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ABSTRACT
Entity matching (EM) refers to the problem of identifying tuple

pairs in one or more relations that refer to the same real world

entities. Supervised machine learning (ML) approaches, and deep

learning based approaches in particular, typically achieve state-of-

the-art matching results. However, these approaches require many

labeled examples, in the form of matching and non-matching pairs,

which are expensive and time-consuming to label.

In this paper, we introduce Panda, a weakly supervised system

specifically designed for EM. Panda uses the same labeling func-
tion abstraction as Snorkel, where labeling functions (LF) are user-

provided programs that can generate large amounts of (somewhat

noisy) labels quickly and cheaply, which can then be combined

via a labeling model to generate accurate final predictions. To sup-

port users developing LFs for EM, Panda provides an integrated

development environment (IDE) that lives in a modern browser ar-

chitecture. Panda’s IDE facilitates the development, debugging, and

life-cycle management of LFs in the context of EM tasks, similar to

how IDEs such as Visual Studio or Eclipse excel in general-purpose

programming. Panda’s IDE includes many novel features purpose-

built for EM, such as smart data sampling, a builtin library of EM

utility functions, automatically generated LFs, visual debugging of

LFs, and finally, an EM-specific labeling model. We show in this

demo that Panda IDE can greatly accelerate the development of

high-quality EM solutions using weak supervision.
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1 INTRODUCTION
Entity matching (EM) refers to the problem of identifying tuples in

one or more tables that refer to the same real world entities. For

example, an e-commerce website would want to identify identical

products from different suppliers for a unified catalog. EM has

been extensively studied in many research communities, including

databases, statistics, NLP, and data mining. The standard approach

to EM uses similarity scores between two tuples as feature vectors,

and then formulates the problem of match/non-match as a binary
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classification problem given the feature vectors [6]. Supervised

Machine Learning (ML) approaches, particularly deep learning

approaches (e.g., DeepER [5] and DeepMatcher [10]), often achieve

state-of-the-art results for EM [4, 5, 8, 10]. However, they require

large amounts of labeled training data that are expensive and time-

consuming to obtain – for example, it has been reported [4] that

achieving F-measures of ∼99% with random forests can require up

to 1.5M labels even on relatively clean datasets.

Weak supervision and the LF abstraction. Lack of training data
is a common problem in applied ML. Many ML researchers and

practitioners have increasingly resorted to weak supervision meth-

ods, in which large amounts of cheaply generated, but often noisy,

labeled examples are generated in lieu of hand-labeled examples.

The data programming paradigm [12], as implemented in the

Snorkel system [11], proposes to generate weakly supervised sig-

nals using labeling functions (LFs). LFs are user-provided functions

(e.g., in Python) that take each example as input and produces a

possibly noisy label (positive/negative/abstain). A labeling model

then combines noisy labels from all LFs, considers their accuracy

and possible correlations, to produce a final probabilistic label. Data

programming has been successfully adopted across many industries

and application domains.

Weak supervision for EM. We built a new weak supervision

system, Panda, that is specifically designed for EM. Panda adopts
the data programming paradigm, and develops an IDE that allows

users to easily develop LFs in order to build weakly-supervised

solutions for EM tasks.

Figure 1: Tuple pairs in the abt-buy dataset [1]. Blue denotes tuples
from the abt table and purple denotes tuples from the buy table.

Example 1.1. Figure 1 shows a sample of tuple pairs for the abt-

buy dataset [1]. Instead of manually labeling each tuple pair, users

may inspect the record pairs and develop some intuition of how to

label a pair as match vs. non-match. For example, one may label a

tuple pair as a match if the "name" attribute of the two products are

very similar (e.g. the first pair). On the other hand, a tuple pair is

likely a non-match if key attributes of the two products are different

(e.g. the second tuple pair, where the screen sizes are 40’ vs 46’).

