
Interactive Demonstration of SQLCheck

Arthita Ghosh
∗

Georgia Institute of Technology

Atlanta

aghosh80@gatech.edu

Deven Bansod
∗†

Facebook, Inc.

Menlo Park, CA

dbansod@gatech.edu

Arpit Narechania

Georgia Institute of Technology

Atlanta

arpitnarechania@gatech.edu

Prashanth Dintyala
†

NVIDIA Corporation

vdintyala3@gatech.edu

Su Timurturkan

Georgia Institute of Technology

Atlanta

gtimurturkan3@gatech.edu

Joy Arulraj

Georgia Institute of Technology

Atlanta

arulraj@gatech.edu

ABSTRACT

We will demonstrate a prototype of sqlcheck, a holistic toolchain

for automatically finding and fixing anti-patterns in database appli-

cations. The advent of modern database-as-a-service platforms has

made it easy for developers to quickly create scalable applications.

However, it is still challenging for developers to design performant,

maintainable, and accurate applications. This is because develop-

ers may unknowingly introduce anti-patterns in the application’s

SQL statements. These anti-patterns are design decisions that are

intended to solve a problem, but often lead to other problems by

violating fundamental design principles.

sqlcheck leverages techniques for automatically: (1) detecting

anti-patterns with high accuracy, (2) ranking them based on their

impact on performance, maintainability, and accuracy of applica-

tions, and (3) suggesting alternative queries and changes to the

database design to fix these anti-patterns. We will demonstrate that

sqlcheck enables developers to create more performant, maintain-

able, and accurate applications. We will show the prevalence of

these anti-patterns in a large collection of queries and databases

collected from open-source repositories.

PVLDB Reference Format:

Arthita Ghosh, Deven Bansod, Arpit Narechania, Prashanth Dintyala, Su

Timurturkan, and Joy Arulraj. Interactive Demonstration of SQLCheck.

PVLDB, 14(12): 2779-2782, 2021.

doi:10.14778/3476311.3476343

1 INTRODUCTION

Modern database applications produce qualitatively better insights

in many domains, such as science, governance, and industry [4].

Two trends have simplified the design and deployment of such data-

intensive applications. The first trend is the spread of data science

skills to a larger community of developers [9, 18]. The second trend

is the proliferation of database-as-a-service (DBaaS) platforms in

the cloud [3, 12].

∗
These authors contributed equally to this work.

†
This work was done when author(s) were at Georgia Institute Of Technology

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.

doi:10.14778/3476311.3476343

Challenge: Designing applications is, however, non-trivial since

applications may suffer from anti-patterns [11]. An anti-pattern

(AP) is a design decision that is intended to solve a problem, but

that often leads to other problems. APs lead to convoluted logical

and physical database designs, thereby affecting the performance,

maintainability, and accuracy of the application. The spread of data

science skills to a larger community of developers places increased

demand for a toolchain that facilitates application design without

APs. Furthermore, the proliferation of DBaaS platforms obviates the

need for in-house DBAs who used to assist application developers

with finding and fixing these APs.

Our Approach: To address this challenge, in our prior work [5],

we presented a toolchain, called sqlcheck, that assists application

developers by: (1) detecting APs with high accuracy, (2) ranking

the detected APs based on their impact, and (3) suggesting fixes for

high-impact APs. The main thrust of our approach is to augment

code analysis with data analysis (i.e., examine both queries and

data sets of the application) to detect APs with high precision and

recall. We study the impact of frequently occurring APs on the key

metrics of the application. We then use this information to rank

the APs based on their estimated impact. By targeting frequently

occurring APs, we take advantage of our ranking model trained on

data collected from previous deployments without needing to share

sensitive data (e.g., data sets). Lastly, sqlcheck suggests fixes for

high-impact APs using rule-based query refactoring techniques.

This demonstration will showcase how sqlcheck suggests fixes

for high-impact APs using rule-based query refactoring techniques.

Our demo will illustrate that sqlcheck enables developers to create

more performant, maintainable, and accurate applications. We will

also show the prevalence of these anti-patterns in a large collec-

tion of queries and databases collected from open-source reposi-

tories. Users will be able to interact with sqlcheck by submitting

new queries and analysing the detected APs. The demonstration of

sqlcheck is available at [6].

