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ABSTRACT

Explainable artificial intelligence (XAI) aims to reduce the opacity of
AI-based decision-making systems, allowing humans to scrutinize
and trust them. Unlike prior work that attributes the responsibil-
ity for an algorithm’s decisions to its inputs as a purely associa-
tional concept, we propose a principled causality-based approach
for explaining black-box decision-making systems. We present the
demonstration of Lewis, a system that generates explanations for
black-box algorithms at the global, contextual, and local levels, and
provides actionable recourse for individuals negatively affected by
an algorithm’s decision. Lewis makes no assumptions about the
internals of the algorithm except for the availability of its input-
output data. The explanations generated by Lewis are based on
probabilistic contrastive counterfactuals, a concept that can be
traced back to philosophical, cognitive, and social foundations of
theories on how humans generate and select explanations. We de-
scribe the system layout of Lewis wherein an end-user specifies
the underlying causal model and Lewis generates explanations for
particular use-cases, compares them with explanations generated
by state-of-the-art approaches in XAI, and provides actionable re-
course when applicable. Lewis has been developed as open-source
software; the code and the demonstration video are available at
lewis-system.github.io.
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1 INTRODUCTION

Algorithmic decision-making systems are increasingly being used
to automate life-changing decisions and can lead to unequal dis-
tribution of benefits and risks across different segments of society.
Explainable artificial intelligence (XAI) aims to address the opacity of
these systems by providing human-understandable explanations of
the process and outcomes of these systems (see [6] for a recent sur-
vey). Effective explanations should serve two objectives: (1) ensure
different stakeholders that the system’s decision rules are justifi-
able, and (2) provide users with an actionable recourse to change
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future outcomes of the algorithm [13]. In this work, we present
explanation methods that conduct post factum system analysis of
any black-box algorithm. Prior work in this context has focused
on explaining an algorithm by a simple, interpretable surrogate
model (e.g., decision trees) [11] or attributing responsibility of its
decisions to its inputs [8]. These methods do not capture the causal
influence between an algorithm’s inputs and output, which can
produce incorrect and misleading explanations [4]. Counterfactual
explanations, on the other hand, minimally perturb an algorithm’s
inputs to obtain the desired outcome [10, 12]; however, due to the
causal interaction between variables, these perturbations are not
translatable into real-world interventions [2, 7].

We propose to demonstrate Lewis1, a causality-based system
that uses probabilistic contrastive counterfactuals for generating
post-hoc explanations for black-box decision-making algorithms.
Lewis reconciles the aforementioned objectives of XAI in two steps:
(1) It provides insights into what causes an algorithm’s decisions
at the global, local and contextual (sub-population) levels in terms
of three novel probabilistic measures– necessity score, sufficiency
score and necessity and sufficiency score– that quantify the influ-
ence of attributes toward an algorithm’s decision; (2) For individuals
negatively impacted by the algorithm, Lewis generates actionable
recourse to change the outcome of the model in future. A detailed
description of the system is presented in our previous work [5].
Overall, this demonstration makes the following contributions:

• We present Lewis, an end-to-end system that generates ex-
planations for black-box decision-making algorithms using
novel measures (based on probabilistic contrastive counter-
factuals) that have provable theoretical guarantees.

• The demonstration enables the users to understand the in-
fluence of different attributes not only at the global and
local levels but also at a user-defined sub-population level
(characterized as contextual level). Additionally, it presents
actionable recourse for the individuals that suffered from
negative outcome by the algorithm.

• We demonstrate that explanations generated by Lewis go
beyond state-of-the-art approaches in XAI that capture cor-
relation between attributes (e.g., SHAP [8], and LIME [11]).

