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ABSTRACT
Differential privacy promises to enable data sharing and general
data analytics while protecting individual privacy. Because the
private data is often stored in the form of relational database that
supports SQL queries, making SQL-based analytics differentially pri-
vate is thus critical. However, the existing SQL-based differentially
private systems either only focus on specific type of SQL queries
such as COUNT or substantially modify the database engine, thus
obstructing adoption in practice. Worse yet, these systems often
do not guarantee the desired accuracy by the applications. In this
demonstration, using the driving trace workload from Cambridge
Mobile Telematics (CMT), we show that our ATLANTIC system, as
a database middleware, enforces differential privacy for real-world
SQL queries with provable accuracy guarantees and is compatible
with existing databases. Moreover, using a sampling-based tech-
nique, ATLANTIC significantly speeds up the query execution, yet
effectively amplifying the privacy guarantee.
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1 INTRODUCTION
As organizations increasingly collect sensitive information about
individuals, these organizations are legally and ethically obligated
to avoid privacy leaks. This sensitive information is often stored in
relational database, allowing data analysts to easily conduct general-
purpose data analytics through SQL queries. If the company does
not want to disclose sensitive data to analysts, SQL-based analytics
must be privacy-preserving.
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Figure 1: A Middleware Between the User and Database

Differential privacy [5, 7] is a promising technique that admits
general statistical analysis of data while protecting information
about individuals with a strong guarantee of privacy. Because of
its desirable formal guarantees, differential privacy has received
growing attention from organizations including Google and Ap-
ple and from the database research community. However, differ-
ential privacy for general-purpose SQL queries remains an open
challenge. First, many differential privacy techniques only focused
on specific types of SQL queries, such as COUNT queries [9, 18],
histograms [10, 17], equi-joins [8, 18], range queries, or special-
purpose use cases such as data federation [3, 4]. Further, most of
the existing systems [9, 13, 16] require substantial modification to
the underlying database engine, complicating adoption in practice.
Moreover, differential privacy protects the privacy of the data by in-
jecting noise into the query results. Therefore, making SQL queries
differentially private often produces imprecise query results with
large error bounds that are not useful to some applications.

In this demonstration, we will show ATLANTIC, an approach
that enables differential privacy for general purpose SQL-based
analytics. ATLANTIC runs as a middleware layer on top of existing
databases. It is compatible with real database systems, supports
queries expressed in standard SQL, and thus easily integrates into
existing data environments. Rather than introducing additional
overhead to query execution, ATLANTIC runs queries even faster
than the original databases by employing data sampling to enforce
privacy guarantees. It uses a novel machine-learning method to pro-
vide the formal guarantees of differential privacy, while satisfying
the user’s requirements on the accuracy of query results.

As shown in Fig. 1, ATLANTIC sits between the user and the
database. Given a user query, ATLANTIC uses query-rewriting to
modify the query to collect the statistics required as input for the
differential privacy algorithms. After query results come back, it
runs the differential privacy algorithms on the results. In this way,
the underlying database remains unchanged and any differential
privacy mechanisms can be seamlessly plugged into ATLANTIC.
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Moreover, we use a set of sample queries to learn a machine
leaning model that is customized to the given data and query work-
load. It is thus more precise than the general purpose statistical
methods in bounding the errors due to sampling and injected noise
for protecting privacy. This model, that takes the sampling rate
into consideration, provides ATLANTIC a way to automatically
choose an optimal sampling rate for each category of queries, offer-
ing strong privacy and accuracy guarantees while minimizing the
query execution time.

In this demonstration, we focus on the set of common aggrega-
tion operators that are known to be amenable to differential privacy:
COUNT, SUM, AVG, and MEDIAN/QUANTILE [7]. ATLANTIC also
supports typical database operations such as equi-joins and selec-
tion predicates underneath the aggregation operators.

2 PRELIMINARIES
We begin by recapping the key concepts of differential privacy.
Differential Privacy. Differential privacy provides a formal guar-
antee that a differentially private result does not disclose much
information about which of two neighboring databases was used
in calculating the result.

Formally, differential privacy considers a database modeled as a
vector x ∈ Dn, in which 𝑥𝑖 represents the data contributed by user 𝑖 .
The distance between two databases x, y ∈𝐷𝑛 is d (x, y) = |{i | xi ≠ yi}|.
Two databases 𝑥 , 𝑦 are neighbors if d (x, y) = 1.

