
Just Move It! Dynamic Parameter Allocation in Action
Alexander Renz-Wieland

Tobias Drobisch

Zoi Kaoudi

Technische Universität Berlin

firstname.lastname@tu-berlin.de

Rainer Gemulla

Universität Mannheim

rgemulla@uni-mannheim.de

Volker Markl

Technische Universität Berlin

German Research Center for Artificial

Intelligence (DFKI)

volker.markl@tu-berlin.de

ABSTRACT

Parameter servers (PSs) ease the implementation of distributed ma-

chine learning systems, but their performance can fall behind that

of single machine baselines due to communication overhead. We

demonstrate Lapse, an open source PS with dynamic parameter
allocation. Previous work has shown that dynamic parameter alloca-

tion can improve PS performance by up to two orders of magnitude

and lead to near-linear speed-ups over single machine baselines.

This demonstration illustrates how Lapse is used and why it can

provide order-of-magnitude speed-ups over other PSs. To do so, this

demonstration interactively analyzes and visualizes how dynamic

parameter allocation looks like in action.

PVLDB Reference Format:

Alexander Renz-Wieland, Tobias Drobisch, Zoi Kaoudi, Rainer Gemulla,

and Volker Markl. Just Move It! Dynamic Parameter Allocation in Action.

PVLDB, 14(12): 2707 - 2710, 2021.

doi:10.14778/3476311.3476325

1 INTRODUCTION

Distributed training has become a necessity for large machine learn-

ing (ML) tasks to keep up with increasing dataset size and model

complexity. In distributed ML, both training data and model param-

eters are partitioned across a compute cluster. Each node usually

accesses only its local part of the training data, but reads and/or

updates most of the model parameters. Applications either manage

model parameters manually using low-level distributed program-

ming primitives or delegate parameter management to a parameter
server (PS). PSs provide primitives for reading and writing param-

eters and handle partitioning and synchronization across nodes.

Many ML stacks use PSs as a component [1, 4, 5, 14–16], and there

exist multiple standalone PSs [10–13, 17, 25].

In prior work, we have argued that traditional PSs provide limited

scalability and their performance can even fall behind that of single

machine baselines [21]. The key problem is that the majority of

parameter accesses in traditional PSs involves network communica-

tion. Dynamic parameter allocation can reduce this communication

overhead drastically, and thus provide up to linear speed-ups over

single machine baselines and outperform prior state-of-the-art PSs

by up to one order of magnitude [21]. Dynamic allocation allocates

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.

doi:10.14778/3476311.3476325

process at node 1

L
a
p
s
e

worker 3

worker 2

worker 1
pull()
push()

localize()

process at node 2

L
a
p
s
e

worker 3

worker 2

worker 1
pull()
push()

localize()

process at node 3

L
a
p
s
e

worker 3

worker 2

worker 1
pull()
push()

localize()

parameter

relocations and

remote

operations

Figure 1: Architecture of Lapse. Workers interact with Lapse

via the pull, push, and localize primitives. Lapse relocates

parameters dynamically (and transparently) among nodes to

reduce communication overhead.

and re-allocates parameters where they are accessed, while pro-

viding location transparency and PS consistency guarantees, i.e.,

sequential consistency. Dynamic allocation reduces communica-

tion overhead because it allows for exploiting common techniques

that increase parameter access locality [3, 8, 9, 16, 18–20, 23, 24].

Intuitively, these techniques ensure that most parameter accesses

do not require (synchronous) communication; example techniques

include exploiting natural clustering of data, parameter blocking,

and latency hiding.

We demonstrate Lapse, the first PS that supports dynamic param-

eter allocation. The demonstration is available as an interactive web

application at https://alexrenz.github.io/dpa-in-action. Lapse

itself is open source and also available online.
1
The demonstration

illustrates parameter access locality techniques and dynamic allo-

cation, how Lapse can achieve the observed order-of-magnitude

speed-ups, and how one can use Lapse. To do so, the demonstra-

tion visualizes what dynamic allocation looks like “in action”. It

allows for interactively inspecting static and dynamic parameter

allocation in several ML training tasks and comparing them against

each other. Similarly, it allows for inspecting different parameter

access locality techniques and comparing their effects against each

other. The demonstration provides analysis tools to (1) replay pa-

rameter allocation, (2) map allocation over time, and (3) calculate

parameter affinity to different nodes of the cluster. These analyses

can be applied on provided traces of three distributed ML tasks,

namely knowledge graph embeddings, matrix factorization, and

word vectors. Using these tasks as examples, the demonstration

explains how different parameter access locality techniques can

1
The source code of Lapse is available at https://github.com/alexrenz/lapse-ps.

2707

https://doi.org/10.14778/3476311.3476325
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476325
https://alexrenz.github.io/dpa-in-action
https://github.com/alexrenz/lapse-ps


