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ABSTRACT
The ad-hoc, heterogeneous process of modern data science typi-
cally involves loading, cleaning, and mutating dataset(s) into multi-
ple versions recorded as artifacts by various tools within a single
data science workflow. Lineage information, including the source
datasets, data transformation programs or scripts, or manual an-
notations, is rarely captured, making it difficult to infer the rela-
tionships between artifacts in a given workflow retrospectively. We
demonstrate Relic, a tool to retrospectively infer the lineage of data
artifacts generated as a result of typical data science workflows,
with an interactive demonstration that allows users to input artifact
files and visualize the inferred lineage in a web-based setting.
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1 INTRODUCTION
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Figure 1: Typical dataAnalysis/MLprepworkflow,with each
stage transforming the input and producing artifact file(s).

The emergence of collaborative data science and machine learn-
ing (ML) platforms has made it possible for data scientists and ana-
lysts to manipulate, process, and analyze modest to large amounts
of tabular data in an exploratory or ad-hoc manner. This data anal-
ysis workflow typically involves dealing with raw data from one or
more sources, followed by multiple stages of data preparation, span-
ning ingestion, cleaning, transformation/analysis, and exported to
reports, visualizations or user to train machine learning models.
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Figure 1 illustrates a common data science workflow pattern,
involving the ingest of a source dataset, cleaning, featurization,
test/train splits, and model generation, performed multiple times
until the analyst is satisfied with the generated model. As illustrated,
it is common for such workflows to generate several artifact files
without any lineage information [11].

Lineage information is crucial in understanding the intent and
significance of any specific workflow [14]. The lack of accurate
lineage information affects downstream reproducibility, debug-
ging, maintenance, explain-ability, and data discovery. Consider the
worst-case scenario; an analyst may be presented with a data dump
of workflow artifacts with little-to-no documentation with either
missing or undocumented code. The analyst will have to manually
reconstruct the workflow steps by retracing the derivation of each
file in context. Having an automated tool to assess artifact rela-
tionships would enable users to contextualize each data artifact;
thereby helping to hypothesize their derivation, and retrospectively
understand their evolution.

Prior work in data/workflow lineage does not address the prob-
lem of retrospective analysis of data artifacts. Most prior work
deals with lineage capture or data discovery in annotated data
lakes [10, 12, 14, 19], which requires active API calls or logging
“hooks” into the workflow tools to record lineage. This not useful
in a retrospective context. In the worst-case scenario mentioned
above, the data analyst cannot use these tools as the workflow al-
ready completed its execution at some point in the past and thus
offers no help for the problem at hand.

A closely related field is Query/Program Synthesis [3, 6, 9, 16],
which attempts to derive the exact SQL query or program state-
ment(s) that transforms a set of labeled inputs into some desired
output. Synthesis may help in looking at pairs of artifacts to deter-
mine the exact operation used to transform one to another but does
not help in understanding the lineage of 𝑛 artifacts, where input
and output labels to the artifacts may be unclear.

In this demonstration we showcase Relic [21], a retrospective
lineage analysis tool that infers the lineage of multiple artifacts
that belong to a workflow and generates a lineage graph that most
closely resembles the original derivation of the artifacts. Relic uses
a variety of similarity metrics and containment-based features to
infer lineage relationships in a systematic manner; starting with
the most similar pairs of artifacts first and then trying to infer more
complex relationships such as joins, groupbys, and pivots. Users
can provide custom input in the form of zipped CSV artifact files,
or choose a canned demonstration, infer the lineage of the artifacts
using the Relic system and interactively view the generated lineage
graph.
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Figure 2: Overall architecture of Relic

2 RELIC ARCHITECTURE
Relic accepts a set of tabular artifact files, with no additional meta-
data, including versioning or temporal ordering information. The
task is to infer the underlying lineage graph that describes the evo-
lution of files in the workflow. Relic generates an undirected1 tree
up to (𝑛 − 1) edges that represent its best estimate of how the 𝑛
artifact files evolved from one another in a single workflow2.

