
CBench: Demonstrating Comprehensive Evaluation ofQuestion
Answering Systems over Knowledge Graphs Through Deep

Analysis of Benchmarks
Abdelghny Orogat
Carleton University

abdelghny.orogat@carleton.ca

Ahmed El-Roby
Carleton University

ahmed.elroby@carleton.ca

ABSTRACT
A plethora of question answering (QA) systems that retrieve an-
swers to natural language questions from knowledge graphs have
been developed in recent years. However, choosing a benchmark
to accurately assess the quality of a question answering system is
a challenging task due to the high degree of variations among the
available benchmarks with respect to their fine-grained properties.

In this demonstration, we introduce CBench, an extensible, and
more informative benchmarking suite for analyzing benchmarks
and evaluating QA systems. CBench can be used to analyze ex-
isting benchmarks with respect to several fine-grained linguistic,
syntactic, and structural properties of the questions and queries in
the benchmarks. Moreover, CBench can be used to facilitate the
evaluation of QA systems using a set of popular benchmarks that
can be augmented with other user-provided benchmarks. CBench
not only evaluates a QA system based on popular single-number
metrics but also gives a detailed analysis of the linguistic, syntactic,
and structural properties of answered and unanswered questions
to help the developers of QA systems to better understand where
their system excels and where it struggles.

PVLDB Reference Format:
Abdelghny Orogat and Ahmed El-Roby. CBench: Demonstrating
Comprehensive Evaluation of Question Answering Systems over
Knowledge Graphs Through Deep Analysis of Benchmarks. PVLDB, 14(12):
2711 - 2714, 2021.
doi:10.14778/3476311.3476326

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/aorogat/CBench.

1 INTRODUCTION
Recent years witnessed unprecedented growth in the number of
knowledge graphs (KGs). As a result, a large number of QA sys-
tems that let users describe their information needs using natural
language were developed. In fact, over 62 QA systems have been
developed since 2010 [2]. To evaluate these QA systems, several
benchmarks were introduced (e.g., [4–6]). These benchmarks typi-
cally include questions described in natural language, answers to
the questions from the KG targeted by the benchmark, and possibly

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476326

structured queries that return the previously mentioned answers.
To evaluate a newly developed QA system, its developers need
to choose from a large number of benchmarks (at least 17 at the
time of writing this paper) to evaluate their system. Without a
quantitative comparison that highlights the differences between
these benchmarks, choosing a subset of them to evaluate a new QA
system is mainly motivated by the ease of comparison to existing
systems in the literature rather than by how effective a benchmark
is in evaluating a QA system.

In this demonstration, we showcase our comprehensive bench-
marking suite (CBench [3]) that can be used to deeply analyze QA
benchmarks with respect to several linguistic, syntactic, and struc-
tural properties. Using this fine-grained analysis, we surprisingly
reveal that the benchmarks that are widely used in the literature
vary significantly with respect to these properties, which in turn
affects the assessment of QA systems. That is, depending on the
benchmark used to evaluate a QA system, it can be shown to ei-
ther outperform or underperform another QA system. Therefore,
to facilitate a more comprehensive comparison between QA sys-
tems, CBench can be also used to evaluate QA systems using any
of the prepackaged benchmarks that can be augmented with any
user-provided benchmark and provide the user with a detailed in-
teractive report that includes not only the quality scores of the
QA system, but also details of the properties of the correctly and
incorrectly answered questions/queries, which in turn can help
the QA system developers to better understand the strengths and
weaknesses of their system. CBench can be used in two modes: The
Benchmark Analysis and QA Evaluation modes.

Benchmark Analysis Mode: CBench is used in this mode to
analyze the benchmarks chosen by the user with respect to several
syntactical and structural properties of the queries in the bench-
mark, and linguistic properties of the natural language questions.
Specifically, CBench analyzes the query keywords, the number of
triple patterns, the query operators (syntactical properties), and
the different query shapes (structural properties). For the natural
language questions, CBench analyzes the question type, the length
of the question, the part-of-speech (PoS) tags, and the dependency
parse tree (linguistic properties). Using this mode, we reveal that
the benchmarks used in the literature vary significantly with re-
spect to these properties, which affects the reported quality scores
of the QA systems (can be obtained using the QA Evaluation mode).