be implemented in Lapse. Advanced users can additionally upload

traces of their own distributed ML tasks and use the analysis tools

to identify patterns and investigate bottlenecks. As an entry point

for the majority of users, we provide an interactive tour through

the most interesting analyses of the demonstration.

2 PARAMETER SERVERS

PSs [2, 7, 10, 17, 22] partition the parameters of an ML model across

a set of servers. The training data are usually partitioned across a

set of workers. During training, each worker processes its local part

of the training data (often multiple times) and continuously reads

and updates model parameters. To coordinate parameter accesses

across workers, a PS assigns to each parameter a unique key. The PS
provides pull and push primitives for parameter reads and writes,

respectively. Both operations can be performed synchronously or

asynchronously. Although servers and workers can in theory re-

side on different machines, they are often co-located for efficiency

reasons. Some PS architectures [12, 13, 17] run one server process

and one or more worker processes on each machine, others [10, 11],

including Lapse [21], combine both server and worker threads into

the same process to reduce inter-process communication.

Parameter allocation. The classic PS architecture allocates

parameters to servers statically (e.g., via a range partitioning of the

parameter keys) and employs no replication [2, 17, 22]. Thus, exactly

one server holds the current value of a parameter, and this server

processes all pull and push operations for this parameter. Classic PSs

typically guarantee per-key sequential consistency [21]. This means

that (1) each worker’s operations are executed in the order specified

by the worker, and (2) the result of any execution is equivalent to an

execution of the operations of all workers in some sequential order.

The stale PS architecture also allocates each parameter statically

to one server, but the PS may replicate a subset of parameters to

additional servers to reduce communication overhead (by tolerating

some amount of staleness in the replicas) [6, 10, 11, 13]. The dynamic
allocation PS architecture allocates and re-allocates parameters

dynamically to different servers.

3 LAPSE

In this section, we give an overview of the architecture of Lapse

and discuss three parameter access locality techniques that Lapse

exploits to improve performance by orders of magnitude.

3.1 Architecture Overview

Lapse [21] is the first PS that supports dynamic parameter allo-

cation. It can re-allocate parameters among cluster nodes during

run time. It maintains the semantics of the PS API: pull and push
operations can be issued for any key on any node at any time. The

operations provide correct results regardless of a parameter’s cur-

rent allocation and whether or not the parameter is currently being

relocated. Lapse provides an additional localize primitive that

allows workers to initiate parameter relocations to their node. Upon

invocation, Lapse transparently relocates the requested parameters

to the worker’s node, such that future accesses by the worker re-

quire no further network communication. These relocations take

place in the background and can be initiated before a parameter is

actually accessed. Lapse ensures that access to local parameters is

fast by co-locating worker and server threads in one process per

node and using shared memory to access local parameters. Lapse

provides sequential consistency, the same consistency guarantee as

classic PSs [21]. Figure 1 provides an overview of the architecture.

3.2 Parameter Access Locality Techniques

We describe three parameter access locality (PAL) techniques that

Lapse utilizes to improve performance. PAL techniques are often

used in distributed ML algorithms to reduce communication over-

head by increasing locality in parameter accesses. Lapse can exploit

these PAL techniques because it allocates parameters dynamically.

This results in up to two orders of magnitude better performance for

Lapse compared to other PSs, which allocate parameters statically

and thus cannot exploit PAL [21].