2 DEMO SYSTEM

2.1 Workflow

Figure 1 illustrates the architecture of sqlcheck. We envision that

an user will use sqlcheck in the followingmanner. A developer will

deploy sqlcheck on their local machine and connect it to the target

application (i.e., queries and database). ❶ The first component of

2779

Figure 1: Architecture of sqlcheck: It takes in a SQL query and a con-

nection to a DBMS (optional), and produces a ranked list of APs and associ-

ated fixes. Internally, sqlcheck leverages query and data analysis to detect

the APs. It then uses a ranking model and a query repair engine to generate

the desired fixes.

sqlcheck, ap-detect, performs static analysis of the queries to de-

tect APs. To increase precision and recall, ap-detect also profiles

the application’s data and meta-data. ❷ Next, ap-rank examines

the APs detected by ap-detect in the target application and ranks

them based on their estimated impact. ❸ The third tool, ap-fix,
suggests fixes for the high-impact APs identified by ap-rank using
rule-based query transformations. ❹ Lastly, sqlcheck optionally

uploads the APs detected in the application to an online AP repos-

itory with the permission of the developer. As new performance

data is collected over time, we will retrain the ranking model of

ap-rank to improve the quality of its decisions.

2.2 Interfaces

Our demo is implemented in Python [14] and exports three inter-

faces: (1) Interactive Shell, (2) REST, and (3) GUI. These interfaces

are shown in Figure 2. Application developers and SQL IDE devel-

opers may leverage these interfaces to either directly interact with

sqlcheck or to integrate it with their own IDEs. We describe these

interfaces below:

• Interactive Shell: An SQL application developer can import

the sqlcheck package from a package repository (e.g., PyPI [15])
and directly use the interactive shell interface to execute SQL

queries or leverage these sub-modules in other tools.

Import the SQLCheck module
from sqlcheck.finder import find_anti_patterns
query = `INSERT INTO Users VALUES (1, 'foo')`
results = find_anti_patterns(query)

• REST Interface: This interface allows developers to leverage

sqlcheck in applications developed in other programming

languages by using web requests via HTTP. We implement

this using the Flask web framework [13].

HTTP POST /api/check
Body: {"query":"INSERT INTO Users VALUES (1,'foo')"}

Output of SQLCheck
{
"query_analysis": [
{

Figure 2: sqlcheck Interfaces – sqlcheck exports three interfaces: (1)

command-line, (2) REST, and (3) HTTP.

"query": "INSERT INTO users VALUES (1,'foo','bar',25)
",
"query_type": "DML",
"anti_patterns": [
{
"impact": 0.9, # Performance Impact
"fix": "Specify column names to avoid mismatch

during insertion.
For eg. 'INSERT INTO users (uid, fname, lname,

age) VALUES (1,'foo','bar',25)'",
"name": "Implicit Column Names"

}
]

}
],
"data_analysis": {}

}

• GUI Interface: Lastly, this interface is geared towards a wider

range of users who are not familiar with application program-

ming. This interface enables users to easily get feedback on

their queries by copying them into the input field and is de-

veloped using ReactJS [8]. Internally, this invokes the REST

interface that subsequently passes the queries to the sqlcheck

binary which processes them and returns the list of detected

APs and their associated fixes. This response is presented to

the user through a ReactJS GUI [8].

Extensibility: sqlcheck is extensible by design. A developer

may add a new AP rule that implements the generic rule interface

(name, type, detection rule, ranking metrics, and repair rule) and

register it in the sqlcheck rule registry. A developer may also

extend the context builder to augment the application’s context

for supporting complex rules. Lastly, a developer may replace the

non-validating parser with a DBMS-specific parser to increase the

utility of the parse tree.

2.3 Types of Anti-Patterns

We compiled a catalog of APs based on several resources that dis-

cuss best practices for schema design and querying DBMSs [7, 10,

11, 19]. Table 1 lists a subset of APs that sqlcheck targets. These

APs fall under four categories:

❶ Logical Design APs: This category of APs arises from violat-

ing logical design principles that suggest the best way to organize

data and the relationships that exist between them [17].

The adjacency list AP falls under this category. It refers to refer-

ences between two attributes within the same table. Such a logical

design is used to model hierarchical structures (e.g., employee-

manager relationship). With this representation, however, it is not

2780

Figure 3: GUI Interface – Interface exported to the user.

