
Scotch: Generating FPGA-Accelerators for Sketching at Line Rate
Martin Kiefer
Ilias Poulakis
Sebastian Breß

Technische Universität Berlin
firstname.lastname@tu-berlin.de

Volker Markl
Technische Universität Berlin

German Research Center for Artificial Intelligence (DFKI)
volker.markl@tu-berlin.de

ABSTRACT
Sketching algorithms are a powerful tool for single-pass data sum-
marization. Their numerous applications include approximate query
processing, machine learning, and large-scale network monitoring.
In the presence of high-bandwidth interconnects or in-memory data,
the throughput of summary maintenance over input data becomes
the bottleneck. While FPGAs have shown admirable throughput
and energy-efficiency for data processing tasks, developing FPGA
accelerators requires a sophisticated hardware design and expen-
sive manual tuning by an expert.

We propose Scotch, a novel system for accelerating sketch main-
tenance using FPGAs. Scotch provides a domain-specific language
for the user-friendly, high-level definition of a broad class of sketch-
ing algorithms. A code generator performs the heavy-lifting of
hardware description, while an auto-tuning algorithm optimizes
the summary size. Our evaluation shows that FPGA accelerators
generated by Scotch outperform CPU- and GPU-based sketching
by up to two orders of magnitude in terms of throughput and up to
a factor of five in terms of energy efficiency.
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1 INTRODUCTION
Sketching algorithms are a powerful tool for analyzing large data
sets and high-velocity data streams [10]. They allow for a trade-off
between accuracy and efficiency by constructing lossy but space-
efficient summaries in a single pass over the input data. The created
summaries enable efficient approximate computation of quanti-
ties such as value frequencies or aggregate functions on relational
operators. They have been successfully applied to data-intensive
tasks such as selectivity estimation [36], heavy hitter and change
detection [35], data integration [41], and machine learning [21].
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Since analyses over sketch summaries shift the computational
pressure from the analysis to the summary construction, maintain-
ing the summaries at high throughput is critical. Implementations
based on multi-core CPUs or GPUs have high energy consumption
and often fail to deliver the bandwidth required to satisfy modern
interconnects for network (100G Ethernet, Infiniband) and stor-
age (PCIe 3.0+, SATA Express). Field-Programmable Gate Arrays
(FPGAs) allow developers to construct custom hardware based on
reconfigurable logic elements. Custom hardware allows for high
degrees of parallelism, which enables data processing at line rate.
These capabilities are a perfect match for the parallel computations
over state commonly found in sketching algorithms.

However, implementing sketching algorithms on FPGAs is te-
dious. An FPGA expert is required to find an implementation that
satisfies bandwidth constraints and resource limits while maximiz-
ing the sketch size for optimal accuracy. The expert has to make
performance-critical design decisions, including memory architec-
ture and pipelining of operations. Furthermore, maximizing the
summary size requires time-consuming manual tuning. Previous re-
search in the area focused on implementation strategies for individ-
ual sketches and use cases manually tailored to the FPGA [8, 29, 35].

In this work, we take a holistic perspective on FPGA-accelerated
sketching by creating FPGA accelerators for an entire class of
sketching algorithms without the need for explicit hardware de-
scription or manual tuning. We propose the Scotch framework that
makes four main contributions:

(1) Programmingmodels to describe a variety of different sketch-
ing algorithms and ScotchDSL, a domain-specific language
to implement user-defined functions for these models

(2) A code generator producing a highly efficient hardware de-
scription based on ScotchDSL functions

(3) An auto-tuning algorithm that maximizes the sketch size
within the resources of the FPGA and target throughput

(4) An extensive evaluation of our approach on various FPGAs
that covers comparisons to CPU and GPU baselines in terms
of throughput and energy-efficiency

In the following section, we provide background on sketching al-
gorithms and FPGAs. Section 3 provides an overview of the Scotch
system. We then introduce ScotchDSL and its programming model
in Section 4. Section 5 explains the code generator and the gener-
ated hardware architecture. It is followed by extensions for data
parallelism in Section 6 and a discussion of the limitations of the
approach in Section 7. Finally, we introduce our auto-tuning algo-
rithm in Section 8. Section 9 presents our experimental evaluation.
Section 10 covers related work, and Section 11 concludes the paper
by summarizing our findings.
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2 BACKGROUND
2.1 Sketching Algorithms
While the term sketching appears in various connotations, it mostly
occurs with streaming algorithms that construct a limited size sum-
mary in a single pass [10]. Often, sketching algorithms apply up-
dates to the summary state in a randomized fashion by exploiting
families of hash functions with statistical properties. The resulting
summary allows for the computation of approximate quantities
with probabilistic or exact error bounds, like the number of distinct
elements [15, 16], distribution characteristics [17], or aggregates
over relational operators [11, 36] that would be expensive or infeasi-
ble to compute accurately. Supported quantities, their computation,
and the error bounds are dependent on the algorithm and hash
functions used. The size of the summary balances accuracy, mem-
ory, and compute time. Furthermore, sketch summaries constructed
over separate data are usually mergeable into a single summary,
which allows for parallelization and distributed construction [1].

Sketching algorithms have receivedmuch interest from academia
and industry. Various sketching algorithms have been proposed
and successfully applied in applications, including machine learn-
ing [21], data integration [41], approximate query processing [9],
change detection [35], and query optimization [36].

Sketching algorithms shift the computational burden from the
analysis to the construction of the sketch summary. We will refer
to the task of sketch summary construction briefly as sketching.
Sketching at high throughput and low energy consumption is a cru-
cial problem for improving the efficiency of sketching applications.

2.2 Field-programmable Gate Arrays
A field-programmable gate array (FPGA) is a hardware architecture
that allows for the implementation of integrated circuits, similar to
ASICs [32]. However, FPGAs support changing the implemented
circuit based on software. Thus, FPGAs provide the benefits of cus-
tom hardware in terms of parallelism and energy-efficiency while
being reprogrammable, making them a promising architecture for
accelerating data processing tasks [24, 25, 31, 33, 38, 40].

FPGAs mainly achieve reprogrammability through hundreds
of thousands to millions of programmable look-up tables (LUTs)
spread throughout the fabric, each representing a boolean function
with a fixed number of inputs. More complex functions are con-
structed by connecting LUTs via a configurable routing network.
Furthermore, Block RAM (BRAM) elements provide random mem-
ory in the order of kilobits with configurable width and depth. The
availability of LUTs and BRAM elements determines the maximum
complexity of the implemented logic.

The maximum clock rate is a critical factor for the throughput
achieved by FPGA designs, which has to match the interconnect
used to interface the FPGA with I/O. The signal delay caused by
logic and routing between registers determines the maximum clock
rate. Thus, pipelining computations by adding intermediate regis-
ters is essential to achieve high throughput. To allow for heavily
pipelined designs, FPGAs provide groups of LUTs accompanied
by D-Flipflops. We refer to these groups as elementary logic units
(ELUs) [32]. FPGAs are commonly programmed using the Register-
Transfer-Level (RTL) abstraction provided by VHDL or Verilog,
which describes the flow of data between registers.

3 SYSTEM ARCHITECTURE
In this section, we provide an overview of Scotch and the accelera-
tors generated. In Section 3.1, we motivate and introduce the design
requirements of Scotch. Next, Section 3.2 shows the architecture
of the accelerators generated by Scotch. Finally, Section 3.3 gives a
high-level overview of the Scotch system.