3.2.1 Data Clustering. A common PAL technique is to exploit struc-

ture in training data [2, 9, 18, 22]. For example, consider a training

data set that consists of documents written in two different lan-

guages and an ML model that associates a parameter with each

word (e.g., a bag-of-words classifier or word vectors). When pro-

cessing a document during training, only the parameters for the

words contained in the document are relevant. Distributed ML ap-

plications can exploit this fact through data clustering. For example,

if a separate worker is used for the documents of each language,

different workers access mostly separate parameters.

To exploit locality from data clustering, Lapse allocates each pa-

rameter to the machine that accesses the parameter most frequently.

Figure 2a depicts an example of how Lapse allocates parameters

when data clustering is used. The figure shows parameter alloca-

tion over time. Each row corresponds to one parameter, the x-axis

depicts time, and colors indicate the current allocation of a parame-

ter. Initially, parameters are range-partitioned by key (the default

parameter allocation); then, parameters are relocated according to

the clustering once, such that each parameter is allocated at the

node where it is accessed most frequently. Each parameter then

remains allocated at this node throughout the task.

3.2.2 Parameter Blocking. Another common PAL technique is to

divide the model parameters into blocks. Training is split into sube-
pochs such that each worker is restricted to one block of param-

eters within each subepoch. Which worker has access to which

block changes from subepoch to subepoch. Such parameter block-
ing approaches have been developed for a variety of ML algo-

rithms [3, 8, 16, 19, 20, 23, 24].

To exploit locality from parameter blocking, Lapse allocates each

parameter to the node where it is currently accessed. This elimi-

nates network communication for individual parameter accesses.

Communication is required only for parameter relocations between

subepochs. Figure 2b depicts an example of how Lapse allocates

parameters when parameter blocking is used. The parameters are

relocated periodically, between subepochs. At the end of a sube-

poch, the each parameter block is relocated to the worker that

accesses it in the next subepoch.

3.2.3 Latency Hiding. In distributed ML, latency hiding can reduce

communication overhead (but not communication itself) by ensur-

ing that a parameter value is already present at a worker at the time

2708



Parameter allocation:

P
a
r
a
m
e
t
e
r
s

Time

(a) Data clustering

P
a
r
a
m
e
t
e
r
s

Time

(b) Parameter blocking

P
a
r
a
m
e
t
e
r
s

Time

(c) Latency hiding

Figure 2: Three techniques that increase parameter access locality, as visible in the allocations over time tool of this demonstration.

Each row corresponds to one parameter, the x-axis depicts time, and colors indicate the current allocation of a parameter.

(a) The training data are clustered such that each worker accesses mostly a separate subset of parameters. (b) Within each

subepoch, each worker is restricted to one block of parameters. Which worker has access to which block changes from subepoch

to subepoch. (c) Asynchronously prelocalizing parameters, such that they can be accessed locally, hides access latency.

it is accessed [6, 23]. Such an approach is beneficial when parameter

access is sparse, i.e., each worker accesses few parameters at a time.

To hide latency, Lapse prelocalizes a parameter before access,

i.e., it reallocates each parameter from its current node to the node

where it will be accessed and keeps it there afterwards (until some

other worker accesses it). In contrast to parameter prefetching, pre-

localization does not replicate parameters. Consequently, parameter

updates by other workers are immediately visible. Moreover, there

is no need to write local updates back to a remote location as the

parameter is now stored locally. Figure 2c depicts an example of

how Lapse allocates parameters when latency hiding is used: pa-

rameters relocate frequently, with no visible allocation patterns.

Nevertheless, latency hiding has provided near-linear speed-ups in

prior experiments [21].

4 DEMONSTRATION

This demonstration includes multiple analysis tools, combined in

one interactive web application. To provide effective learning expe-

riences for users with different levels of prior topic knowledge, we

designed the demonstration to provide three different user scenar-

ios: free exploration, guided exploration, and advanced usage. In

the following, we go through each of these scenarios.

4.1 Free Exploration

Step 1 : Task selection. The user selects which ML task they

want to investigate. They can choose from a set of provided traces

or upload one of their own traces (see Section 4.3). The demonstra-

tion provides traces from several ML tasks (training knowledge

graph embeddings, word vectors, and matrix factorization), each

with either static or dynamic parameter allocation. Different tasks

employ different PAL techniques.