Relic focuses on two-types of transformations, namely point-
preserving transformations (PPTs), in which there is a 1:1, 1:0, or 0:1
row mapping between source and destination artifacts. A destina-
tion row either exists as a modified version of an existing row in
the source (1:1), is filtered out (1:0), or is a new row(0:1), in case of a
concatenation or row addition. Examples of PPTs include row and
column selections, sampling, or spreadsheet-style cell-level edits.

Similarly, transformations with an N:1, 1:N, or N:N row map-
ping between source and destination artifacts are called non-point
preserving transformations (NPPTs). Examples of NPPTs include
joins, groupbys, and pivots. Relic uses different techniques to infer
edges produced by PPTs (fine-grained distance metrics) and NPPTs
(operation-specific detectors) respectively.

Our technique (outlined in Figure 2) first involves two prepro-
cessing steps, namely, row and columnar alignment of the input
artifacts, followed by clustering of the artifact files by those that
have the same schema (set of column names or identifiers). We
then compute pairwise distance metrics (Jaccard distances and con-
tainment scores) to infer point-preserving artifacts, and add edges
within each schema cluster in the order of highest score. We then
look at more complex relationships and attempt edge inference
between artifacts connected by a join, groupby, or pivot in that
order. The final, inferred lineage graph is output to the user for
analysis. We further expand on our technique as follows:

Preprocessing: Given a set of input tabular artifact files 𝐹𝑖 , Relic
first attempts to infer consistent row/columnmappings across all ar-
tifacts using unique key detection techniques for rowmatching [13]
and column alignment using schema matching techniques [20].
Columns that share the same column label and same datatype (as
inferred from the column values) across artifacts are considered to
refer to the same column entity. If the row-indices of two artifact

1Some operations (such as join) have directionality implied, while others, such as
column add/drop, may be ambiguous. We plan to explore directional inference in
future work.
2Relicworks on artifacts frommultiple mixedworkflows; albeit with reduced accuracy.

files do not share at least 50% of their values, we re-index the arti-
facts to align them 3. We then cluster the artifacts based on column
labels, such that artifacts that share the exact set of column labels
are placed into the same cluster.

Inferring PPTs: Two pairwise distance scores are computed for
each set of artifacts; the Cell-Level Jaccard Similarity (𝛿𝑐𝑒𝑙𝑙 ) and
Cell-Level Jaccard Containment (𝛿𝑐𝑜𝑛𝑡𝑎𝑖𝑛). They are computed for a
pair of artifact files 𝐹𝑖 and 𝐹 𝑗 as follows (Equation 2.1):

𝛿𝑐𝑒𝑙𝑙 (𝐹𝑖 , 𝐹 𝑗 ) =
|𝑉𝐹𝑖 ∩𝑉𝐹 𝑗 |
|𝑉𝐹𝑖 ∪𝑉𝐹 𝑗 |

(2.1a)

𝛿𝑐𝑜𝑛𝑡𝑎𝑖𝑛 (𝐹𝑖 , 𝐹 𝑗 ) =
|𝑉𝐹𝑖 ∩𝑉𝐹 𝑗 |

min( |𝑉𝐹𝑖 |, |𝑉𝐹 𝑗 |)
(2.1b)

where𝑉𝐹𝑖 denotes the (row-id, column label) indexed cell values
in the artifact 𝐹𝑖 .

Inferring NPPTs: Relic infers NPPTs using operation-specific
detectors. These detectors look for specific column label and value
containment patterns that indicate the presence of a specific type
of transformation. The detectors have been sketched below; the
complete description is available in [21].

The join detector evaluates the likelihood that three artifacts
𝐹𝑖 , 𝐹 𝑗 , 𝐹𝑘 were involved in a join operation. The detector first looks
for schema compatibility by determining which of the two files
(labeling them 𝐹𝑟 and 𝐹𝑠 ) could have been joined to create the third
(labeled 𝐹𝑡 ), by looking at the set of column labels. It also looks for
a common key column 𝑘 such that the set of values in common be-
tween the source and destination columns are coherently contained,
similar to a technique used in [16]. A join score (𝛿 𝑗𝑜𝑖𝑛 (𝐹𝑖 , 𝐹 𝑗 , 𝐹𝑘 ))
can then be computed from the various containment scores for the
artifact triple.