3.1 Design Requirements
In the following, we describe the problems and highlight the design
requirements that are the foundation of Scotch.
DR1: Lightweight Sketch Specification. While sketching is typ-
ically very concise in its mathematical definition, implementing it
on an FPGA adds additional complexity. An FPGA expert is required
since the developer needs hardware design knowledge to make ar-
chitectural decisions. In particular, the expert has to pipeline com-
putations and decide on a memory architecture. Scotch provides
an intuitive programming model and domain-specific language
to describe sketching. These descriptions are concise and close to
their mathematical definition. Code generation replaces the tedious
process of programming RTL for these functions. Efficient auxiliary
components, such as memory, are generated automatically accord-
ing to the desired sketch summary size without user involvement.
DR2: Automated Tuning. As a sketch summary’s accuracy in-
creases with its size, providing a large summary size is crucial for a
sketching accelerator. However, finding a large sketch size within
the FPGA’s resources while meeting the operating frequency re-
quired by the interconnect is tedious. The developer has to vary
the size and compile the accelerator by trial-and-error. This pro-
cess requires an FPGA expert’s intuition and is inconvenient given
compile times in the order of hours. Scotch maximizes the sketch
size for a given FPGA and interconnect without manual tuning.
An auto-tuning algorithm systematically varies the summary size
while being economical in the number of performed compilations.
DR3: Device and I/O Agnosticism. Various FPGAs and boards
exist with different supported interconnects and target domains
ranging from IoT applications to large-scale network processing.
Implementations created for a particular setup are usually not easily
portable to another. Scotch separates the implemented algorithm
from the FPGA vendor, model, and board by encapsulating these
details in an I/O module. RTL generation and tuning make no
assumptions on the device or interconnect.
DR4: Constant Processing Rates. Compared to general-purpose
processor architectures such as GPUs or CPUs, constructing cus-
tom hardware on FPGAs has a significant benefit: They can provide
high throughput at a constant rate, which enables data processing
at the full rate of the interconnect. However, this requires a careful
design of all components implementing the sketching functionality.
Scotch generates hardware that processes data at a constant rate.
All components are scalable with the sketch size and fully pipelined,
meaning that all components are divided into pipelined substages
and process one set of input values per clock cycle. They do not
require stalls or flushing pipelines due to data dependencies. For
high-throughput interconnects, Scotch provides mechanisms to
exploit data parallelism.
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3.2 Accelerator Design
The accelerators generated by Scotch consist of two components
connected via a common interface:
Sketching Unit: Processes input values by storing and manipu-
lating the sketch summary state. Furthermore, it exposes sketch
summary state when requested via control signals. Scotch generates
and optimizes the sketching unit.
I/O Controller: Implements off-chip communication via an inter-
connect, such as Ethernet or PCIe. It interprets signals arriving
on the interconnect as input values or as requests to expose the
sketch summary and drives the interface signals accordingly. The
I/O controller has to be provided by an expert as, similar to drivers
in operating systems, its implementation depends heavily on the
used FPGA, board, and interconnect.

The separation of sketching and I/O enables flexibility in terms
of the interconnect (DR3).

3.3 Scotch
Scotch generates optimized hardware accelerators for a broad class
of sketching algorithms. Users specify the sketching process in a
convenient domain-specific language, while code generation and
automated tuning replace the complicated and time-consuming
RTL development and manual tuning of the summary size. Figure 1
illustrates the high-level system architecture.

A user implements sketching algorithms by providing user-
defined first-order functions. They are arguments to higher-order
functions supported by Scotch. User-defined functions are given in
ScotchDSL, a domain-specific language that allows for an intuitive
description of the sketching computations close to their mathe-
matical formulation. ScotchDSL and the underlying programming
model satisfy DR1 and are described in Section 4.

(1) (2) (3)

Sketch Description
(ScotchDSL)

Sketching Unit

Device Descriptor
(JSON)

Optimal
Bitstream

Parameters

Compilation Report, Bitstream

I/O Controller
(Design Project)

Figure 1: Scotch system architecture

The RTL generator produces hardware description code for the
entire sketching unit based on ScotchDSL functions. The gener-
ated RTL is fully pipelined, enabling high constant processing rates
(DR4). The RTL generator and the generated hardware architecture
are discussed in Section 5. A top-level project, which contains the
I/O controller and constraints, instantiates and connects to the gen-
erated sketching unit yielding a complete design for the accelerator.
Finally, the vendor-specific toolchain compiles the design, result-
ing in a bitstream to configure the FPGA and reports on resource
utilization and timing.

Exploiting data parallelism is a common technique to achieve
high throughput in parallel processor architectures. The RTL gen-
erator supports data parallelism by trading FPGA resources for
higher maximum throughput (DR4). We discuss the underlying
approaches in Section 6.

Scotch’s auto-tuning algorithm maximizes the target sketch size
within the resource limitations of the FPGA and clock rate con-
straints set by the I/O controller for interconnect used. Thus, it
ensures high accuracy while creating a fully functional accelerator.
The algorithm repeatedly parameterizes the RTL generator, com-
piles the project, and analyzes the resource consumption and timing
reports in a feedback loop. The auto-tuning algorithm satisfies DR3
and is given in Section 8.

4 SKETCH SPECIFICATION
In this section, we introduce the sketch specification approach used
in Scotch to satisfy DR1. In Section 4.1, we propose the Select-Update
model that allows for a convenient description of sketching in terms
of user-defined functions. It serves as the underlying programming
model for Scotch. In Section 4.2, we introduce ScotchDSL, a domain-
specific language allowing developers to specify these user-defined
functions close to their mathematical formulation while being trans-
latable to RTL.

4.1 Select-Update Model
The maintenance process of many popular sketching algorithms
can be generalized as updating one entry per row of a matrix. Based
on this observation, we propose the Select-Update model to describe
sketching by specifying a select function that selects the entry in a
row and an update function that determines the new value of the
selected entry. Table 1 provides a non-exhaustive list of sketching
algorithms fitting this model. The Select-Update model serves as a
programming model for Scotch.

Formally, the Select-Update model defines an update to the
sketch matrix as follows: A sketch matrix S ∈ Sm×n is adapted
for each observation t ∈ T. For each row i ∈ {1 . . .m}, a selector
function seli : T→ {1, . . . ,n} determines an entry that is updated
based on an update function upi : T × S→ S. Formally, an update
is defined as:

S [i, seli (t)] := upi (t , S [i, seli (t)]) , i ∈ {1 . . .m} (1)

The domains of the state S and value T are fixed-size bit sequences;
their interpretation is left to the select and update function.

Select and update functions are either the same for all i or drawn
from a family of functions based on a randomly drawn seed θ ∈ Θ,
where the seed domain Θ is a fixed-size bit sequence as well. This
allows for convenient definitions in a single function that takes the
seed as an optionally used third argument. Thus, we specify seli (t)
and upi (t , s) by specifying sel(t ,θi ) and up(t , s,θi ), respectively.

The Select-Update model includes sketching algorithms operat-
ing on a single column, such as AGMS [2] or MinHash [4]. In these
cases, the specification of a select function is unnecessary, as there
is only a single entry per row. This property allows for simplifica-
tions and optimizations, which we highlight throughout the paper.
We refer to these sketches as column sketches, while referring to the
general case as matrix sketches. Sketches that operate on a single
row are referred to as row sketches.