Users can encode these intuitions in the form of LFs. Figure 2

shows two example LFs written in Python that correspond to the

example heuristics mentioned above. The name_overlap function

labels a tuple pair a match (+1) or non-match (-1) if the token overlap
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of their "name" attribute is high (score > 0.6) or low (score < 0.1);

otherwise, it abstains (0).

As a second example of LF, the size_unmatch function on the

right uses a regular expression to extract the product size (e.g. 40’)

from the "name" and "description" attributes. It labels a tuple pair a

non-match (-1) if the sizes are different, and abstains (0) otherwise.

As one can imagine, LFs so created may not be perfectly accurate

and may have varying levels of coverage. Nevertheless, as long as

LFs are reasonably accurate (e.g., better than random labeling), it

has been shown [12] that a labeling model can reason about the

accuracy/correlation of LFs to produce accurate final predictions.

Figure 2: Example labeling functions for the abt-buy dataset
Since the quality of final labels depends critically on the user-

provided LFs, Panda aims to provide an integrated development
environment (IDE) to support users in the entire life-cycle of labeling
using LFs for EM tasks. Just like a general-purpose IDE (e.g., Visual

Studio or Eclipse) that would includemany features to support users

write and debug programs, Panda’s IDE includes many features to

support users to write, debug, and combine LFs via a browser-based

GUI that is both contextual and intuitive (Section 2).

Related Work. Most existing work in the literature focuses on

optimizing individual components of the EM pipeline (e.g., blocking

and matching) in terms of accuracy or efficiency. Magellan [7] is the

closest to us in spirit, as it also enables users to develop EM solutions

end-to-end. However, like most existing solutions, Magellan is a

supervised system that requires labeled data for training, while

Panda is weakly supervised that works on noisy LFs. In addition,

in Magellan, users are in charge of many parts of the pipeline (e.g.

labeling tuple pairs and training matchers), while in Panda users
only need to focus on developing LFs. However, because developers

need to closely inspect EM data to develop LFs and iterate, it calls

for an IDE that no existing EM solutions have looked at.

Snorkel is a general-purpose data programming framework that

is not tailored to EM, and does not have an IDE. In comparison,

our Panda system makes many optimizations to data-programming

in the context of EM, such as pre-built library functions for EM,

automatically-generated LFs, and optimized aggregation in the

labeling model tailored to EM tasks.

2 SOLUTION OVERVIEW
We discuss the IDE in Panda. We build Panda’s interface with

Vue.js
1
and embed a Jupyter lab environment

2
for various coding

support. We use flask
3
as our backend. (

1
vuejs.org;

2
jupyterlab.

readthedocs.io;
3
flask.palletsprojects.com)

2.1 Write, Debug, and Combine LFs
1. Writing LFs. Similar to a general-purpose programming IDE

that provides various features (e.g. code completion and debugging)

to assist users write programs, Panda’s IDE also provides essential

support for developers to write LFs for EM.

1.1 Smart data sampling. To write LFs for EM, users need to

examine tuple pairs from a specific EM task, in order to develop

intuitions/heuristics that can be turned into code (LFs) to quickly

label matches/non-matches. Randomly sampled pairs are likely

non-matches in EM due to the class imbalance problem, and hence

are not very useful. Panda includes a smart data sampling strategy

to show tuple pairs that are likely matches, but are not labeled as

matches by the current labeling model. We use pre-trained semantic

sentence models (e.g. sentence-BERT [13]) to obtain an embedding

for each tuple, fromwhichwe use standard LSH to perform blocking.

From pairs that remain after blocking, we compute their similarity

scores and sample likely matches that are not currently as so.

1.2 Builtin utility functions for EM. An LF for EM typically in-

vokes standard utility functions such as: (1) text pre-processing (e.g.,

lower casing, stemming), (2) tokenization (e.g., 3-gram or space sep-

aration), (3) token weighting (e.g., equal weight or TF-IDF), and (4)

distance functions (e.g., Jaccard distance or edit distance). Panda
includes a library of utility functions along these four dimensions

(described in detail in Figure 2 of our prior work [9]), to make

writing LFs easy. We plan to expand the utility functions by in-

cluding pre-trained matchers for specific entity types (e.g., People,

Organization, Address, etc) [15], so that users can directly invoke

pre-trained matchers relevant to their EM task in their LFs.