QA Evaluation Mode: CBench is used in this mode to facilitate
the comparison of QA systems. Traditionally, benchmarks are used
in the following fashion: The user parses the benchmark file, ex-
tracts the questions and utilizes the QA system to find answers in
the targeted KG, then compare the returned answers to the answers

2711

https://doi.org/10.14778/3476311.3476326
https://github.com/aorogat/CBench
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476326


Figure 1: The architecture of CBench.

extracted from the benchmark file to calculate multiple evaluation
scores like micro, macro, and global F-1 scores. The user then ex-
amines the questions that the QA system failed to answer correctly
and debug their code to identify why the QA system struggles
with these questions. In that sense, the benchmark is used as a
dataset that helps in producing the aforementioned scores with a
lost potential of being more informative to its users by giving more
details on the fine-grained properties of the processed questions,
which will help the user better understand how the QA system
behaves. CBench overcomes this usability problem by facilitating
the evaluation through prepackaging all the benchmarks that are
used in the literature within CBench and supporting multiple APIs
for interaction with different QA system architectures and provid-
ing in-depth insights on how the QA systems perform beyond the
single-number scores. In addition to reporting micro, macro, and
global F-1 scores, CBench also analyzes all the questions in the
chosen benchmarks and their corresponding structured queries (if
available). Specifically, CBench returns (1) a detailed analysis of
the properties of the queries that the evaluated QA system pro-
cessed, and (2) linguistically-similar natural language questions
to any question of interest (e.g., a question that the QA system
failed to answer). Using the two aforementioned types of output,
the QA system developers can either (1) identify common prop-
erties between questions that the QA system struggles with (e.g.,
most of the questions have a specific query shape), or (2) identify
obvious inconsistencies in the processed questions. For example,
using CBench, we were able to quickly identify that one of the QA
systems we evaluated was able to answer the question “What is
the capital of Cameroon?” correctly, while it incorrectly answered
“What is the capital of Canada?”, which highlights an overfitting
problem in its entity recognition and relation mapping approaches.
Being able to quickly identify commonalities or inconsistencies
will help the QA system developers to quickly identify the QA sys-
tem component that they need to improve. Based on the insights
provided by CBench, the user can also use it in a Debugging Mode
within the QA Evaluation Mode, where they can control CBench’s
output questions based on any of the linguistic, syntactical, or struc-
tural properties of all the questions and queries in CBench to better
understand how their QA system behaves in several controlled
situations. For example, the user can choose to evaluate their QA
system only on aggregate questions (e.g., Howmany) whose queries

have a star-shape to investigate how their system processes such
questions.

2 OVERVIEW OF CBENCH
In this section, we discuss (1) the architecture of CBench, (2) the
types of analysis performed over the structured SPARQL queries
and the natural language questions of the prepackaged or user-
provided benchmarks, and (3) the evaluation features of CBench.

2.1 CBench Architecture
Figure 1 shows the architecture of CBench, which can be used in
two modes: (1) The Benchmark Analysis Mode, where CBench can
be used to perform a fine-grained analysis on the structured queries
and the natural language questions on a set of benchmarks selected
by the user, and (2) the QA Evaluation Mode, where CBench can
be used to evaluate QA systems over the user-selected benchmarks
providing deeper insights on how the QA systems are performing.

Benchmark Analysis Mode: CBench includes 17 benchmarks
from which the user can choose a subset for analysis. The user can
also upload their own benchmarks to be included in the analysis.
The Benchmark Builder passes the selected benchmarks (and the
uploaded ones, if any) to the Q-Analyzer which carries out the
syntactical and structural analysis of the queries (Section 2.2), and
the linguistic analysis (Section 2.3). Finally, the Q-Analyzer returns
the analysis report to the user.

QA Evaluation Mode: Just like the previous mode, the user
selects a set of benchmarks and/or uploads their own to evaluate
the QA system. In addition, the user provides CBench with a URL
for an endpoint that CBench can query. Other configuration param-
eters that are used in the evaluation (e.g., thresholds for calculating
quality scores) are also chosen by the user prior to evaluation. To
avoid the scenario where the selected benchmarks target differ-
ent versions of the same KG, the Benchmark Builder updates the
answers of the queries in the selected benchmarks through the
Benchmark Updater module, which queries the used KG that will
be used for the evaluation to retrieve the updated answers. The
updated benchmarks are then passed to the System Evaluator. The
System Evaluator carries out three tasks: (1) Communicating with
the QA system to collect the answers to the questions from the
selected benchmarks, (2) calculating the micro, macro, and global
F-1 scores (discussed in Section 2.4), and (3) retrieving the fine-
grained analysis of the processed questions from the Q-Analyzer.