We provide an example for a matrix sketch and a column sketch
in the Select-Update model.

Example 1 (Count-Min): The Count-Min sketch [11] is a pop-
ular algorithm that provides an upper bound on the frequency of
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observed elements and other quantities such as join sizes. First, a
member of a family of two-wise independent hash functions com-
putes the offset in each row. A common choice is H3 [27], which
computes an h-bit hash value for a k-bit key by using a random
seed θ consisting of h · k bits.

sel(t ,θ ) − 1 =
⊕

j ∈{0...k−1}
(t [j] ∧ θ [j · h + 1 . . . (j + 1) · h]) (2)

The subtraction in the first term accounts for one-based indexing.
The operator ⊕ denotes a sequential bitwise XOR operation; the
operator ∧ denotes a bitwise logical AND between the j-th bit of
t and j-th sequence of h bit in θ . The following update function
denotes an increment to the selected state:

u(t , s,θ ) = s + 1 (3)

Example 2 (AGMS): The AGMS sketch maintains a column
vector as state and allows estimating join sizes and other relational
aggregates [2, 36]. A family of independent hash functions maps a k-
bit key to {+1/−1} updates applied to each counter. The EH3 family
was found to be a good choice [13, 28]. The EH3 hash functions
require a random seed θ consisting of k + 1 bits.

The function eh3 applies bitwise operations on the input value
and the seed:

eh3(t ,θ ) = h(t) ⊕ θ [k + 1] ⊕
⊕

r ∈{1...k }
(θ [r ] ∧ t [r ]) (4)

h(t) =
⊕

r ∈{1.. k2 }
t[2r − 1] ∨ t[2r ] (5)

The update function is then defined as:

u(t , s,θ ) = s +
{
1 if eh3(t ,θ ) = 1
−1 else

(6)

Table 1: Sketching algorithms generalized by the Select-
Update model and implementable in ScotchDSL

FM [16] MinHash [4] Fast-AGMS [9] Count-Min [11]

AGMS [2] HyperLogLog [15] Bloom Filter [3] Fast-Count [34]

4.2 ScotchDSL
Scotch generates the sketching unit RTL based on user-defined
select and update functions. A programmer provides these functions
in ScotchDSL, a domain-specific language that describes the flow
of computations from the input variables to the function result in
terms of operations on bit vectors of arbitrary size. It is sufficiently
expressive to implement the sketching behavior while ensuring
that the computations translate to efficient hardware.

An algorithm implementation in ScotchDSL consists of an im-
plementation of the user-defined functions and a descriptor file.
The descriptor file contains the number of bits required for the
state, input value, seeds, and auxiliary variables. ScotchDSL func-
tion implementations consist of consecutive variable assignments
that set the value of a variable to the result of the expression on its
right-hand side. A ScotchDSL function ends with an assignment to
the output variable.

Listing 1: Select function for Count-Min with H3
1 x <= expand(t(0),32) & seed(31 downto 0) ;
2 for i in 1 to 30 {
3 x <= (expand(t(i),32) & seed((i+1)∗32−1 downto i∗32)) ^ x;
4 }
5 offset <= (expand(t(31),32) & seed(32∗32−1 downto 31∗32)) ^ x ;

ScotchDSL supports the following operations in the expressions:
(1) Selecting an individual bit or a range of bits from a bit vector
(2) Bitwise logical operations and comparisons
(3) Signed and unsigned arithmetic operations and comparisons
(4) Auxiliary functions that take variables as an argument and

return a bit vector as a result.
Besides simple assignments, we support conditional assignments
and for-loops. For-loops have a fixed iteration range and replace
repetitive assignments with a fixed pattern.

Operating on bit vectors allows the specification of algorithms
closer to their mathematical definition (DR1). For example, the EH3
hash function given in Equation 4 requires computations on a 33-
bit seed, which complicates an implementation in programming
languages such as C/C++, as only word-sized data types are pro-
vided. ScotchDSL functions usually consist of few lines and allow
for quick customizations such as changing the state size or adding
a frequency to an update.

As hardware definition languages operate on bit vectors in the
same way, all expressions map to equivalent expressions in the
target language VHDL. By providing a restricted set of operations,
we ensure that the function code maps to pipelined RTL that is
synthesizable on an FPGA (Section 5.2). Constructs that prevent a
fully-pipelined design or are not synthesizable to FPGA hardware
are not supported (e.g., data-dependent loops).

The ScotchDSL syntax borrows from VHDL. In the following, we
provide ScotchDSL implementations for the previously introduced
algorithms and highlight the language constructs. The descriptor
files are regular JSON files and omitted for the sake of space. Note
that indexes in ScotchDSL are zero-based.

Example 1 (Count-Min, Select): Listing 1 shows the imple-
mentation of the Count-Min/H3 select function given in Equation 2.
The code computes a 32-bit hash value (offset) from a 32-bit obser-
vation (t) based on a 32 · 32 = 1024-bit seed (seed).

Line 1 shows the regular assignment of a vector expression to
a variable. It computes the first iteration of the sequential XOR
in Equation 2. The expression seed(31 downto 0) selects the first
32 bits of the seed, and the & operator represents a bitwise AND.
The built-in auxiliary function expand(t(0), 32) returns a bit vector
consisting of 32 bits all set to the zeroth Bit of t. The output of
the expression is stored in the auxiliary variable x. Lines 2-4 show
a for-loop. It iterates from 1 to 30 using the variable i. The loop
body computes the sequential XOR up to the i-th bit and seed by
applying the XOR operator ˆ to the last value of x. Line 5 computes
the last iteration of the sequential XOR and stores the result in the
output variable offset.

Example 2 (AGMS, Update): Listing 2 shows the implementa-
tion of the update function for AGMS with a 32-bit input value and
state. Line 1 computes the result of the sequential XOR operation
in Equation 4. It computes the bitwise AND operation between the
first 32-bits of the input variable seed and the input value t. Finally, it
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Listing 2: Update function for AGMS with EH3
1 p <= parity(seed(31 downto 0) & t);
2 h <= parity((t(30 downto 0) | t(31 downto 1))
3 & '1010101010101010101010101010101');
4 outstate <= p ^ h ^ seed(32) = '1' ?
5 signed(state)+1 : signed(state)−1;

computes the full sequential XOR by using the parity auxiliary func-
tion provided by Scotch. Similarly, Line 2-3 computes the non-linear
function h given in Equation 5. It computes a bitwise OR between
the first and last 31 bits of the input value v. The parity function
computes the sequential XOR; the bit vector literal in Line 3 en-
sures that only disjoint pairs of bits contribute to the parity. Finally,
Lines 4-5 compute a +1/−1 update as shown in Equation 6 by using
a conditional assignment of the form var <= condition ? expr : expr .
In the condition, we compute the full result of the function eh3
given in Equation 4 and check whether the result is equal to the bit
vector literal ’1’. If the condition holds, the current state is incre-
mented; otherwise, it is decremented. The built-in function siдned
assigns signed integer semantics to a bit vector for arithmetic.