1.3 Automatically generated LFs. Despite the aforementioned

features in Panda, for first-time users it may still be hard to write

LFs, and even for experienced users it is still laborious to write

many LFs. Panda leverages our prior work Auto-FuzzJoin [9]

to automatically generate high-quality LFs tailored to given EM

tasks, so that users can incorporate them directly without writing

a single line of code. Specifically, leveraging the fact that one of the

input tables is likely a reference table with no or few duplicates

(common in data warehouse setting [3] and shown in [9] to hold on

over 90% EM datasets from [2]), Auto-FuzzJoin can estimate the

precision/recall of LFs and automatically generate high-quality LFs,

instantiated using different preprocessing functions, tokenization,

weights, distance functions, and threshold values.

2. Debugging LFs. After users write LFs, they need to test/debug

LFs to ensure that (1) LFs can be applied on tuple pairs without cre-

ating exceptions; and (2) LFs produce high-quality labeling results.

To this end, Panda supports the following two forms of debugging.

2.1 Syntactical debugging. To help users program LFs, we inte-

grate the jupyter lab environment with a debugger extension in

Panda. This supports LF debugging just as in a general-purpose

IDE: users can set breakpoints, step into LFs, execute code line by

line, and see the values of the variables.

2.2 Semantic debugging. LFs that users write may produce incor-

rect labels on parts of the input data, and to help users improve

LF’s quality, Panda has a labeling model to estimate each LF’s false

positive (FP) and false negative (FN) rate. Furthermore, in the IDE

we provide an intuitive GUI where users can point and click to

quickly narrow down to the record pairs where each LF may be

making mistake. After examining these pairs, the user can itera-

tively improve the existing LF, or choose to write a new LF that

complements with existing LFs. Each modification of LF will trigger

FP and FN rates to be re-calculated, so that users can have a holistic

view of the quality of all LFs.
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3. Combining LFs. Given a number of LFs (automatically gen-

erated or manually writte), users can trigger the labeling model

in Panda to combine signals from all LFs and produce an overall

label. While existing labeling models (e.g., Snorkel [12]) can be used

here, Panda develops an optimized EM-specific labeling model that

leverages two properties unique to EM.

First, since EM problems typically have a class imbalance prob-

lem (the number of non-matches greatly exceeding the number of

matches), using a single accuracy parameter to model LF quality

(e.g., [12]) is insufficient. We develop two class dependent accuracy

parameters, i.e. labeling accuracy 𝛼𝑀 for matches and labeling accu-

racy 𝛼𝑈 for non-matches. The accuracy parameters and the latent

ground-truth label 𝑦 can then be estimated by an EM algorithm.

Second, tuple pairs in EM are not entirely independent due to

the transitivity property, namely, i.e. tuple pairs (𝑡1, 𝑡2) and (𝑡1, 𝑡3)
both being match leads to (𝑡2, 𝑡3) being a match. To incorporate this

transitivity property, we adopt the method in our prior work Ze-

roER [14]. Specifically, we capture the transitivity property among

any three tuples 𝑡𝑖 , 𝑡 𝑗 and 𝑡𝑘 by an inequality𝛾𝑖, 𝑗,𝑀 ×𝛾𝑖,𝑘,𝑀 ≤ 𝛾 𝑗,𝑘,𝑀
where 𝛾𝑖, 𝑗,𝑀 denotes the the probability of tuple pair (𝑡𝑖 , 𝑡 𝑗 ) being
a match. All possible triples 𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 form a feasible set 𝑄 for the

probabilistic labels of the tuple pairs. We then enforce the transi-

tivity constraint by projecting the estimated probabilistic labels to

the feasible set 𝑄 at each E-step. Our preliminary experiments on

real-world benchmark datasets [1] shows that our labeling model

improves the F1-score of the state-of-the-art labeling model [11]

by 12% on average. We defer details of these results to a full paper

on Panda in the future.