Category Anti-Pattern Name Description P M DA DI A

Logical Design APs

Multi-Valued Attribute Storing list of values in a delimiter-separated list violating 1-NF. ✓ ✓ ✓ (↓) ✓ ✓

No Primary Key Lack of data integrity constraints. ✓ ✓ ✓ (↑) ✓ -

No Foreign Key Lack of referential integrity constraints. ✓ ✓ - ✓ -

Generic Primary Key Creating a generic primary key column (e.g., id) for each table. - ✓ - - -

Adjacency List Foreign key constraint referring to an attribute in the same table. ✓ - - - -

Physical Design APs

Rounding Errors Storing fractional data using a type with finite precision (e.g., FLOAT). - - - - ✓

Enumerated Types Using enum to constrain the domain of a column. ✓ ✓ ✓ (↓)
- -

External Data Storage Storing file paths instead of actual file content in database. - ✓ - ✓ ✓
Clone Table Multiple tables matching the pattern <TableName>_N ✓ ✓ - ✓ ✓

Query APs

Column Wildcard Usage Selecting all attributes from a table using wildcards to reduce typing. ✓ - - - ✓
Concatenate Nulls Concatenating columns that might contain NULL values using ||. - - - - ✓
Ordering by RAND Using RAND function for random sampling or shuffling. ✓ - - - -

Pattern Matching Using regular expressions for pattern matching complex strings. ✓ - - - -

Implicit Columns Not explicitly specifying column names in data modification operations. - ✓ - ✓ -

Data APs

Missing Timezone Date-time fields stored without timezone. - - - - ✓

Incorrect Data Type Actual data does not conform to expected data type. ✓ - ✓ (↓)
- -

Denormalized Table Duplication of values. ✓ - ✓ (↓)
- -

Information Duplication Derived columns (e.g., age from date of birth). - ✓ - ✓ ✓

Table 1: List of Anti-Patterns: A catalog of APs based on best practices for database application design [7, 10, 11, 19]. They fall under four categories: (1)

logical design APs, (2) physical design APs, (3) query APs, and (4) data APs. For each AP we illustrate its impact on five metrics: (1) Performance (P), (2)

Maintainability (M), (3) Data Amplification (DA), (4) Data Integrity (DI), and (5) Accuracy (A). ✓ represents that the given AP affects that metric. ↑ and ↓ refer
to increase and decrease in data amplification, respectively, when that AP is fixed.

trivial to handle common tasks such as retrieving the employees of

a manager up to a certain depth and maintaining the integrity of

the relationships when a manager is removed.

❷ Physical Design APs: The next category of APs is associated

with efficiently implementing the logical design using the features

of a DBMS. This includes rounding errors and enumerated types
APs. The rounding errors AP arises when a scientist uses a type

with finite precision, such as FLOAT to store fractional data. This

may introduce accuracy problems in queries that calculate aggre-

gates. The enumerated types AP occurs when a scientist restricts

a column’s values by specifying the fixed set of values it can take

while defining the table. However, this AP makes it challenging

to add, remove, or modify permitted values later and reduces the

application’s portability.

❸ Query APs: Query APs arise from violating practices that sug-

gest the best way to retrieve and manipulate data using SQL. This

includes NULL usage and column wildcard usage APs. Developers
are often caught off-guard by the behavior of NULL in SQL. Un-

like in most programming languages, SQL treats NULL as a special

value, different from zero, false, or an empty string. This results in

counter-intuitive query results and introduces accuracy problems.

The latter AP arises when a developer uses wildcards (SELECT *)
to retrieve all the columns in a table with less typing. This AP,

however breaks applications on refactoring.

❹ Data APs: Data APs are a subset of APs that sqlcheck detects

by analysing the data (as opposed to queries). This includes the

incorrect data type and information duplication APs. The former AP
arises due to data type mismatches (e.g.,, storing a numerical field

in a TEXT column). This negatively impacts performance and leads

to data amplification. The latter AP occurs when a column contains

data derived from another column in the same table (e.g., storing
age based on date of birth). While this accelerates query pro-

cessing, it reduces maintainability and leads to data amplification.

2781

Figure 4: Fix Card – suggested fix for column wildcard usage AP.

3 DEMO SCENARIOS

The demonstration of sqlcheck is available at [6]. The goals of this

demonstration are listed below:

• Detecting APs: As shown in Figure 3, we will illustrate how

sqlcheck detects different types of APs listed in §2.3 using

query and data analysis. sqlcheck also explains why a partic-

ular query suffers from an AP.

• Ranking APs: Given a set of APs, sqlcheck automatically

ranks them based on their impact on key metrics of the data-

base application and classifies them into three categories based

on their impact. The user may view a subset of the detected

APs by configuring the severity level in the demo. This allows

them to prioritize their attention on high-impact APs.

• Fixing APs: Lastly, we will illustrate the fixes suggested by

sqlcheck. For instance, the fix for the column wildcard usage
AP is shown in Figure 4.