5 RTL GENERATOR
In this section, we introduce our approach to RTL generation for
the sketching unit. In Section 5.1, we provide an overview of the
RTL generator and the sketching unit architecture. Section 5.2 de-
scribes the translation of ScotchDSL functions to function units
that perform all algorithm-specific computations. A pipelined RAM
holds the summary state. We explain its architecture in Section 5.3.
Compute units contain the ScotchDSL function units and perform
all auxiliary operations. We explain the the compute unit architec-
ture and its components in Section 5.4. The state transfer controller
retrieves and exposes the sketch state. We describe its architecture
in Section 5.5.

5.1 Overview
The RTL generator creates a VHDL hardware description for the
sketching unit based on ScotchDSL functions. The number of rows
and columns for the sketch are input parameters and varied by
Scotch’s auto-tune algorithm. According to the desired state ma-
trix shape, the RTL generator instantiates and parameterizes all
components in the sketching unit. We provide an overview of the
sketching unit architecture and then outline the RTL generation
process.

Value

State Out

Request
Compute Unit

Row 1
Row 1

Row m

Row ...

State
Memory

Compute Unit
Row m

... ...
State
Transfer
Controller

Data Processing Pipeline State Transfer Pipeline

State
Memory

Figure 2: Sketching unit architecture

Figure 2 shows the top-level architecture of the sketching unit.
The sketching unit performs two tasks: First, it adjusts the summary
state according to input values and, second, exposes it to the I/O
controller. Each row of the sketch is represented by a dedicated
compute unit and state memory, which operate independently and

in parallel. The compute unit processes one input value per clock
cycle and initiates read and write operations on the state memory.
The state transfer controller exposes the sketch state when triggered
by an outside request. It connects to the state memory of every row
and dispatches read requests.

Select Unit Seed Update Unit Seed1. Generate ScotchDSL
Function Units

Compute Unit Select Seed Update Seed2. Generate Compute
Unit

Sketching Unit3. Generate Sketching
Unit

Include Include

Instantiate

Figure 3: RTL generation process

The RTL generator creates the sketching unit’s hardware descrip-
tion in a three-step process shown in Figure 3. First, the generator
translates ScotchDSL to function units. They implement the compu-
tation of the select and update functions while leaving the random
seed as an open parameter. Second, it generates a compute unit by
adding all auxiliary components. Third, the RTL generator creates
the sketching unit. It instantiates a compute unit and state memory,
sets the seeds, and adds the state transfer controller.

The sketching unit is fully pipelined to achieve high operating
frequencies. The generator adjusts the interfaces and internals
automatically according to the size of the state and input value of
ScotchDSL functions. In the following, we detail the architecture
and generation of the individual components. We assume sketching
units consuming one input value per clock cycle, while Section 6
discusses mechanisms to lift this assumption.

5.2 ScotchDSL Function Units
ScotchDSL function units implement the sketch-specific compu-
tations in hardware: Select function units compute a row offset
from the input value. Update function units compute the new state
from the input value and previous state. The RTL generator imple-
ments them based on the provided ScotchDSL functions, for which
we solve two problems: First, we have to translate the imperative
ScotchDSL user-defined functions to pipelined RTL. Second, we
have to ensure that the generated RTL does not introduce data
hazards inside the update function unit.

The general translation mechanism consists of three steps:
Step 1: Abstract Syntax Tree (AST). The RTL generator parses
the input function file based and creates an AST.
Step 2: Dependency Graph. The RTL generator transforms the
tree into a dependency graph that contains a node for every function
input variable and assignment. It unrolls loops in the process. When
the statement node B directly depends on the result of a node A, a
directed edge from a node A to node B is inserted. The resulting
dependency graph represents the flow of computations from input
variables to the output variable.
Step 3: Function Unit. The RTL generator translates the assign-
ment graph to RTL for the function unit. Each assignment node
results in a synchronous component that computes the result and
buffers the output. Edges between assignment nodes create connec-
tions in the top-level function unit. If necessary, the RTL generator
adds buffering to ensure intermediates computed for the same input
value arrive at the same clock cycle.
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Pre-Update Atomic Update

Function Unit RTLDependency Graph

Figure 4: Dependency graph and function unit RTL gener-
ated for the AGMS update function (Listing 2)

The resulting function unit computes the ScotchDSL function in
a pipelined fashion based on the input value and seed. As our archi-
tecture instantiates one dedicated compute unit per row, seeds are
constants. Figure 4 shows the dependency graph and the function
unit for the AGMS update function given in Listing 2.

While the general translation mechanism is sufficient for select
functions, update functions also depend on the previous state. As
the update function computes new state values in every clock cycle,
data hazards occur if a later update overwrites a state used for a
computation in the update function pipeline. Resolving these data
hazards requires stalling or flushing the pipeline, which conflicts
with DR4. Instead, the RTL generator prevents data hazards by
ensuring only the output value computation accesses the previous
state. If the function code violates this condition, the RTL generator
inlines the computations for assignments required by the output
value computation until the condition holds. We refer to the single
computation of the new state as the atomic update while calling the
rest of the update function pipeline the pre-update.

5.3 State Memory
The state memory holds each row’s state entries in a BRAM-based
pipelined random access memory architecture. A modern FPGA
contains hundreds to thousands of BRAM blocks, each providing
dense randommemory in the order of kbits with configurable width
and depth. BRAM blocks are dual-ported and process exactly one
read and write operation per clock cycle to independent offsets
when operating in simple dual-port mode. Maintaining the sketch
size for large rows necessitates combining multiple BRAM blocks
to provide sufficient memory depth.

While synthesis tools can automatically construct deeper RAM
by combining k BRAM blocks, they naively multiplex and demulti-
plex reads and writes. This is feasible for small values of k , however,
prior work confirmed that this approach scales poorly compared to
a pipelined memory architecture [35].

Figure 5 shows the pipelined memory architecture. It consists of
k banks, where each bank contains a BRAM block and is exclusively
responsible for a part of the address range. Read and write requests
to an address are served by their corresponding memory bank. All
other banks forward the request. Memory banks buffer requests
before forwarding them to the next bank, creating a pipeline that
consumes one read and write request per clock cycle with a latency
of k clock cycles and a throughput of one read and write request
per clock cycle. The width of the memory is the state size. The bank
depth is a parameter to the code generator. Scotch sets it according
to the depth supported by the target device’s BRAM elements for
the given state width.
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Write

Memory Bank
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Bank 1

Memory Bank

BRAM
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Figure 5: Pipelined memory architecture

The RTL generator simplifies the memory architecture for col-
umn sketches to a single register since random memory access is
not required.

5.4 Compute Unit
Compute units process the input values for one row of the sketch by
evaluating the select and update function and updating the per-row
state according to the ScotchDSL function units. .

5.4.1 Overview. The compute units are pipelined and consist of
several substages. Primarily, they consist of stages for the select
and update function evaluation and stages accessing state memory.
Furthermore, the RTL generator adds auxiliary stages to truncate
the select function’s output value and to prevent data hazards.
Figure 6 shows the the compute unit architecture with all substages.
Note that the select, pre-update, data forwarding unit (DFU), and
memory stages consist of several substages.
Select: The select function unit computes the output of the se-
lect function given in ScotchDSL. As Scotch varies the number of
columns in the auto-tune algorithm, we assume the select function
provides sufficiently large offsets and truncate them to the required
range in the truncate stage.
Truncate: We truncate the offset provided by the select function
to the range [0,n − 1], n being the number of columns in the sketch.
Memory Read: The state memory retrieves the state for the pre-
viously computed offset.
DFU: As the compute unit consists of several substages with mul-
tiple clock cycles of latency, a state value read from memory for
a particular offset can be overwritten by updates further down
the pipeline. To prevent data hazards from causing lost updates, a
data forwarding unit (DFU) tracks recent updates and ensures that
only the most recent state values enter the atomic update stage.
Section 5.4.2 introduces our novel fully-pipelined data forwarding
unit architecture.
Pre-Update: A concurrent stage computes the inputs to the atomic
update stage as these computations do not depend on the state.
Atomic Update: The atomic update is computed based on the
intermediates from the pre-update stage and the most recent state
value arriving from the DFU. As the DFU can not see the very last
update, the atomic update stage tracks its last computed state and
uses it in case of two consecutive updates to the same offset.
Memory Write: The state memory stores the previously com-
puted new state.