Definition 2.1. Differential privacy. A randomized mechanism
M : Dn → Rd preserves (𝜖 , 𝛿)-differential privacy if for any pair
of databases 𝑥 ,𝑦 ∈ 𝐷𝑛 such that d (x, y) = 1, and for all sets 𝑆 of
possible outputs:

Pr [M(x) ∈ S] ≤ e𝜖Pr [M(y) ∈ S] + 𝛿 (1)

Intuitively, differential privacy ensures that for all adjacent data-
base 𝑥 ,𝑦, the absolute value of the privacy loss will be bounded by 𝜖
with probability at least 1 - 𝛿 . Therefore, the smaller the parameters
𝜖 and 𝛿 are, the stronger the privacy guarantee is.
Sensitivity. The sensitivity of a query corresponds to the amount
its results will change when the database changes. One measure of
sensitivity is global sensitivity, which is the maximum difference
in the query’s result on any two neighboring databases.

Definition 2.2. Global Sensitivity. For f : Dn → Rd and all 𝑥 , 𝑦
∈ 𝐷𝑛 , the global sensitivity of 𝑓 is

𝐺𝑆𝑓 = max
𝑥,𝑦:𝑑 (𝑥,𝑦)=1

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ (2)

Another definition of sensitivity is local sensitivity [22,44], which
is the maximum difference between the query’s results on the true
database and any neighbor of it. Local sensitivity is often much
lower than global sensitivity, since it is a property of the single true
database rather than all possible databases.

Definition 2.3. Local Sensitivity. For f : Dn → Rd and x ∈ Dn,
the local sensitivity of 𝑓 at 𝑥 is

𝐿𝑆𝑓 (𝑥) = max
𝑦:𝑑 (𝑥,𝑦)=1

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ (3)

Differential Privacy Mechanism. By default, ATLANTIC uses
the Laplace output perturbation mechanism [6] to enforce differ-
ential privacy, although other mechanisms can be equally applied.
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Figure 2: ATLANTIC Architecture

It constructs differentially private estimates of a function f (x) by
adding noise sampled from the Laplace distribution with magnitude
proportional to the global sensitivity 𝐺𝑆𝑓 .

Definition 2.4. Laplace Distribution. The probability density
function (PDF) of the Laplace distribution Lap(𝜆) is h(z) = 1

2𝜆 e
−|z |/𝜆 .

It has zero mean, and standard deviation
√
2𝜆.

Theorem 1. ∀ f : Dn → Rd , the database access mechanism
Mf (x) = f (x) + (Z1, . . . , Zd ), where the 𝑍𝑖 are drawn i.i.d. from
Lap(GSf /𝜖), preserves 𝜖-differential privacy [6].

The original Laplace mechanism releases 𝑓 (𝑥) with noise mag-
nitude proportional to 𝐺𝑆𝑓 (𝑥). Because global sensitivity is often
large, it tends to yield unacceptably high noise levels, hence low
accuracy. If we release the result with noise magnitude propor-
tional to 𝐿𝑆𝑓 (𝑥), the resulting algorithm would add significantly
less noise for typical inputs. However, it does not satisfy the defini-
tion of differential privacy (Def. 2.1). In this work, we use smooth
sensitivity [14] and its variation [8] to solve this problem.

3 ATLANTIC SYSTEM
In this paper we are focused on summarizing the functions and
the main components of ATLANTIC. First, we briefly describe the
main components of ATLANTIC in Sec. 3.1. We then explain how
ATLANTIC interacts with users in Sec. 3.2. In Sec. 3.3 we discuss
the types of SQL queries that benefit from ATLANTIC. Finally, we
quantify the privacy amplification brought by sampling in Sec. 3.4.

3.1 The Components of ATLANTIC
Fig. 2 shows the main components of ATLANTIC including a Query
Parser, a Query Rewriter, a DB Connector, and a DP Executor.

Given a user query, ATLANTIC uses an existing Query Parser
to translate it into logical operators (e.g., projections, selections,
joins, etc.). Then, Query Rewriter converts this logical expression
into another logical expression, for example, automatically replace
the original database table with the corresponding sample table, or
to compute and retrieve the statistics needed by the differential pri-
vacy (DP) mechanism. DB Connector converts the rewritten logical
expression into a SQL statement compatible with the underlying
database. It then communicates with the database to get the query
results.

Once the rewritten query is executed by the database, DP Ex-
ecutor uses SQL queries to collect the pre-computed statistics to
compute sensitivity, runs DP mechanism to add noise to the query
results, produces error estimates and confidence intervals, and re-
turns the final results to users.
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3.2 Workflow
Because ATLANTIC is a middleware as shown in Fig. 1, the user,
either a data analyst or an app, does not directly interact with the
database. Instead, they submit queries to and receive the results
from ATLANTIC. The user interacts with ATLANTIC in two stages:
offline preparation and online query processing.

During the offline preparation stage, the user decides on the
tables and the attributes to be protected. In the meantime, the user
has to specify the desired privacy guarantee, e.g. the parameters
𝜖 and 𝛿 in Def. 2.1 and the accuracy requirement, e.g., returning
an answer that is at least 95% accurate. This information is then
recorded in a specific schema inside the database catalog.