2.2 Integrated and Intuitive GUI
Similar to a general-purpose IDE, we provide an integrated de-

velopment environment with an intuitive GUI for developing LFs,

that allows users to visually inspect tuple pairs that are relevant to

the given LFs. Panda’s GUI has the following four main panels as

shown in Figure 3(1).

EM Stats Panel. This panel monitors the EM task’s core statistics

including table sizes, candidate set size, number of matches found,

and estimated precision of the current solution. Users can click

on the estimated precision to trigger the labeling process, where a

sample of matches found will be loaded in the Data Viewer Panel
for users to label.

LF Stats Panel. This panel monitors the core statistics of all LFs

provided to Panda so far. For every LF, it displays the name, number

of matches/non-matches/abstains, and the estimated false-positive/

false-negative rates. Users can also click on the header of any col-

umn to sort all LFs by values in the column. Users can click on the

name of a LF to display its code snippet. In addition, users can also

click on any actual statistics of any chosen LF to display the relevant

tuple pairs in the Data Viewer Panel. For example, in Figure 3(1), if

the user clicks on 0.1402, the estimated false positive rate of the LF

name_overlap, the Data Viewer Panel will show all candidate pairs

that the LF labels as +1, but the labeling model labels as -1.

Data Viewer Panel. This panel displays the actual tuple pairs in
a tabular format, where every row corresponds to a tuple pair. The

first column titled "M/U" shows ground-truth labels (not available

initially), and users may left/right click on the cells to provide

match/non-match labels. The next set of columns show the actual

data values for corresponding attributes in the two input tables.

The data is presented in two sub-rows where the first row (colored

in blue) shows data from the left table and the second row (colored

in purple) shows data from the right table. This side-by-side com-

parison allows users to easily identify similarity/difference between

the two tuples. When the user click on the "show" button, a sample

of likely matches with label -1 or 0 from the current labeling model

will be shown, each associated with a "likelihood" of matching

score (in the last column) provided by the smart sampling method

mentioned above. The user can sort the table by this column to

quickly identify matches as show in Figure 3(1).

LF Authoring Panel. This panel embeds a JupyterLab environ-

ment for users to write and debug LFs. After users click on the

"load data" button, a notebook will be automatically generated with

required dependencies imported in the first cell and automatically

discovered LFs listed in the second cell right away, e.g. the auto_lf_0

function in Figure 3(1). Users can directly add new LFs or modify

the existing auto LFs to create new LFs. The debugger extension of

jupyter lab is enabled to debug python LFs (breakpoints, step-in,

etc.). The last cell of the notebook contains a single line of code that

when triggered, combines existing LFs and updates the EM Stats
Panel and LF Stats Panel. LFs are applied incrementally, i.e. only the

new and modified LFs are executed.

3 DEMONSTRATION SCENARIO
Panda operates in two phases: a development phase and a deploy-
ment phase. In the development phase, users focus on designing a

set of LFs interactively. In the deployment phase, the final LFs are

used to label the entire dataset. The LF development workflow of

Panda is shown in Figure 3(2). We demonstrate these steps using a

real-world dataset Abt-Buy as follows:

Step 1: Uploading dataset and initialization. The user uploads
the dataset Abt-Buy by providing a file path and clicking on the

"Load data" button. Then, the system performs blocking and dis-

covers LFs automatically. A notebook that contains the discovered

LFs (e.g. auto_lf_0 in Figure 3(1)) is generated, and the user opens it

from the LF Authoring Panel. The discovered LFs are combined by

the labeling model to obtain EM & LF stats (e.g. number of found

matches), which are shown in the EM Stats Panel and LF Stats Panel.
Step 2: Viewing tuple pairs and coming upwith LF ideas. The
user checks the current EM & LF stats and wants to find more

matches by manually writing more LFs. The user clicks on the

"Show" button. The system performs smart sampling and shows in

Data Viewer Panel some likely matching pairs that are abstained

or labeled as non-match by the current LFs. For example, the Data
Viewer Panel in Figure 3(1) shows such pairs. The user sees that for

tuple pairs that are matches, the "name" attribute likely have a high

overlap of words. She can write an LF, name_overlap, based on this

idea.