Select Truncate DFUMemory
Read

Memory
Write

Atomic
Update

Pre-Update
value

Figure 6: Compute unit architecture
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The RTL generator omits the select, truncate, and DFU stages
as an optimization for column sketches since no random memory
access is required.

5.4.2 Data Forwarding Unit (DFU). The DFU resolves data hazards
caused by the pipelined memory architecture. Data hazards occur
when a state read from memory is altered by an update further
down the pipeline. The DFU delays the computation of the atomic
update to replace outdated states with the most recent value.

Figure 7 shows the architecture of our DFU. We first explain the
key idea of our DFU and then introduce the optimized architecture
used by the RTL generator.
Key Idea: Our DFU tracks the state-offset pairs leaving the atomic
update stage in a shift register of size l . It compares state-offset
pairs from the memory read stage to the shift register values in
l stages. Each stage i ∈ {1 . . . l − 1} compares the incoming state
to the i-th and (i + 1)-th least recent entry in the shift register. If
one or both entries from the shift register coincide with the input
offset, the most recent state in the shift register entries is passed to
the next stage instead of the input state (3-way Compare-Forward).
The last stage l only performs a single comparison with the most
recent entry in the shift register (2-way Compare-Forward). This
approach ensures that, when leaving the DFU, a state-offset-pair
has observed all updates caused by its second to 2l-th successors in
the pipeline.
Optimization: As 3-way Compare-Forwards are complex and re-
duce the scalability of the DFU, Scotch avoids them by splitting
the DFU stages into three parallel pipelines. The i-th stage of the
upper pipeline compares the input value to the i-th value in the
shift register, while the lower stage compares the input value to
the (i + 1)-th value. This separation allows us to use simple 2-way
Compare-Forward logic. However, the DFU has to track which
pipeline carries the most recent state. If there is a match in the
lower or upper pipeline exclusively, this pipeline carries the most
recent state. If there is a match in both, the (i + 1)-th value takes
priority as it is more recent. In case there was no match, the pre-
vious priority remains valid. We perform these computations in a
separate priority resolution pipeline with access to the results of
the previous stage’s comparisons. The final stage forwards the most
recent state from either the l-th position in the shift register, the up-
per pipeline, or the lower pipeline. This requires a 2-way Forward
based on the priority and an additional 2-way Compare-Forward.

The size l of the DFU that prevents all data hazards depends on
the number of banks in the state memory k . There are a total of
k + l successors in the pipeline that may cause data hazards. The
DFU and atomic update track the next 2l updates. Thus, picking
l = k results in a minimal DFU that prevents all data hazards.

5.5 State Transfer Controller
The state transfer controller exposes the state of the sketch sum-
mary to the I/O controller. It connects to the state memory of all
rows and sequentially reads allm · n state values. As Scotch aims
to maximize the sketch size, the state transfer controller must scale
with the number of rows. Particularly column sketches require state
transfer controllers with a high number of connections.
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Figure 7: Data forwarding unit architecture

Figure 8 shows the architecture of our transfer controller. A
dispatch unit issues read and write requests to the per-row state
memory, while a collect unit routes the result of the request to the
output signals. Dispatch and collect units both follow a tree-shaped
structure where each tree level is a pipeline stage. The pipelined
tree structure prevents drops in the operating frequencies due to
high fan-out in the dispatch unit and high fan-in in the collect unit
by distributing the logic over several stages.

The dispatch unit maintains a counter for rows and offsets. The
counters adjust after every request. When the I/O controller re-
quests the next state value, several stages of 4-way dispatch logic
(4D) route the selected offset to the selected row’s state memory.
As soon as the state memory serves the read request, 4-way collect
(4C) logic routes the state value to the output signals.
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Figure 8: State transfer controller architecture

As the per-row state memory has only one read port, value
processing and state transfer are mutually exclusive. Thus, state
transfer must wait until all updates are written to state memory.

6 DATA PARALLELISM
The sketching unit described in the previous sections consumes
one input element per clock cycle. However, this is not sufficient to
satisfy high-bandwidth interconnects such as 100G Ethernet. I/O
modules interfacing such interconnects have to forward multiple
input elements per clock cycle as the operating frequency of state-
of-the-art FPGAs is limited to hundreds of Megahertz. Thus, data-
parallel sketching units are required. This section describes the two
mechanisms Scotch uses to provide data parallelism and satisfy DR4
for high-bandwidth interconnects: Section 6.1 introduces a general
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mechanism that exploits data parallelism by replicating components
of the sketching unit. Section 6.2 introduces the Map-Apply model
as an alternative programming model for column sketches, which
explicitly incorporates data parallelism to provide an improved
resource utilization.

6.1 Replication
The most intuitive approach to data-parallel sketching with d si-
multaneous input values is maintaining d replicas of the sketch
in parallel. The d separate sketches can be evaluated separately
or merged into a single summary by an application. While the ap-
proach is simple, it also comes with approximately d times ELU and
BRAM consumption.

If a data-parallel sketching unit with a replication factor of d is
requested, Scotch generates d replicas of each compute unit and
state memory. The components belonging to the same replica con-
nect to the same input value pipeline. The state transfer controller
is shared among replicas to save resources. The I/O controller may
also instantiate the sketching unit several times to maintain en-
tirely independent replicas and allow symmetric throughput for
data processing and state transfer.

6.2 Map-Apply Model for Column Sketches
The Map-Apply model is an alternative model for column sketches
that provides better resource utilization than plain replication. It is
as expressive as the Select-Update model, but it requires explicitly
modeling data parallelism by defining a function that merges the
update for d input values before applying the aggregated update.

Intuitively, a map function computes intermediates for all d in-
puts, while an apply function merges the intermediates into a sin-
gle update to the state. Formally, for each row i , a map function
mapi : T→ X is applied to each of the d input values. A function
ap : S×Xd computes the update to the state from the intermediates:

S [i] := ap(S [i] ,mapi (t1), . . . ,mapi (td )), i ∈ {1 . . .m} (7)

As for Select-Update, the functionsmapi (t) are specified by provid-
ingmap(t ,θi ) that may depend on a random seed θi ∈ Θ.

Example (AGMS): We provide an example for AGMS in the
Map-Apply model with d inputs. The map function computes EH3
for an input value and translates the output to +1/−1:

map(t ,θ ) =
{
1 if eh3(t ,θ ) = 1
−1 else

(8)

Finally, the apply function accumulates the d +1/−1 updates and
adds the update to the previous state:

ap(s, t1, . . . , td ) = s +
∑

r ∈{1, ...,d }
tr (9)

Compute Unit Architecture: The RTL generated for data-
parallel sketches described with the Map-Apply model provides a
more favorable resource trade-off than replication. First, map func-
tion units compute the individual outputs for the d input values.
Then, the apply function merges them before computing the new
state. As the Map-Apply model reduces all parallel computations to
a single update to the state, the number of state registers and the
state transfer controller remain independent of d .