Users will be able to observe first-hand the effect of sensitive at-
tributes like race and gender on the behavior of well-known black-
box loan prediction and recidivism software. This demonstration
will also help users understand the inconsistencies of using non-
causal explanation techniques and justify the importance of con-
sidering contrastive counterfactuals for explanations.
1Our system is named after David Lewis (1941–2001), who made significant contribu-
tions to modern theories of causality and explanations in terms of counterfactuals.
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Figure 1: Overview of Lewis: (1, 2) The user selects from a list of datasets or specifies their own, and selects one of the black-box

decision-making algorithms; (3) Users can specify the underlying causal graph by adding nodes representing attributes and

edges representing causal relationship between attributes.

2 SYSTEM OVERVIEW

This section provides a brief overview of the internals of Lewis.
Lewis is based on probabilistic contrastive counterfactuals of the
following form: “For individual(s) with attribute(s) <actual-value>
for whom an algorithm made the decision <actual-outcome>, the
decision would have been <foil-outcome> with probability <score>
had the attribute been <counterfactual-value>". While prior litera-
ture has established the difficulty in estimating such scores from
observational data [9], we used probabilistic contrastive counterfac-
tuals to define novel explanation scores that quantify the influence
of an attribute on an algorithm’s decision, and developed a math-
ematical framework to approximate these scores from historical
data with provable guarantees. In the following, we explain these
scores and discuss how they can be used for computing recourse
for users negatively affected by the algorithm.

Explanation scores. Lewis considers the input dataset and the
output of the black-box algorithm to evaluate explanation scores for
a specific sub-population, captured as a context k (where k = 𝜙 de-
notes the whole population). Given a context k of selected attribute
values, and a pair of values 𝑥, 𝑥 ′ for attribute 𝑋 , Lewis computes
three scores to quantify the influence of 𝑋 on the algorithm deci-
sion: (a) necessity score of 𝑋 is the “probability that for individuals
with attributes k, the algorithm’s decision would be negative instead
of positive had 𝑋 been 𝑥 ′ instead of 𝑥", (b) sufficiency score of 𝑋
is the “probability that for individuals with attributes k, the algo-
rithm’s decision would be positive instead of negative had 𝑋 been
𝑥 instead of 𝑥 ′", and (c) necessity and sufficiency score measures
the probability that the algorithm responds in both ways. These
scores are complementary in explaining the effect of changing 𝑋
on the behavior of a black-box algorithm. While necessity score
addresses the attribution of causal responsibility of an algorithm’s
decisions to X, sufficiency score addresses its tendency to produce

2788



Figure 2: (4) Lewis’s global explanation scores show the global behavior of the black-box algorithm with respect to each

attribute. On top of the bars, we see the rankings of attributes as generated by the different approaches in XAI. (5) Contextual

explanations show the effect of changing an attribute value on the behavior of the algorithm for a selected context.

the desired algorithmic outcome. In the absence of a context, the
scores measure the global influence of𝑋 on the algorithm’s decision.
When all the attributes are selected as context, the scores measure
the individual-level or local influence of 𝑋 on the algorithm’s de-
cision. Finally, for a user-defined context, the scores measure the
contextual influence of 𝑋 on the algorithm’s decision.
Counterfactual recourse. Algorithmic recourse consists of ac-
tionable changes an individual that received a negative decision
may adopt to acquire a favorable decision in the future. Lewis
computes recourse by searching for a minimal intervention on a
pre-specified set of actionable attributes sufficient for a favorable
outcome. In particular, Lewis constructs a linear program over in-
put attributes of the algorithm to estimate the effect of changing
the values of the actionable attributes and evaluate a recourse with
minimum cost that have a high sufficiency score.

3 DEMONSTRATION OVERVIEW

Dataset.We will demonstrate the functionalities of Lewis on the
German credit dataset [3] which consists of records of bank ac-
count holders with their personal and financial information. The
prediction task classifies individuals as good or bad credit risks. We
will also provide two additional datasets – Adult income [3] and
COMPAS (recidivism) [1] – for users to explore other applications.