Step 3: Writing LF. The user goes to the LF Authoring Panel to
implement the idea. For preprocessing, she wants to convert every-

thing to lower case and split input by spaces. She can navigate to

the auto-generated LFs pre-populated in the same Jupyter notebook,

and directly copy/paste examples of these built-in utility functions

like "lower()" and "splitBySpace()" from auto_lf_0. She can further
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(1) Panda interface (2) Panda workflow

Data 
Viewer

EM 
Stats

LF 
Stats

LF Authoring

Figure 3: (1)User interface of Panda. (2)The LFDevelopmentWorkflow in Panda. Dashed line denotes operations automatically
done by the system; Red line denotes flow of debugging LF quality; Blue line denotes flow of discoveringmorematches; Purple
text denotes data being sent to the next step.
copy/paste examples of distance functions like "jaccardDistance()",

from a different LF auto_lf_1.

Having finished writing LFs, the user executes the last cell in the

notebook: "labeler.apply()". This incrementally applies the newly

written LFs and updates the EM Stats Panel and LF Stats Panel
accordingly. If the LFs have bugs causing errors, the user can turn

on the debug mode of Jupyter Lab by clicking on the top-right

toggle button. In the debug mode, user can debug the LF like in a

normal Python IDE, e.g. creating breakpoints, etc.

Step 4: Debugging LF quality. After a few iterations between

Step 2 and Step 3, the user has written quite a few LFs and run out

of ideas for new LFs. The user can now turn to inspect the overall

precision and coverage of existing LFs.

For example, in Figure 3(1), the user first clicks on "Estimated

FPR" to sort the LF Stats Panel by the false positive rate and finds

that the FPR of LF name_overlap is very high at 0.1402. Next, the

user can click on the value 0.1402: the tuple pairs that this LF labels

as 1 but the label model labels as -1 will be shown in Data Viewer
Panel. By examining the pairs, the user finds out that these false

positive pairs do not have enough word overlapping. As a result,

the user goes to the notebook and changes the threshold of being a

match in LF name_overlap from > 0.4 to > 0.6. After re-applying

the LF, the FPR of the LF decreases to 0.0094 and the user is satisfied.

Step 5: Estimate overall EM quality. After a few iterations in

Step 2, Step 3 and Step 4, the user has many high quality LFs. She

is satisfied with the stats and wants to know the overall precision

and recall. The user clicks on the value in the "Estimated Precision"

column in the EM stats column (initialized as "NAN" in Figure 3(1)).

The Data Viewer Panel will show a random sample of matches

predicted by the label model. The user can label these samples with

left/right clicks in the first column to mark them matches/non-

matches, after which an estimated precision will appear based on

these human labels. As for recall, the user can inspect tuple pairs

that are likely matches by clicking on the “Show” button, create

LFs for those tuple pairs (using Step 2 and Step 3), until no more

matches from the sample. This ensures that very few true-matches

are missing and the overall recall is high.

4 DISCUSSION AND FUTUREWORK
We note that Panda currently focuses on enabling developers to

interactively author LFs and produce high-quality EM solutions.

We plan to add features in Panda so that it can handle large tables

with millions of records, e.g., by down-sampling input data for LF

development, which can then be applied to the entire dataset in a

scale-out manner using infrastructures like Spark. In current work,

blocking is done by first obtaining a embedding vector for each

tuple using a pretrained sentence model [13] and then using LSH

of the embedding vectors to obtain candidate set of tuple pairs.
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