7 DISCUSSION
The RTL generator relies on the structure implied by the Select-
Update and Map-Apply model to generate fully-pipelined RTL
(DR4). However, the underlying models and ScotchDSL also impose
limitations on the supported algorithms. In the following, we will
discuss these limitations.
Models: The supported models fix the memory access pattern for
all supported algorithms, and the per-rowmemory is the only mech-
anism to store state. Each input value results in exactly one read and
write operation to the state memory. This memory access pattern
allows us to use a pipelined memory architecture that handles one
read and write operation per clock cycle and resolves data hazards.
Lifting this restriction would require us to stall the pipeline during
conflicting memory operations and, thus, violate DR4. In particular,
the supported models exclude streaming algorithms that require
keeping a sorted list of values or complex data structures, such as
Space-Saving [23] or Exponential Count-Min [26]. Furthermore,
algorithms that require an evaluation of the sketch to perform an
update are not supported (e.g., CM-CU [18]).
ScotchDSL: ScotchDSL prevents for-loops with runtime depen-
dent conditions. Supporting this would require us to build hardware
that stalls while the loop iterates and, thus, violate DR4. Further-
more, ScotchDSL does not support floating point interpretations of
bit vectors. Hardware support for floating-point operations is highly
dependent on the device and requires vendor-specific modules that
are hard to parameterize automatically. However, this would allow
for floating-point state in already supported sketches and enable
new sketches, such as Quantile sketches [17] or DDSketch [22].
Thus, we consider this an interesting direction for future work.

There is a well-known trade-off between flexibility, through-
put, and resource consumption in hardware development [32]. In
Scotch, the supported models and ScotchDSL provide enough free-
dom to implement popular sketching algorithms while limiting the
flexibility to preserve DR4.

8 AUTOMATED TUNING
Scotch uses an auto-tuning algorithm to maximize the sketch size
within the provided clock frequency constraints and resource limi-
tations (DR2). Hence, it maximizes the accuracy of the sketch. In a
nutshell, the algorithm performs an initial compilation, projects the
maximum possible FPGA size within the FPGA’s critical resources,
and performs a binary search to find the maximum sketch size still
generating functional hardware.

Before tuning, the user fixes one of the matrix dimensions while
the other is subject to optimization. Row and column sketches
inherently fix one dimension. Matrix sketches usually have error
guarantees in the form of an interval around the true value. The
number of rowsm determines the probability of the estimate falling
into the interval; the number of columns n determines the interval’s
size [9, 11]. While the algorithm can optimize either dimension,
a user is likely to set the probability by fixing m based on the
application and let Scotch minimize the interval by maximizing n.

As the FPGA toolchains are proprietary, we base our algorithm
on the following conservative assumptions:
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A1: Linear Resource Consumption. Weassume ELU and BRAM
consumption increases asymptotically linearly with the number
of rows or columns. We use A1 to compute an upper bound for
the optimization parameter. We base the assumption on the fol-
lowing observation: Increasing the number of rows results in a
linear increase in the number of compute units and state memory
components. The number of 4-dispatch, 4-collect units, and row
counter bits in the State Transfer Controller grow logarithmically.
Increasing the number of columns leads to a linear increase in mem-
ory banks and DFU stages. The number of bits required for offset
registers and the number of LUTs for logic operating on them (e.g.,
comparisons) grow logarithmically.
A2: Global Optimum. We assume that there is a parameter b
such that all parameters x ≤ b provide a functioning accelerator
while all x > b will lead to the optimization either failing due
to timing or lack of resources. A2 justifies using a binary search.
We base the assumption on the following intuition: As established
in Assumption 1, resource consumption increases monotonically
with the optimized parameter. Thus, FPGA resources will eventu-
ally exceed. Before this is the case, placement and routing by the
toolchain, while satisfying timing, gets increasingly challenging
and eventually impossible. In particular, the maximum operating
frequency for the sketching unit decreases monotonically, which is
the prevailing cause for timing failures.

Our auto-tuning algorithm consists of two steps:
Step 1: Initialization. The algorithm calls the RTL generator for
an initial parameter r and compiles the accelerator using the vendor
toolchain. Scotch estimates a parameter that exceeds 100% resource
utilization and serves as a potential upper bound u. If the compila-
tion for r has been successful, we define the initial search interval
as [r ,u). If the compilation was not successful due to timing or
resources, the interval is [0,min(d,u)).
Step 2: Binary Search. The algorithm performs a binary search
in the interval. It repeatedly compiles the accelerator and checks
whether compilation was successful. As the algorithm converges,
the lower bound either contains the maximum parameter with a
successful compilation or is zero if no such parameter exists.

In Scotch, we extend the basic auto-tune algorithm by following
adaptations: (1) A user may choose a relative difference between
upper and lower bound to speed up convergence. (2) The vendor
toolchains use randomized algorithms for placement and routing.
We account for their variance by trying five initial seeds for Intel
Quartus Prime before considering a parameter failed due to tim-
ing. For Xilinx Vivado, we vary implementation strategies for the
same effect. (3) When BRAM is depleted, vendor toolchains try to
implement remaining memory banks less efficiently using ELUs.
While only feasible if the fixed parameter is small, we double the
estimated upper bound for row and matrix sketches to account for
this edge case.

9 EVALUATION
In this section, we evaluate the RTL generator and autotune algo-
rithm. The Scotch system, algorithm implementations, and base-
lines are available in our public repository. 1

1https://github.com/martinkiefer/scotch

9.1 Experimental Setup
We implement two column sketches (n = 1), two matrix sketches,
and two row sketches (m = 1) as shown in Table 2. We order the
three sketch types by the number of updates applied to the state
matrix for each input value.

Table 2: Sketching algorithms implemented

Column AGMS [2] MinHash (MH) [4]
Matrix FAGMS [9] Count-Min (CM) [11]
Row Fast-Count (FC) [34] HyperLogLog (HLL) [15]

We use the H3 family [27] for hashing values into arbitrary inte-
ger range in CM, FAGMS, MH, and HLL. For FC, we use an adap-
tation of the Polynomials-over-Primes scheme with a Mersenne
Prime [27] to obtain a 4-wise independent hash function. For AGMS
and FAGMS, we use the EH3 family for +1/-1 hashing [28]. We im-
plement all algorithms for 32-bit input values. The state values for
HLL are 6 bits wide; all other algorithms use 32-bit states.
Intel FPGA (A10, S10): We generate accelerators for two differ-
ent Intel FPGA models: A midrange model (A10, Arria 10 GX 1150)
and a high-end model (S10, Stratix 10 GX 2800). We use Intel Quar-
tus Prime 19.3 as the vendor toolchain and Intel’s Early Power
Estimator to compute the power consumption.
Xilinx FPGA (XUS+, XUS): Wegenerate accelerators for a recent
Xilinx UltraScale+ FPGA (XUS+, XCVU7P) and an UltraScale FPGA
(XUS, XCVU440). We use Vivado v2020.01 as the vendor toolchain.
CPU (Xeon): We run the algorithms on an Intel Xeon Silver 4214
with two sockets, each providing 24 hyper-threads. We use GCC
7.5 with OpenMP and vectorization compiler intrinsics (AVX512).
We measure power consumption using powerstat 0.02.22 [19].
GPU (GeForce): We run the algorithms on anNvidia GeForce RTX
2080 GPU using CUDA 10.2. We measure the power consumption
using the nvidia-smi tool provided by CUDA.
FPGA accelerators use a minimal I/O template to focus on the
performance of the sketching units in isolation. We use the Map-
Apply model for column sketches if not stated otherwise. Our CPU
and GPU baselines are hand-optimized, data-parallel, and fully
utilize the architecture’s parallelism. Measurements were taken on
a machine running Ubuntu 18.04 for 20 iterations. We used a 2 GB
uniform data set residing in main memory for the CPU and device
memory for the GPU.