Similarly, the groupby detector determines if a pair of artifacts
𝐹𝑖 and 𝐹 𝑗 were involved in a groupby operation. It first assigns a
source label 𝐹𝑠 to the artifact that has a higher number of rows, as
we assume that a valid groupby operation results in a reduction
of the number of rows after the transformation. The detector then
finds a subset of columns𝐶𝑔 that are in common between 𝐹𝑠 and 𝐹𝑡
whose values in 𝐹𝑠 are fully contained in 𝐹𝑡 . It additionally checks
that the set of values in𝐶𝑔 are distinct in 𝐹𝑡 while not distinct in 𝐹𝑠 .
If these conditions are satisfied, a groupby score (𝛿𝑔𝑟𝑜𝑢𝑝𝑏𝑦 (𝐹𝑖 , 𝐹 𝑗 )) is
computed using the group column containment, schema difference
and missing group values for the artifact pair.

Finally, the pivot detector looks for pivots between pairs of arti-
facts 𝐹𝑖 and 𝐹 𝑗 , looking for value containment in the row-id and col-
umn labels in of the artifacts (and assigning it a target artifact label
𝐹𝑡 ) from the other (hence labeled a source artifact 𝐹𝑠 ). It determines
three separate column mappings, 𝐶𝑖 , 𝐶𝑐 and 𝐶𝑣 based on contain-
ment of values in the destination artifact’s index, column labels and
values. Using these assignments, a final pivot score (𝛿𝑝𝑖𝑣𝑜𝑡 (𝐹𝑖 , 𝐹 𝑗 ))
is then computed from these containment scores.

Building the Lineage Graph: Relic adds edges in decreasing
order of similarity scores to the graph in the following sequence:

3In case there are no pairs of columns that serve as an appropriate index, the artifact
cells are then compared in their physical, materialized order.
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Figure 3: Relic Demo. The user first designates the input in the provided areas ( 1 for canned demo workflows or 2 for a
custom input). The settings for the inference algorithm are in 3 . 4 shows the progress of the running algorithm, while the
inferred graph is interactively displayed in 5 . 6 allows the user view the graph legend and export the graph as JSON. 7 is
an area to inspect individual artifacts as they are clicked on by the user.

(1) 𝛿𝑐𝑒𝑙𝑙 edges within a cluster of artifacts that have the same
schema until a threshold (𝜖𝑖𝑛𝑡𝑟𝑎_𝑐𝑒𝑙𝑙 )

(2) 𝛿𝑐𝑜𝑛𝑡𝑎𝑖𝑛 edges within a cluster of artifacts that have the same
schema, until a threshold (𝜖𝑖𝑛𝑡𝑟𝑎_𝑐𝑒𝑙𝑙 )

(3) 𝛿 𝑗𝑜𝑖𝑛 edges
(4) 𝛿𝑐𝑒𝑙𝑙 edges between clusters of artifacts that have the same

schema until a threshold (𝜖𝑖𝑛𝑡𝑒𝑟_𝑐𝑒𝑙𝑙 )
(5) 𝛿𝑐𝑜𝑛𝑡𝑎𝑖𝑛 edges between clusters of artifacts that have the

same schema until a threshold (𝜖𝑖𝑛𝑡𝑒𝑟_𝑐𝑒𝑙𝑙 )
(6) 𝛿𝑔𝑟𝑜𝑢𝑝𝑏𝑦 edges
(7) 𝛿𝑝𝑖𝑣𝑜𝑡 edges
There are additional implementation details in Relic, such as

the exact formulation of detector conditions, scoring functions,
thresholds, and tie-breaking techniques which are described in
detail in [21]. The 𝜖𝑖𝑛𝑡𝑟𝑎_𝑐𝑒𝑙𝑙 and 𝜖𝑖𝑛𝑡𝑒𝑟_𝑐𝑒𝑙𝑙 thresholds are user-
selectable, as described in the next section.