However, it can be hard even for the database and privacy experts
to set an appropriate privacy guarantee and accuracy requirement,
because they conflict with each other. If the user requests a very
strong privacy guarantee by setting the parameter 𝜖 to a very small
value, it will inevitably produce a noisy answer with large error
bounds; and these error bounds vary across datasets and queries.
Therefore, instead of requesting users to set these parameters at the
online stage when submitting queries, ATLANTIC offers users a
tool to setup these parameters at the offline stage. For each table, it
first uses a set of sample queries to profile the relationship between
the privacy guarantee and query accuracy w.r.t. different categories
of queries. The queries in the same category could use different
aggregate functions, but show the similar trend in the privacy and
accuracy trade-off. ATLANTIC then plots the captured relation-
ship into some privacy vs. accuracy charts, assisting the user to
determine the parameters. For example, if the user desires a hard
privacy guarantee, the charts will help them determine a realistic
accuracy requirement, and vice versa. Note this process does not
leak privacy, because it only uses the accuracy of the queries rather
than the actual results.

The profiling also takes the sampling rates into consideration,
because it plays a critical role in determining the amount of noise to
be injected to the query results. One advantage of this sampling rate-
aware profiling is that it naturally helps ATLANTIC determine the
optimal sampling rate w.r.t. each category of queries and build the
sample tables. The optimal sampling rate means the lowest one that
promises the privacy and accuracy guarantee. Accordingly, for the
same table ATLANTIC may construct multiple sample tables using
different sampling rates and sampling methods such as random
sampling or stratified sampling.

Moreover, using the accuracy data obtained via profiling, AT-
LANTIC trains a machine learning model that classifies each user
query received at runtime to one query category and predicts its
accuracy. Rather than using off-the-shelf statistical methods [12]
to estimate the accuracy, we decide to employ machine learning,
because the estimates produced by these statistical methods are
known to be inaccurate in many cases [15].

At runtime, when a user issues a query, ATLANTIC identifies
the set of sample tables to replace the corresponding base tables in-
volved in the query. Because one single base table could correspond
to multiple sample tables with different sampling rates, ATLANTIC
uses the machine learning model trained during the offline stage to
choose the optimal sampling rate and accordingly the sample table
to use for query processing. ATLANTIC then rewrites the original

query into another SQL statement and executes it with the under-
lying database. After the database returns the results, ATLANTIC
computes the sensitivity. According to its value as well as the sam-
pling rate and parameter 𝜖 , ATLANTIC adds noise to the result and
estimates the accuracy using machine learning model, eventually
returning the final result as well as the accuracy estimates.

3.3 Supported SQL Queries
ATLANTIC enables differential privacy on the analytic SQL queries
that use common aggregate functions suitable for differential pri-
vacy [7]. In general, these aggregate functions correspond to queries
with mean-like statistics, including COUNT, SUM, AVG, QUAN-
TILE, VAR, and STDDEV.

ATLANTIC supports equi-join and selection predicates for dif-
ferentially private aggregation. Because running the build-in join
algorithms of databases on samples are known to be not effective
in estimating the aggregates, we implement the popular sampling-
basedWander join [11] in the middleware as a series of SQL queries.

ATLANTIC does not support aggregate functions that collect
extreme statistics (i.e., min and max). For such aggregate functions,
DP mechanism has to add large amount of noise to the query re-
sults [7] to protect the privacy, hence in practice often not satisfying
the accuracy requirement. Currently ATLANTIC will reject these
queries if they require privacy protection. For the queries that do
not request protection, ATLANTIC will simply pass them down to
the underlying database without any change.

3.4 Sampling and Differential Privacy
In this section, we first quantify the privacy amplification brought
by sampling. We then introduce smooth sensitivity for minimizing
the noise magnitude added to the query result and show how to
efficiently compute it.
Privacy Amplification.We provide explicit privacy amplification
bounds for the uniform sampling and stratified sampling, which
are the most common sampling methods used in databases [1, 15].
The theoretical results apply to both single table and multi-table
queries (equi-join). The results include the existing amplification
bounds [2] in the literature as well as the novel bounds on join that
we contribute.

Intuitively applying the differential privacy mechanism M to a
random sample of the input database rather than on the database
itself decreases the chances of leaking information about a particu-
lar individual, because nothing about that individual can be leaked
in the cases where the individual is not included in the sample.
More formally, ifM is (𝜖, 𝛿)-DP, then the sample mechanismM𝑆

is (𝜖 ′, 𝛿 ′)-DP for some 𝜖 ′ ≤ 𝜖 and 𝛿 ′ ≤ 𝛿 . This is a privacy amplifi-
cation, because the new mechanism has better privacy parameters
than the original one. Eq. 4 quantifies this amplification.