2712



(a) (b)

(c)
Figure 2: Analysis of the query keywords for QALD-9.

The System Evaluator then outputs an interactive report that in-
cludes the scores and the analysis of the processed questions to the
user. The user can choose to focus on specific questions to view
all their fine-grained properties. CBench also finds other questions
that are linguistically-similar to the selected questions (discussed in
Section 2.3). Using this feature, the user is able to quickly identify
either common features or inconsistencies of unanswered or incor-
rectly answered questions, which will help the user to understand
which components of their QA system to improve. The user can
also use CBench in the Debugging Mode, in which they can group
questions/queries based on specific properties to evaluate their QA
system in specific scenarios.

The details of the configurations of CBench, how to add a new
benchmark, and the APIs used for communication with the QA
systems can be found in the system’s repository1.
2.2 Analysis of Structured Queries
2.2.1 Syntactical Analysis. This type of analysis focuses on the
syntactical properties of the SPARQL [1] queries in the benchmarks.
In CBench, we focus on three properties: (1) The query keywords, (2)
the size of the queries represented by the number of triple patterns
in the query, and (3) the combination of operators in the queries.

Query Keywords: This type of analysis focuses on the fre-
quency of the keywords of the SPARQL queries in the benchmarks.
The keywords existing in the benchmarks are mainly used as solu-
tion modifiers, query operators, or aggregates. Figure 2 shows an
example of the output of CBench for the QALD-9 benchmark [6].
Figure 2a shows the distribution of the keywords specifying the
type of the query. The figure shows that most of the queries use
the Select keyword, and only 9% of the queries are yes/no questions
that are described in SPARQL using the Ask keyword. Figure 2b

1https://github.com/aorogat/CBench

Figure 3: Percentage of queries exhibiting different number
of triple patterns for each benchmark.

Figure 4: The different shapes recognized by CBench

shows the frequency of the solution modifier keywords (exclud-
ing Select), and Figure 2c shows the frequency of the remaining
keywords identified by CBench.

Number of Triple Patterns: This type of analysis highlights
the length of the queries in the benchmarks represented as the
number of triple patterns in each query. Figure 3 shows an example
of the output for all the prepackaged benchmarks that include
SPARQL queries in CBench.

Query Operators: In CBench, we focus on the following oper-
ators: conjunction of triple patterns, filtering of output, including
optional graph patterns, and union of graph patterns. The queries
in the benchmarks may include none or combinations of these oper-
ators. CBench shows the percentage of the different combinations
of these operators for all the queries.
2.2.2 Structural Analysis. In addition to the syntactical analysis of
the queries in the benchmarks, CBench also studies the structural
shapes of the queries. CBench identifies eight different shapes of
queries. Figure 4 illustrate these shapes. Figure 5 shows output
of the structural analysis for QALD-9. As there are shapes that
subsumes other shapes (e.g., the star shape subsumes the single-
edge and the chain shapes), CBench provides two figures for the
shapes frequencies. While Figure 5a shows the percentages of the
shapes ignoring the shapes they subsume (e.g., Forest shapes that

2713

https://github.com/aorogat/CBench


(a) (b)

Figure 5: Analysis of the shapes of queries in QALD-9.

Figure 6: The properties of the Star-shaped queries of the
questions from QALD-9 answered by WDAqua. CQ means
conjunctive queries, CQ_F means Conjunctive queries with
filtering, NONE means no conjunction of triple patterns.

are not tree shapes), Figure 5b shows the cumulative result (e.g.,
Flower-Set subsuming all other shapes).

2.3 Analysis of Natural Language Questions
In CBench, we also analyze the natural language questions via the
NLQ Analyzer to provide linguistic-based insights on the questions
in the benchmarks. The analysis of the natural language questions
in CBench focuses on the type of the natural language questions
(e.g., Wh-questions, aggregate, temporal, yes/no, requests, etc.) and
the length of the question in terms of the count of tokens of the
question.