4 RELATED WORK

TransformingDatabaseApplications:While program anal-

ysis has been widely used in software engineering, it has not been

extensively utilized by the DBMS community. Recent efforts have

focused on transforming database-backed programs to improve per-

formance [2, 21]. DBridge presents a set of holistic optimizations

including query batching and binding, and automatic transforma-

tion of object-oriented code into synthesized queries [16]. Cheung

et al. describe techniques for batching queries to reduce the number

of round trips between the application and the database server [1].

Object-Relational Mapping: Researchers have studied the

impact of ORM on application design and performance [20]. Yang

et al. perform a comprehensive study of performance issues in

database applications using profiling [22]. sqlcheck is the first

effort focused on exploring the problems of automatically ranking

and fixing APs in database applications.

5 CONCLUSION

We demonstrate sqlcheck, a holistic toolchain for finding, rank-

ing, and fixing APs in database applications. sqlcheck leverages a

novel AP detection algorithm that augments query analysis with

data analysis. It uses the overall context of the application to reduce

false positives and negatives. sqlcheck relies on a ranking model

for characterizing the impact of detected APs and suggests fixes

for high-impact AP using rule-based query refactoring techniques.

Our empirical analysis shows that sqlcheck enables developers

to create more performant, maintainable, and accurate applications.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-

dation (IIS-1908984, IIS-1850342), Alibaba, Cisco, Intel, and Adobe.

We thank Shamkant Navathe, Karthik Ramachandra, and the re-

viewers for their constructive feedback. We thank all of the con-

tributors to sqlcheck.

REFERENCES

[1] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama, and An-

drew C. Myers. 2013. StatusQuo: Making Familiar Abstractions Perform Using

Program Analysis. In Proc. of CIDR.
[2] Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and An-

drew C Myers. 2014. Using Program Analysis to Improve Database Applications.

IEEE Data Eng. Bull. 37, 1 (2014), 48–59.
[3] Carlo Curino, Evan PC Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu,

Sam Madden, Hari Balakrishnan, and Nickolai Zeldovich. 2011. Relational cloud:

A database-as-a-service for the cloud. (2011).

[4] Thomas H Davenport and DJ Patil. 2012. Data scientist. Harvard business review
90, 5 (2012), 70–76.

[5] Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. 2020. SQLCheck: Auto-

mated Detection and Diagnosis of SQL Anti-Patterns. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2331–2345.

[6] Georgia Tech Database Group. 2021. SQLCheck Demo. http://db-apps.cc.gatech.

edu/sqlcheck/playground.

[7] Cunningham & Cunningham Inc. 2014. C2 Wiki. http://wiki.c2.com/

?AntiPatternsCatalog.

[8] Facebook Inc. 2019. ReactJS. https://reactjs.org.

[9] Stitch Inc. 2018. The State of Data Science. https://www.stitchdata.com/resources/

the-state-of-data-science/.

[10] Stack Exchange Inc. 2010. StackOverflow Wiki. https://stackoverflow.com/

questions/346659/what-are-the-most-common-sql-anti-patterns.

[11] Bill Karwin. 2010. SQL antipatterns: avoiding the pitfalls of database programming.
Pragmatic Bookshelf.

[12] David Lomet, Alan Fekete, Gerhard Weikum, and Mike Zwilling. 2009. Un-

bundling transaction services in the cloud. arXiv preprint arXiv:0909.1768 (2009).
[13] Pallets. 2019 . Python-Flask. http://flask.palletsprojects.com/en/1.1.x.

[14] Python Software Foundation. 2019 . Python. https://www.python.org.

[15] Python Software Foundation. 2019. PyPi. https://pypi.org.

[16] Karthik Ramachandra, Mahendra Chavan, Ravindra Guravannavar, and S Su-

darshan. 2015. Program transformations for asynchronous and batched query

submission. In TKDE 27, 2 (2015), 531–544.

[17] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.). McGraw-Hill, Inc., New York, NY, USA.

[18] Toby Segaran and Jeff Hammerbacher. 2009. Beautiful data: the stories behind
elegant data solutions. " O’Reilly Media, Inc.".

[19] Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Dio-

midis Spinellis. 2018. Smelly relations: measuring and understanding database

schema quality. In Proc. of ICSE. ACM, 55–64.

[20] Alexandre Torres, Renata Galante, Marcelo S Pimenta, and Alexandre Jonatan B

Martins. 2017. Twenty years of object-relational mapping: A survey on patterns,

solutions, and their implications on application design. Information and Software
Technology 82 (2017), 1–18.

[21] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP

application performance. In Proceedings of VLDB 9, 5 (2016), 444–455.

[22] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung.

2018. How not to structure your database-backed web applications: a study of

performance bugs in the wild. In Proc. of ICSE. IEEE, 800–810.

2782

