: A write to 𝒘1 triggers a manual CoW, where 𝒘1
is remapped to an unused file page 𝒇4, before the write is
performed. As the corresponding page 𝒔1 in the snapshot
still maps to file page 𝒇1, the snapshot remains consistent.

In summary, being able to create virtual snapshots offers two essen-
tial advantages over classical extraction: (1) Creating a snapshot is
lightweight as only a memory mapping needs to be initialized [14].
(2) Only pages that are modified by the host application are actually
copied.
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2.2 Overhead
Of course, interposing an application and adapting its memory
management comes at a performance price. In the following, we
evaluate in a micro-benchmark how much the application is in-
fluenced by the creation of the snapshot. In our evaluation, the
application creates an array of 10000 pages and AnyOLAP takes
a snapshot on this area. Now, the application iterates two times
over this array sequentially and updates the first 𝑥 percent of its
data. Figure 4 shows the results without AnyOLAP being attached
(red) as well as with it being attached (blue). We can see that the
overhead of the first iteration depends on the amount of data that
is written, as this directly correlates with the amount of CoW that
is happening. In the second iteration, the overhead vanishes, as the
memory of the application has been separated from the memory of
the snapshots.
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Figure 4: Overhead of AnyOLAP on the application.

3 DEMONSTRATION
Let us now discuss how the analysis pipeline looks like and how
it can be used in practice. Along with that, we describe how the
audience will use AnyOLAP to analyze data-intensive applications
during the demonstration.

To simplify the interaction with AnyOLAP, we will provide an
easy-to-use GUI on top of the backend. Via our GUI, users are able
to configure the analysis pipeline, initiate the analysis process, and
interact with AnyOLAP while the analysis is running. We realized
the GUI in the Python framework Dash [4] as a web application,
which communicates with the backend written in C. The AnyOLAP
GUI visualizes the following information: (1) A timeline showing
all (intercepted) memory in the virtual address space of the applica-
tion (𝑦-axis) with respect to the execution time (𝑥-axis). (2) Write
accesses that are happening to the memory. The monitoring granu-
larity and frequency can be freely adjusted by the user. Visualizing
accesses can help the user to understand the behavior of the appli-
cation and to classify the different memory regions. (3) All taken
snapshots with respect to the memory region on which they have
been taken along with the point of creation time. (4) The results
of analysis tasks, which have been computed on the snapshots.

3.1 Sample Application and Analysis Tasks
To understand the workflow, let us discuss analysis process for a
sample application 𝐴, which performs an out-of-place radix sort on
an array of integers. The algorithm maintains two large arrays𝑤1

and 𝑤2, where 𝑤1 initially contains the input data. Then, an out-
of-place radix partitioning step partitions the data over to𝑤2 with
respect to a portion of the integer. Afterwards,𝑤2 is copied back
to𝑤1 and the next round starts. Besides𝑤1 and𝑤2, the algorithm
also maintains a histogram ℎ that is required to count how many
elements are moved into each partition.

We want to analyze the following two properties during runtime:
(t1) How many duplicates does the input contain? (t2) What is the
current sortedness of the working set? For each of these properties,
we create a so-called analysis task. An analysis task is written in C
against a simple interface that receives a snapshot as its argument.
Listing 1 shows the code for task t2 (sortedness). Note that modify-
ing an analysis task only requires a recompilation of AnyOLAP –
no recompilation of the host application is necessary.

float t2_analyze(void* snapshot , size_t length) {

float sortedness = 0.0;

int* array = (int*) snapshot;

size_t numEntries = length / sizeof(int);

for (int i = 1; i < numEntries; i++)

if (array[i-1] < array[i]) sortedness += 1.0;

float numPairs = numEntries - 1;

return (sortedness / numPairs) * 100.0;

}

Listing 1: Analysis task t2, which computes the sortedness
of an array of integers of a given snapshot.

3.2 Workflow
Let us now go through the actual analysis workflow, which is visual-
ized in Figure 5. First, we upload the binary of A. Second, we select
the analysis mode we want to perform. In interactive mode, which
we will discuss in the following, the user triggers the creation of a
snapshot on a particular memory region manually from the GUI. In
automatic mode, snapshots are taken and analyzed automatically at
a configurable frequency.

By starting the analysis, the AnyOLAP library is first preloaded
in the background. Then, A is executed and continuously produces
a timeline of the run. This timeline shows a live visualization of
all detected memory allocations, as shown by the light blue rectan-
gular areas in Figure 5. We can clearly identify 𝑤1 and 𝑤2 as the
rectangles m1 and m2. The dark blue dots within the rectangles mark
the detected write accesses. We can identify the sequential copying
into m1 as well as the random writes into the individual partitions
within m2. To create snapshots and to perform an analysis on them,
we can now select one or multiple analysis tasks. We first select
task t1, choose the input region m1 and take the snapshot m1_s1. The
backend will execute t1_analyze(m1_s1, sizeof(m1_s1)) and pro-
vide the result to the GUI. By hovering over the visualized snapshot
(red block), we can learn that 12% of the integers are duplicates.

Next, we select analysis task t2 to analyze the sortedness during
the run.We trigger the creation of a virtual snapshot on the working
memory m2, resulting in the virtual snapshot m2_s1. The backend
executes t2_analyze(m2_s1) and provides the result, which states
that the array is already sorted by 23% after 10 seconds of execution.
In contrast to t1, we want to execute task t2 multiple times, as
the sortedness changes over time. After 30 seconds, we thus create
another virtual snapshot m2_s2 to see how far we got. From the
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Figure 5: The GUI and the timeline of an AnyOLAP run. All intercepted memory allocations, their lifetime, as well as all
taken snapshots are visualized. Further, the executed analysis functions are shown. Hovering the snapshot reveals the result.
(Multiple visualizations have been merged to show the result of all executed tasks in one figure.)

execution of t2_analyze(m2_s2), we learn that the sortedness has
already reached 94%.

3.3 Limitations
While AnyOLAP removes the need to extract the data, it imposes
certain requirements on the host application and the user. As we
have seen in Listing 1, we require an analysis task to provide an
interpretation of the snapshot in form of type information, as it
cannot be extracted from the host application. Consequently, (a) the
user must have an understanding of the internal data representation
of the host application and (b) the data representation must be
sufficiently simple. While this is not the case for all applications,
we observed that this holds for many data-intensive applications
from the HPC domain, such as [9, 12].

3.4 Data-intensive Demonstration Applications
Generally, AnyOLAP supports the analysis of arbitrary binaries. For
the demonstration, we provide the following set of data-intensive
applications to test:

(1) A Collection of Sorting Algorithms: A set of sorting al-
gorithms (radix-sort, quick-sort, insertion-sort). The user will be
able to monitor the access pattern of these algorithms as well as
to analyze their progress. (2) Optimization Problem Solving: A
search-based solver for a difficult optimization problem. The audi-
ence can view the development of the best solution found so far by
the solver. Additionally, we showcase two real-world applications
from the HPC domain: (3) LULESH: The Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics [9] rooted in physics
solves a Sedov blast problem to model hydrodynamics. The audi-
ence can observe how high-locality applications behave. (4)NAMD:
The Nanoscale Molecular Dynamics program [12] from medicine
simulates large biomolecular systems using spatial decomposition.
The audience can analyze its memory access pattern and identify
different phases of its runtime.
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