Step 2 : Task-specific information. The user familiarizes

themselves with the chosen task by reading a brief summary of

information about the chosen task: e.g., the type of parameter al-

location, the used PAL techniques, the dataset, and the number of

nodes and workers. They can also inspect performance results of

static and dynamic allocation for this task.

Figure 3: Example screenshot of the allocation replay analysis
tool. Each square corresponds to one parameter. The square’s

color indicates at which node the parameter is currently

allocated. The user can adjust replay speed and jump to any

point in time, using the progress bar at the bottom.

Step 3 : Allocation replay. The user replays the parameter

allocations. They can pause the replay to inspect the allocation at

a specific point in time. They can also jump to any point in time

(using the time bar below the allocation plot) and specify the replay

speed. Figure 3 shows an example screenshot of this analysis tool.

Step 4 : Allocation over time. The user plots an overview of

parameter allocation over time. By default, the plot is generated

for a subset of the selected parameters. The user can choose to plot

allocations for all parameters. Figure 2 shows example screenshots

of this analysis tool.

Step 5 : Parameter affinity. The user investigates the affinity

of parameters to nodes. To do so, they select any parameter in

any of the two previous analysis tools. This tool then shows this

parameter’s affinity: how long the parameter resided at and how

often it was relocated to each node. Multiple parameters can be

added (and removed) to the tool to compare affinity of different

parameters. Figure 4 shows an example screenshot of this tool.

Step 6 : Static vs. dynamic allocation. Both static and dy-

namic allocation runs are provided for every ML task, such that the

2709



Figure 4: Example screenshot of the parameter affinity anal-

ysis tool. It displays the time spent at each node and the

number of relocations to each node for interactively selected

parameters.

user can compare allocation for these strategies. For example, they

can compare a trace of training knowledge graph embeddings with

dynamic allocation to one with static allocation.

4.2 Guided Exploration

We provide a guided tour that takes the user through a series of

steps to learn about static and dynamic parameter allocation, Lapse,

and PAL techniques.

Step 1 : Background. This step introduces distributed ML

training and the use of PSs.

Step 2 : Static parameter allocation. This step introduces

static parameter allocation and the communication overhead that is

associated with it. The user is introduced to the allocation replay and
allocation over time analysis tools and inspects a static allocation

job in both tools.

Step 3 : Dynamic parameter allocation and Lapse. This

step introduces dynamic parameter allocation, features of Lapse,

and how Lapse is used. The user then inspects an example of dy-

namic parameter allocation in the allocation over time analysis tool.
Step 4 : Matrix factorization (clustering and parameter

blocking). This step introduces matrix factorization, which PAL

techniques are used for which parameters in the provided task, and

how the localize primitive is used to exploit these in Lapse. It

presents performance results of static and dynamic parameter allo-

cation on the provided matrix factorization task. The user inspects

the dynamic allocation run in the allocation over time analysis tool
and is then introduced to the parameter affinity analysis tool.

Step 5 : Knowledge graph embeddings (clustering and la-

tency hiding). This step introduces knowledge graph embeddings,

which PAL techniques are used for which parameters in the pro-

vided task, and how these are implemented in Lapse. It presents

performance results of static and dynamic parameter allocation on

the provided knowledge graph embeddings task. The user inspects

the dynamic allocation run in the different analysis tools.

4.3 Advanced Usage

Step 1 : User-provided tasks. An advanced user may upload

traces of their own ML jobs. They can collect a trace for any task in

Lapse by enabling a compiler switch in Lapse (the demonstration

tool provides specific information on how to do this).

Step 2 : Parameter focus. An advanced user can focus the

analysis on specific parameter subgroups. This is particularly use-

ful for large traces that include millions of parameters. The user

includes specific parameters by specifying a list of individual keys

and/or key ranges. By default, all parameters of a trace are included

in the subsequent analyses.

Steps 3 to 5 : Task analysis. After upload, the user can use

the same analysis tools as for the provided tasks (Steps 3 to 5 in

Section 4.1). The analyses are run on the selected parameter subset

of the uploaded task.

ACKNOWLEDGMENTS

This work was supported by the German Ministry of Education

and Research in the Software Campus (01IS17052) and BIFOLD

(01IS18037A) programs.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, et al. TensorFlow: A system for large-scale machine

learning. OSDI ’16, pp. 265–283.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, A. Smola. Scalable inference

in latent variable models. WSDM ’12, pp. 123–132.