Black-box decision-making algorithm. We will demonstrate
Lewis on the following classification algorithms: (1) random forest
classifier, (2) logistic regression, (3) feed-forward neural networks,
and (4) Adaboost classifier. Note that while Lewis is model agnostic,
this selection is made available to obtain the outputs of the model.

Our demonstration will start with the user loading the dataset
and inspecting it by submitting SQL queries or filtering the table
natively. The user can select one of the supported classifiers for
the prediction task (Figure 1, step 2), and visualize various perfor-
mance metrics for the chosen classifier. To generate contrastive

explanations, Lewis assumes access to the underlying causal as-
sumptions corresponding to the dataset and allows users to encode
these assumptions in the form of a causal graph (Figure 1, step
3). (Note that this graph can be learnt using any standard struc-
ture learning algorithm). For this demonstration, we pre-load the
graph depicted in Figure 1 which stems from the belief that Age
and Sex are exogenous attributes that are not affected by mutable
attributes (e.g., an individual’s age is not caused by the amount
in their savings account or the location of their residence). Users
can modify the causal graph by adding/deleting edges representing
causal relationships among attributes (Figure 1, step 3).

Finally, users can explore the impact of attributes at global
and contextual level (consisting of one or more individuals in the
dataset). Depending upon the selected tab, we depict how expla-
nations at the global, contextual, and local levels are visualized
and how the user may compare explanations generated by Lewis
to either SHAP [8] or LIME [11]. Additionally, we illustrate how
Lewis generates causally motivated recourse for individuals who
receive an unfavourable decision.

Visualizing explanations on local, contextual, and global lev-

els. The strength of Lewis lies in its flexibility in selecting various
contexts. This feature enables the user to determine the causal in-
fluence of an attribute on the algorithm’s decision for an individual,
a user-defined sub-population, or the entire population.

In Figure 2, we examine the explanations generated by Lewis at
the global and contextual levels and compare the generated explana-
tions with state-of-the-art XAI techniques. The global explanations
(step 4) shows features with the greatest causal influences on a
positive decision plotted with their necessity, sufficiency, and ne-
cessity and sufficiency scores. For this dataset, ranking of attributes
is similar for SHAP. Figure 2(b), step 5 shows the explanation scores
of ‘Status’ (required daily minimum in an account) with context
‘k =Age’. Higher necessity of status for younger individuals shows
that poor status is more likely to reject a loan for younger as com-
pared to older individuals.
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Figure 3: A snapshot of local explanations generated by Lewis. (6) The user can select a sub-population (context) or a particular

data point specified in the form of a SQL query as SELECT * FROM data WHERE context or filter the table in place; (7) shows

the contextual or local explanations generated by Lewis for the use case selected in (6) along with feature rankings; (8) If the

individual selected in (6) received a negative decision by the black-box algorithm, then Lewis allows the user to specify the

set of actionable variables and a threshold for sufficiency, and generates appropriate recourse.

The limitations of existing approaches in XAI, however, is per-
haps most prominently displayed when local explanations are gen-
erated (Figure 3, step 7). Consider the case of the selected individual
who was classified as a bad credit risk by the random forest clas-
sifier. Lewis ranks age much higher than SHAP and Lime because
of strong causal influence of age on credit history, thereby affect-
ing loan decisions. In contrast, SHAP and Lime do not capture such
dependencies and rank age lower than other attributes.
Generating actionable counterfactual recourse. Lewis gener-
ates recourse through minimal interventions which accurately re-
flect causal assumptions underlying the real world. Figure 3, step
8 shows the recourse panel which appears for an individual who
received an unfavorable decision; the user specifies a set of action-
able attributes for which Lewis generates counterfactual recourse.
For the selected individual, we see that causal responsibility of the
negative decision is mainly attributed to the status of their check-
ing account and month (duration of the loan). To improve their
chances of a favorable outcome, the user may wish to change these
variables which are then selected as the set of actionable variables.
Lewis then computes its recourse recommendation: increase status
to > 200 DM and reduce duration of the loan to < 10 months.
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