9.2 RTL Generator
We investigate the scaling behavior of the generated accelerators in
terms of resource consumption and maximum operating frequency.
For the sake of readability, we restrict to matrix sketches withm = 8.
We vary the matrix size used by the RTL generator and compile
with five different compilation seeds. We report the results for A10
as it has the lowest compile times (4-20x compared to S10) due to
fewer resources and, thus, allowed for a more fine-grained analysis
of the parameter space. Experiments for S10 and XUS+ have shown
similar results and did not provide additional insights.

9.2.1 Resource Consumption. We investigate the resource con-
sumption of generated sketching units for varying matrix sizes
and data parallelism degrees d = 1 and d = 4. In particular, this
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(a) Column (b) Matrix (c) Row

Figure 9: ELU consumption for various sketching units

allows us to validate that resource consumption increases linearly
with the number of rows and columns (A1). Throughout all ex-
periments, the number of BRAM blocks consumed is precisely the
number of blocks assigned for the state memory. The ELU consump-
tion for all algorithms is given in Figure 9. As ELU consumption
varied under 0.01% for different seeds, we only report the maximum
value. Overall, we observe that ELU consumption is approximately
linear for all algorithms and both degrees of parallelism. Increasing
the degree of data parallelism leads to a roughly proportional in-
crease in resource consumption. For the column sketches shown in
Figure 9a, we see that MH has an up to 6 times higher ELU consump-
tion, which is due to a more involved map and apply function. For
matrix sketches in Figure 9b, FAGMS variants show an up to 30%
higher ELU consumption than CM sketches due to more complex
update logic. For the row sketches in Figure 9c, we observe HLL
supporting much larger summary sizes, which is due to its smaller
state. Neither matrix nor row sketches exceed 55% ELU utilization
as BRAM blocks are the limiting factor.

Summary: The experiment confirms that resource utilization is
linear (A1). We observe that data parallelism comes at the cost of
higher resource consumption.

9.2.2 Maximum Operating Frequency. Next, we investigate the
impact of the statematrix size on themaximum operating frequency.
As a low maximum operating frequency is the prevailing cause for
failed timing, this experiment allows us to validate A2 of the auto-
tuning algorithm. The maximum operating frequency varied by up
to 110 MHz for different compilation seeds; therefore, we report
the maximum over five runs.

Figure 10 shows the results. We observe that the maximum oper-
ating frequency decreases with a growing state matrix for all vari-
ants. However, it does not decrease strictly monotonically due to
remaining variance. Almost all algorithms show a lower frequency
for d = 4 consistent with the increased resource consumption. In
Figure 10a, we see MH being the only exception to this, which we
consider a toolchain artifact. We see that AGMS operates at an up
to 200 MHz higher clock frequency than MH due to its simpler
map and apply function. For the matrix sketches shown in Fig-
ure 10b, we see operating frequencies between 400 and 600 MHz.
Both algorithms decrease in a similar L-shaped pattern. For row
sketches shown in Figure 10c, we observe HLL starting at a higher
frequency of up to 763 MHz due to the significantly smaller state.
FC starts at 500 MHz, decreases flatly, and shows drops of more than
120 MHZ for the largest sizes, indicating that its arithmetic-based
hash function has become harder to place and route.

(a) Column (b) Matrix (c) Row

Figure 10: Max. clock frequency for various sketching units

Summary: As the experiments confirm a trend towards a de-
creasing maximum operating frequency, A2 of the auto-tune algo-
rithm is justified. While the algorithmmaymiss the global optimum
due to remaining variance, it is an efficient alternative to a prohibi-
tively expensive exhaustive search.

9.2.3 Impact of the Map-Apply Model. Finally, we conduct experi-
ments investigating the benefits of theMap-Applymodel for column
sketches incorporating data parallelism. Figure 11 compares Map-
Apply to replication for column sketches and a data parallelism
degree of four. In terms of ELU consumption, we see that AGMS
benefits most from Map-Apply, allowing for implementations that
consume only half the resources and, thus, for a more than twice as
high maximum number of columns. MH shows a smaller improve-
ment of 25% due to the more expensive update logic that reduces
the positive effect of shared resources in Map-Apply. Map-Apply
also shows a positive impact in terms of the maximum operating
frequency. It results in an up to 80 MHz improved frequency for
AGMS and an up to 60 MHz improved frequency for MH.

Summary: The Map-Apply model offers improved ELU effi-
ciency and operating frequencies for data-parallel accelerators.

Figure 11: Comparison of Map-Apply (MA) and Select-
Update with replication (SU) for data parallel accelerators

9.3 Automated Tuning
In the second set of experiments, we evaluate the performance
of accelerators found by the auto-tuning algorithm in terms of
summary size, throughput, and energy consumption. We generated
accelerators for operating frequencies of 300, 400, and 500 MHz.
Tuning starts with an initial parameter of 16 and stops at a relative
difference of one percent. Tuning took between two hours and
a week for A10, between four hours and six days for XUS+, and
between one day and two weeks for S10.

9.3.1 Summary Size. First, we present the summary sizes found for
the generated accelerators. This experiment allows us to showcase
the effects of different target clock rates, degrees of parallelism, and
device types for the generated sketches on the summary size.
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Figure 12: Summary sizes for FPGA accelerators on varying
target devices with varying operating frequencies

Figure 12a shows the results for column sketches. We see that
all devices are capable of generating accelerators at all operating
frequencies for AGMS. For MH, with its more involved select and
update function, summary sizes are between three and 49 times
smaller. 500 MHz accelerators are either not possible for S10 and
A10 or have less than five counters, while summary sizes for XUS+
are less affected by the increased operating frequency.

Figure 12b shows the results for matrix sketches. We observe
that both algorithms perform similary for the same number of rows
as FAGMS and CM only differ in their update function. Decreasing
the number of rows from m = 32 to m = 8 results in a roughly
proportional increase of the summary size. As BRAM blocks are
used, timing behavior for XUS+ changes as indicated by 500 MHz
accelerators barely being possible. However, for 300 and 400 MHz,
XUS+ even provides throughput competitive to S10. Figure 12c
shows the results for row sketches. For HLL, we see S10 providing
the largest summary sizes by up to a factor of 12. However, for FC,
we see XUS+ providing up to 6.5 times larger summary sizes for
d = 1 and d = 4 at 300 and 400 MHz. This observation adds to the
impression that XUS+ is better at implementing large rows with a
32-bit state than the other devices.

Overall, we see that increasing the degree of data parallelism
always results in a decreasing maximized parameter. The decrease
is not always proportional due to the effects of the target operating
frequency. Increasing the operating frequency usually leads to a
smaller parameter, especially when comparing 400 and 500 MHz.