[3] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. Papalexakis, E. Xing. Flexi-

FaCT: Scalable flexible factorization of coupled tensors on Hadoop. SDM ’14, pp.

109–117.

[4] T. Chen, M. Li, Y. Li, et al. MXNet: A flexible and efficient machine learning

library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.
[5] T. Chilimbi, Y. Suzue, J. Apacible, K. Kalyanaraman. Project Adam: Building an

efficient and scalable deep learning training system. OSDI ’14, p. 571–582.

[6] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, E. P. Xing. High-performance

distributed ML at scale through parameter server consistency models. AAAI ’15.

[7] J. Dean, G. Corrado, R. Monga, et al. Large scale distributed deep networks. NIPS

’12, pp. 1223–1231.

[8] R. Gemulla, E. Nijkamp, P. Haas, Y. Sismanis. Large-scale matrix factorization

with distributed stochastic gradient descent. KDD ’11, pp. 69–77.

[9] J. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin. PowerGraph: Distributed

graph-parallel computation on natural graphs. OSDI ’12, pp. 17–30.

[10] Q. Ho, J. Cipar, H. Cui, et al. More effective distributedML via a stale synchronous

parallel parameter server. NIPS ’13, pp. 1223–1231.

[11] Y. Huang, T. Jin, Y. Wu, et al. FlexPS: Flexible parallelism control in parameter

server architecture. PVLDB, 11(5):566–579, 2018.
[12] R. Jagerman, C. Eickhoff, M. de Rijke. Computing web-scale topic models using

an asynchronous parameter server. SIGIR ’17, pp. 1337–1340.

[13] J. Jiang, B. Cui, C. Zhang, L. Yu. Heterogeneity-aware distributed parameter

servers. SIGMOD ’17, p. 463–478.

[14] J. Kim, Q. Ho, S. Lee, et al. STRADS: A distributed framework for scheduled

model parallel machine learning. EuroSys ’16, pp. 5:1–5:16.

[15] J. K. Kim, A. Aghayev, G. Gibson, E. Xing. STRADS-AP: Simplifying distributed

machine learning programming without introducing a new programming model.

USENIX ’19, pp. 207–222.

[16] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, A. Peysakhovich.

PyTorch-BigGraph: A large-scale graph embedding system. SysML ’19.

[17] M. Li, D. Andersen, J. W. Park, A. Smola, A. Ahmed, V. Josifovski, J. Long,

E. Shekita, B.-Y. Su. Scaling distributed machine learning with the parameter

server. OSDI ’14, pp. 583–598.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J. Hellerstein. Distributed

GraphLab: A framework for machine learning and data mining in the cloud.

PVLDB, 5(8):716–727, 2012.
[19] B. Peng, B. Zhang, L. Chen, M. Avram, R. Henschel, C. Stewart, S. Zhu, E. Mccal-

lum, L. Smith, T. Zahniser, et al. HarpLDA+: Optimizing latent dirichlet allocation

for parallel efficiency. BigData ’17, pp. 243–252.

[20] P. Raman, S. Srinivasan, S. Matsushima, X. Zhang, H. Yun, S. Vishwanathan.

Scaling multinomial logistic regression via hybrid parallelism. KDD ’19, pp.

1460–1470.

[21] A. Renz-Wieland, R. Gemulla, S. Zeuch, V. Markl. Dynamic parameter allocation

in parameter servers. PVLDB, 13(12):1877–1890, 2020.
[22] A. Smola, S. Narayanamurthy. An architecture for parallel topic models. PVLDB,

3(1-2):703–710, 2010.

[23] C. Teflioudi, F. Makari, R. Gemulla. Distributed matrix completion. ICDM ’12,

pp. 655–664.

[24] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, I. Dhillon. NOMAD: Non-locking,

stochastic multi-machine algorithm for asynchronous and decentralized matrix

completion. PVLDB, 7(11):975–986, 2014.
[25] Z. Zhang, B. Cui, Y. Shao, L. Yu, J. Jiang, X. Miao. PS2: Parameter server on Spark.

SIGMOD ’19, pp. 376–388.

2710