To support retrieving linguistically-similar questions to any ques-
tion chosen by the user when evaluating a QA system (discussed
next), CBench converts the natural language questions into their
corresponding vector space using our custom embedding function
that uses a Part-of-Speech (PoS) tagger to tag each token in the
question, then updates the frequency of the tag in the final vector
representation, which has a number of dimensions that is equal to
the number of possible tags. This representation not only captures
the definition and the context of each token but also indirectly
captures the length of the question by counting the frequencies
of the occurrences of the tags. We use the obtained vector repre-
sentation to calculate how linguistically similar a pair of questions
are. In CBench, we use the euclidean distance measure to represent
how dissimilar two questions are. We also apply a similar approach
using a dependency parse tree replacing the PoS tagger in the em-
bedding function with no significant change of the reported similar
questions.

2.4 Evaluation of QA Systems
CBench can be used to evaluate multiple QA systems that are run-
ning either locally, or remotely and accessed via web services. The
user may choose to evaluate the QA systems using any subset
of the benchmarks prepackaged in CBench, or upload their own
benchmark. CBench evaluates the QA systems beyond the single-
number scores that other evaluation platforms offer (e.g., Gerbil [7]).
In addition to reporting the traditional quality scores (micro F-1,
macro F-1, and global F-1), the user can use CBench to group sets
of questions/queries by the aforementioned properties or choose to
evaluate the QA systems in a debugging mode, where the user has
full control on which questions/queries are used in the evaluation.
The user can choose to evaluate the QA systems using a subset
of questions/queries that have specific properties. For example,
the user may be interested in aggregate questions whose queries
have a tree shape. Figure 6 shows the output shown to the user for
answering star-shaped queries from QALD-9 using WDAqua.

3 DEMONSTRATION SCENARIO
We prepackage CBench with all the benchmarks available in the lit-
erature of QA over KGs and link six different QA systems to CBench,
three of which run locally and three run remotely to demonstrate
the flexibility and ease-of-use of CBench. First, the participants
will use CBench’s Benchmark Analysis Mode to witness the high-
degree variations across all the benchmarks with respect to the
fine-grained properties of the queries/questions in the benchmarks.
The variations will be shown to be statistically significant. Then, to
demonstrate how these variations affect the assessment of QA sys-
tems, the participants will be able to evaluate the six QA systems
using subsets of the benchmarks and witness that by changing
the benchmark used and the quality score metric, the rankings
of the QA systems change. Finally, to demonstrate how effective
CBench is in giving insights to the QA system developers, the par-
ticipants can navigate through the interactive evaluation report
to view the fine-grained properties of questions/queries that are
correctly/incorrectly answered, and linguistically similar questions
to any question of interest. Through this interaction, the partici-
pants will be able to gain insights into the weaknesses of the QA
systems without having to read the details of how the systems were
designed or examine their source codes.

REFERENCES
[1] SPARQL 1.1 query language. http://www.w3.org/TR/sparql11-query/, 2013.
[2] K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A.-C. Ngonga Ngomo.

Survey on challenges of question answering in the semantic web. Semantic Web,
8(6), 2017.

[3] A. Orogat, I. Liu, and A. El-Roby. CBench: Towards better evaluation of question
answering over knowledge graphs. Proceedings of the VLDB Endowment (PVLDB),
14(8), 2021.

[4] Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Gur, Z. Yan, and X. Yan. On generating
characteristic-rich question sets for qa evaluation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2016.

[5] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann. Lc-quad: A corpus for
complex question answering over knowledge graphs. In International Semantic
Web Conference (ISWC), 2017.

[6] R. Usbeck, R. H. Gusmita, M. Saleem, and A.-C. N. Ngomo. 9th challenge on ques-
tion answering over linked data (QALD-9). Joint Workshop on Natural Language
Interfaces for Web of Data (NLIWoD) and Question Answering over Linked Data
challenge, 2018.

[7] R. Usbeck, M. Röder, M. Hoffmann, F. Conrads, J. Huthmann, A.-C. Ngonga-Ngomo,
C. Demmler, and C. Unger. Benchmarking question answering systems. Semantic
Web, 10(2), 2019.

2714

http://www.w3.org/TR/sparql11-query/