𝑒𝜖
′
= 1 + 𝜂 (𝑒𝜖 − 1); 𝛿 ′ = 𝜂𝛿 (4)

In Eq. 4, the parameter 𝜂 represents the factor of privacy am-
plification. The larger the 𝜂 is, the smaller the amplification is.
Essentially, 𝜂 corresponds to the sampling rate. In stratified sam-
pling, because it uses different sampling rates for different subsets
of the data, 𝜂 corresponds to the largest one. For equi-join, if we
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consider the sample-based join results as one single table, each dis-
tinct value is randomly sampled with certain rate from the complete
join results on the original tables. Therefore, sample-based join can
be treated as a special stratified sampling. Each distinct value has a
unique sampling rate; and 𝜂 corresponds to the largest one.
Smooth Sensitivity. As discussed in Sec. 2, releasing the query
result with noise magnitude proportional to global sensitivity 𝐺𝑆𝑓
tends to yield unacceptably high noise levels. However, releasing the
query result with noise magnitude proportional to local sensitivity
𝐿𝑆𝑓 does not satisfy the definition of differential privacy, as the
noise magnitude itself reveals information about the database [14].

To solve this problem, ATLANTIC uses smooth sensitivity 𝑆𝑓
which is much smaller than𝐺𝑆𝑓 , while still satisfying Definition 2.1.
The key idea is to make the noise magnitude insensitive to the real
database by deriving a smooth upper bound on the local sensitivity.

𝛽 =
𝜖

2 ln 2/𝛿 ; 𝑆𝑓 (𝑥) = max
𝑘=0,1,2,...,𝑛

𝑒−𝛽𝑘𝐿𝑆𝑘
𝑓
(𝑥) (5)

In Eq. 5, 𝑛 represents the cardinality of 𝑥 . 𝐿𝑆𝑘
𝑓
(𝑥) is a generaliza-

tion of the local sensitivity, representing how much the sensitivity
can change when up to 𝑘 entries of the database 𝑥 are modified,
called the sensitivity of 𝑓 at distance 𝑘 .

𝐿𝑆𝑘
𝑓
(𝑥) = max

𝑦∈𝐷𝑛 :𝑑 (𝑥,𝑦)=𝑘
𝐿𝑆𝑓 (𝑦) (6)

To support equi-join for aggregation, we use elastic sensitivity [8]
which is a variation of smooth sensitivity.

4 DEMONSTRATION
ATLANTIC demo will feature an end-to-end implementation of the
system. We will demonstrate ATLANTIC largely speeds up a range
of ad-hoc exploratory queries with provable privacy and accuracy
guarantees, using real-world data and analytics queries.

4.1 Setup Details
Our demo setup would consist of a Java open source implementa-
tion of ATLANTIC deployed to a Google GCP machine. In order
to effectively demonstrate the system, our demo will feature an
interactive JavaScript/HTML-based web console. Users can lever-
age this console to rapidly query across a range of parameters. To
demonstrate a real-world analysis scenario, we will pre-store data
in PostgreSQL and MySQL independently.

4.2 Demonstration Scenario
Our demo will use simulated data and workloads from an IoT com-
pany. It provides mobile applications to improve driver safety by
measuring risky driving behavior and providing feedback to drivers.
Because some of the metadata recorded about drivers, such as the
times of day when they drive or the maximal speed they travel at,
is sensitive, it’s important to protect the identify of an individual
driver from being discoverable by an analyst, while still making it
possible to perform aggregate computations of driving behavior in,
for example, particular locations or time periods. Specifically, we
use a collection of aggregate queries on a synthetic database with a
similar schema to that used by the company. Queries compute a va-
riety of aggregate metrics, such as the total or average mileages and

driving durations, count of the frequency of hard brakes or speeding
by customer ID, city, or date, etc. These queries typically involve
multiple filtering and equi-join operations. Differential privacy is
used to ensure that the attributes of any particular individual cannot
be discovered from the aggregate results of running the workload.

In this demonstration, we will show:
• How our ATLANTIC performs in offering the required priva-

cy/accuracy guarantees and speeding up the query execution, in
contrast to (1) FLEX [8] that enables differential privacy for COUNT
query; (2) running differential privacy mechanism directly on data-
base without sampling; (3) the state-of-the-art approximate query
processing system VerdictDB [15] which runs queries on samples,
but does not support differential privacy. We will show that AT-
LANTIC is (1) much faster and even more accurate than FLEX or
running DP directly on database, while providing the same level
privacy protection; (2) almost as fast as VerdictDB which always
uses the same sampling rate to ATLANTIC.
• How ATLANTIC guides the users to quickly set the appropriate

privacy and accuracy parameters.
• With its ML model, ATLANTIC is able to precisely predicate

the accuracy of each query compared to the statistical methods.
• ATLANTIC supports different databases including PostgreSQL,

MySQL, and SparkSQL.
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