Summary: We see that the maximum summary size varies
strongly depending on the algorithm, FPGA, target operating fre-
quency, and parallelism degree. This shows the auto-tuning algo-
rithm tailoring the summary size to the setup.

9.3.2 Throughput. Next, we investigate our accelerators’ through-
put compared to a state-of-the-art CPU (Xeon) and GPU (GeForce).
For the sake of brevity, we report on the larger S10 and XUS+ de-
vices operating at 400 MHz. Our accelerators’ throughput is f ·d ·32
due to a static processing rate f .

Figure 13a shows the results for the column sketches. We see that
our FPGA accelerators outperform the Xeon and GeForce baseline
in all cases. Even the more competitive GeForce baseline shows an
improvement ranging between a factor of 17 and 122 for AGMS
and a factor of 13 to 60 for MH. FPGAs fully leverage their potential
for column sketches: We generate hardware that updates tens of
thousands of counters every clock cycle. CPU and GPU implementa-
tions need several instructions for an update and can not adjust all
counters simultaneously due to limited parallel compute resources.

Figure 13b shows the results for CM with 8 and 32 rows as a
representative for matrix sketches. We omit FAGMS as the results
barely differ. Compared to our Xeon implementations, we see that
all FPGA accelerators outperform it. For the GeForce baseline, we
see a more competitive throughput: For m = 32, S10 and XUS+
need a data parallelism degree d = 4 to provide a clear advantage.
For m = 8, the throughput provided by GeForce increases by a
factor of four as the total amount of computations per input value
has decreased by the same factor. However, the device can not
achieve this throughput (entire bar) in practice, as the data transfer
bandwidth (filled bar) limits the processing throughput. This effect
is well-known as the PCIe bottleneck. With a data parallelism de-
gree of d = 16, the FPGA accelerators outperform GeForce by a
factor of up to 2.6 considering the PCIe bottleneck and 10 to 40%
when input data resides in device memory. FPGAs support various
interconnects allowing them to overcome transfer bottlenecks [32].

Figure 13c shows the results for row sketches. As before, FPGA
accelerators with d = 16 are sufficient to outperform GeForce.
When disregarding the PCIe bottleneck, we see two cases: For
n < 700k , GeForce provides throughput up to an order of magnitude
above the transfer bandwidth as only one update per data item is
performed. For higher n, throughput decreases drastically due to
cache misses, highlighting the impact of data dependencies.

Summary: The experiments show that automatically tuned
FPGA accelerators can outperform software implementations on
parallel architectures in many cases. For matrix and row sketches,
data parallelism is essential to outperform a GPU.

9.3.3 Power Consumption. Next, we evaluate the power consump-
tion of our sketching accelerators. We generate accelerators on
Stratix 10 for AGMS, CM withm = 8, and HLL as representatives
for column, matrix, and row sketches for 100 Gbit/s throughput
(390.625 MHz, d = 8). We compare the power consumption to our
CPU and GPU baselines at peak throughput. Measurements are
obtained using software and do not include periphery.

Table 3 shows the results. We find FPGA accelerators consuming
between 2.5 and 5.6 times less energy than Xeon and GeForce.

Table 3: Power consumption in Watt for 100 Gbit/s accelera-
tors (S10, 390.625 MHz, d = 8) compared to baselines

Sketch S10 Xeon GeForce Size

AGMS 33.05 152.79 184.32 n=1, m=6288
CM 69.85 176.62 213.99 n=84992, m=8
HLL 50.48 145.91 124.06 n=2981888, m=1

Summary: The experiment shows that FPGA accelerators con-
sume significantly less power than the CPU and GPU baselines.
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Figure 13: Throughput for FPGA accelerators compared to Xeon and GeForce baselines

9.4 Comparison to Hand-Written RTL
Finally, we compare Scotch to a state-of-the-art hand-written sketch-
ing implementation. Tong and Prasanna implemented CM sketching
on XUS [35]. Their sketching approach is comparable as they guar-
antee static data rates and utilize a pipelined memory architecture
with a DFU and d = 1. We compare their reported operating fre-
quency, throughput, and summary size to an Scotch accelerator gen-
erated with the same FPGA and operating frequency. Table 4 shows
Scotch found an implementation with twice as many columns.

Summary: Scotch competes with a manual implementation.

Table 4: Scotch compared to [35] for CM (XUS,m = 5,d = 1)

Implementation Operating Freq. Throughput Columns n

Hand-Written [35] 497 MHz 15.9 gbps 216
Scotch 503 MHz 16 gbps 217

10 RELATEDWORK
Accelerating the construction of sketch summaries and their applica-
tions on FPGAs has been proposed in previous work. Our approach
is related to the work of Tong and Prasanna, who used FPGAs
for online heavy hitter and change detection in high throughput
networks [35]. They implement Count-Min sketching with guar-
anteed data rates using pipelined memory and a data forwarding
unit. As shown in Section 9.4, our accelerators can operate at the
same frequency and throughput for a data parallelism degree of
one. However, we can provide even higher throughput by exploit-
ing data parallelism. Other streaming algorithms implemented on
FPGAs are Space Saving [31], Exponential CM [8], CM-CU [29],
MinHash [30], and Bloom Filters [7].

High-level synthesis tools such as OpenCL [6, 12, 39] or Vi-
vadoHLS [14] allow for the generation of accelerators from C-like
programming languages. While these frameworks are general pur-
pose and have been successfully applied in database acceleration [37,
38], Scotch exploits knowledge about the memory access pattern
and semantics defined by the select-update and map-apply mod-
els to provide fully pipelined sketching RTL; the tuning process is
automatic, given a matrix size and user defined functions. How-
ever, high-level synthesis tools can reduce development effort and
expertise required to develop I/O templates for Scotch.

Previous research has suggested automated tuning of toolchain
and user parameters towards an objective function [5, 20]. It treats
RTL and optimization parameters as a black box and, thus, requires
general models and sufficient training. Scotch’s automated tuning
algorithm uses intuitive assumptions based on domain knowledge
to optimize for the summary size using a practical approach that is
logarithmic in the search space.

11 CONCLUSION
In this paper, we introduced Scotch, a novel system for generating
optimized sketching accelerators on FPGAs. It provides a full sys-
tem stack covering all aspects, from sketch specification over code
generation to automated tuning.

We evaluated Scotch for six sketching algorithms and three
different FPGAs. We showed that Scotch tailors the summary size
to the desired throughput and FPGA. We highlighted the inherent
trade-off between throughput and summary size controlled via
the operating frequency and degree of parallelism. We found that
the accelerators can satisfy interconnects with a bandwidth of 100
Gbit/s and more. Scotch accelerators outperform CPU baselines
by a factor of up to 300 in terms of throughput and by a factor
of up to 4.6 in terms of energy consumption. Compared to a GPU
baseline, FPGA accelerator throughput ranges from competitive
to an improvement of a factor of 120 while consuming up to 5.6
times less energy. Furthermore, we found that Scotch accelerators
compete with a manual FPGA implementation.

Overall, this paper shows that Scotch produces highly efficient
FPGA sketching accelerators without manual RTL programming
and tuning. Thus, Scotch substantially lowers the entry bar for
FPGA accelerated sketching by replacing an FPGA expert with
code generation and automated tuning.
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