3 DEMONSTRATION
We will demonstrate Relic using a web-based interface. The demo
is interactive; The user can provide any set of CSV files or choose
a canned demo, set graph parameters, and run our inference algo-
rithm. While the algorithm runs, Relic visualizes the current state
of the lineage graph along with several user interaction options.
The detailed demo flow (Figure 3) is as follows:

Step 1 :RELIC contains a few canned workflows representing
Jupyter notebooks sampled from GitHub[22], which the user
can select and interact with.

Step 2 :Alternatively, if the user wishes to try Relic with custom
input, the user can upload a set of artifact files as a zipped archive
of CSV files 4. The user can optionally provide a ground-truth
annotation (as a plain-text graph edge-list) to Relic in case it is
available.

Step 3 :User sets algorithm parameters; The user can select if pre-
clustering should be performed or not, the types of edges that
Relic should attempt to infer, as well as thresholds for edge
inclusion for artifact pairs that are within and across schema
clusters. Once all the options have been set, the user can click
on the Infer Lineage button, which will submit the input and
parameters to the server to start the inference job.

Step 4 :While the algorithm is running, status updates are pre-
sented to the user describing what phase the algorithm is cur-
rently running, along with details of completed and pending
algorithm phases. For small workflows of < 1000 rows and
≈ 10 − 20 artifacts, Relic takes around 10 seconds to com-
plete. The demonstration uses cached results when available to
improve user experience.

4The demo is currently limited to 50 artifacts and 100MB total size due to size and
run-time constraints
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Step 5 :Once the algorithm is finished, the inferred graph is dis-
played to the user. Edges have widths proportional to the similar-
ity score computed by Relic. If a ground-truth graph is available,
the edges are colored; green edges are true positives, black edges
(with an ’X‘ label) are false negatives, and red edges are false
positive edges. Graph edges are additionally labeled with a num-
ber that denotes the order in which the edges were inferred by
Relic. If the user opted for clustering, the nodes are clustered
by schema and are colored to match the cluster they belong to.
The graph is interactive; the user can click on each of the nodes
and edges to view additional properties. Hovering over an edge
shows additional information on the edge type; this includes the
score/detector type and score computed by Relic for that edge,
and the ground-truth annotation (the exact transformation) of
the edge if the ground-truth is provided.

Step 6 :The user can export the inferred graph as a JSON file if
desired.

Step 7 :Clicking on any node in Step 5 provides a preview of the
artifact. The user can inspect the table values, order the columns
and search for specific values in the artifact file.
The example shown in Figure 3 is that of a machine learning

preparation workload of bike sharing data. Starting from a base
version, variations in feature selection lead to different branches,
in turn leading to different test/train splits and then converted to
a form ready to train a machine learning model, similar to the
motivational example described in Figure 1.

The key takeaway of our demonstration is the ability to retro-
spectively infer lineage for common data analysis workflows, and
the user interaction provided to tweak the resulting inferred graph
as desired. Relic should help users understand how artifacts were
derived from one another, allowing for workflow reconstruction
and reproducibility without code and/or other lineage information
available beforehand.

4 RELATEDWORK
Work prior to Relic can be broadly classified into three themes: sys-
tems that attempt to capture lineage in a non-retrospective manner,
relationship discovery systems, and query synthesis techniques:

Systems such as OrpheusDB [15] and ProvDB [17] provide (git-
style) version control for relational datasets. Lineage capture and
data discovery systems both from the industry [8, 18, 23] and
academia [4, 7, 15] either require access to code or explicit API
calls to register and link artifacts in a curated fashion.

ReConnect [1] and Rediscover [2] attempt to discover the rela-
tionship for a given dataset pair. Systems such as Aurum [7] and
D3L[5] use sampling and estimation techniques to build, maintain,
and query datasets in an Enterprise Knowledge Graph. Query Re-
verse Engineering (QRE) and Query By Example (QBE) [3, 6, 9, 16]
focuses on reverse-engineering code (SQL queries, spreadsheet for-
mulae, or pandas statements) that can be used to transform labeled
input data into a provided example output. In contrast, Relic tries to
determine a derivation tree of data artifacts and does not determine
the exact operation used to derive one artifact from another.
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