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ABSTRACT
Data science growing success relies on knowing where a relevant
dataset exists, understanding its impact on a specific task, finding
ways to enrich a dataset, and leveraging insights derived from it.
With the growth of open data initiatives, data scientists need an
extensible set of effective discovery operations to find relevant data
from their enterprise datasets accessible via data discovery systems
or open datasets accessible via data portals. Existing portals and
systems suffer from limited discovery support and do not track the
use of a dataset and insights derived from it. We will demonstrate
KGLac, a system that captures metadata and semantics of datasets
to construct a knowledge graph (GLac) interconnecting data items,
e.g., tables and columns. KGLac supports various data discovery
operations via SPARQL queries for table discovery, unionable and
joinable tables, plus annotation with related derived insights. We
harness a broad range of Machine Learning (ML) approaches with
GLac to enable automatic graph learning for advanced and semantic
data discovery. The demo will showcase how KGLac facilitates data
discovery and enrichment while developing an ML pipeline to
evaluate potential gender salary bias in IT jobs.
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1 INTRODUCTION
Data discovery is an essential task in data science to identify pos-
sible datasets relevant to a data science project. Due to the data
science growing success and open data initiatives, thousands of
machine-readable and structured datasets are collected by data
owners in a data storage known as a data lake, as shown in Figure 1.
Data owners make these datasets available via data discovery sys-
tems in the case of enterprise datasets or via data portals, such as
the USA1Canada2, Quebec3, the World Health Organization4, and
Kaggle5.

Data portals and search engines, such as Google Dataset Search,
provide primitive search capabilities to find and download open
datasets in different formats, such as CSV, JSON, and XML. Thus,
data integration and enrichment are the primary responsibility of
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Figure 1: In a data lake, data owners, e.g., countries,
provinces, or organizations, collect raw datasets as a results
of open data initiatives or for data science projects. Data dis-
covery is a challenging task due to the limited search sup-
port of open data portals or search engines, in case of public
datasets, and data discovery systems, in case of enterprise
datasets. Data owners have no support to track the use of
their datasets.

data scientists, who spend most of their time finding, download-
ing, preparing, and integrating relevant datasets with little or no
support from these portals, engines, or existing data science plat-
forms. Moreover, many organizations are encouraged to build a
navigational data structure (data catalogue) to support data discov-
ery [2, 4, 8] or to use tools such as Amundsen6. Unfortunately, these
systems and tools suffer from limited query support and cannot
find data items based on learned representations (embeddings).

Furthermore, several methods have been proposed to measure ta-
ble relatedness [11], support table discovery [3], identify unionable
tables [9], and find joinable tables [13]. These methods work in iso-
lation from each other and from data portals and discovery systems.
Thus, there is a need for data portals and discovery systems with a
flexible query language and an extensible set of discovery opera-
tions. Moreover, existing data science platforms, such as MLFlow
or Cloud AutoML, and tools, such as Jupyter Notebooks or Google
Colab, should be able to communicate easily with these portals and
systems.

1https://www.data.gov/
2https://open.canada.ca/
3https://www.donneesquebec.ca/fr/
4https://www.who.int/data/gho
5https://www.kaggle.com/datasets
6https://www.amundsen.io/
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In this demo, we present KGLac, a data discovery and enrich-
ment platform empowered by knowledge graph technologies and a
broad range of ML approaches, including Graph Neural Networks
(GNNs) [10, 12]. KGLac is supported by different methods for data
profiling and representation learning (embedding) to capture meta-
data and semantics of datasets to construct a knowledge graph
(GLac). KGLac provides a set of data discovery operations imple-
mented using SPARQL queries. This set is extensible as KGLac
supports ad-hoc queries. KGLac enables automatic graph learning
to advance functionalities, such as classification of similar data
items, finding unionable and joinable tables, predicting shortest
paths between tables, and inferring new relationships.

We designed KGLac to be deployed on top of a data owner’s
local data lake to enable efficient and extensible data discovery
operations for data scientists, who have access to the data lake.
The data owner can track the use and insights derived from the
datasets. This tracking support will enable discoveries beyond the
original intent of a dataset. In this paper, Section 2 highlights KGLac
architecture. Section 3 describes a demonstration scenario for using
KGLac with Jupyter Notebooks to develop anML pipeline analyzing
gender salary bias in IT jobs. Section 4 concludes.

2 OVERVIEW OF KGLAC
The KGLac architecture is illustrated in Figure 2. KGLac consists
of two main components: (i) GLac Construction which constructs
a GLac based on learned representations (embeddings) generated
for data items using our Data Profiler, and (ii) Interface Services
which provide an extensible set of data discovery operations based
on SPARQL queries and enable searching data items based on em-
bedding similarity.

2.1 GLac Construction
KGLac empowers the data discovery and enrichment process using
knowledge graph (KG) technologies to construct a navigational
data structure, which we call GLac, as a knowledge graph based
on RDF-star [6]. KGLac leverages KG benefits such as (i) semantic
formalization using a controlled vocabulary for ensuring interop-
erability, (ii) schema-agnostic allowing the platform to support
reasoning and semantic manipulation, e.g., adding new labelled
edges between related tables or columns, (iii) recent graph model
(RDF-star [6]), which extends the RDF model to annotate nodes
painlessly, (vi) powerful query language (SPAQRL) and its extension
SPAQRL-star [6].

Data Profiler: KGLac’s Data Profiler breaks down available datasets
into tables and columns to identify similarities and relationships
at different granularities. We used state-of-the-art data profiling
techniques [1] and a deep learning model [7] to profile datasets and
generate fixed-size, dense column representations (embeddings).
Our profiler analyzes datasets at the level of individual columns and
utilizes PySpark DataFrame to better leverage distributed systems
and scale to vast datasets. PySpark DataFrame supports different
data formats, such as CVS, JSON, and Parquet, and connects to
various database systems. KGLac stores the profiling information
per column in a document database. This information is used by
the GLac Builder. In KGLac, the embedding of a table or a dataset
is an aggregation of its columns or tables’ embeddings, respectively.
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Figure 2: The KGLac architecture, where KGLac gets access
to a local data lake, e.g., sets of files or databases, to construct
GLac. Then, different ML pipeline tools can communicate
withKGLac to facilitate data discovery. KGLac tracks the use
of datasets. The gray boxes are not part of this demo.

KGLac could be configured to store the raw data of each column in
the document database. In such a case, KGLacwill support discovery
based on keyword search on a column content.

GLac Builder: In GLac, vertices represent data nodes, such as a node
of type dataset, table, or column, while edges represent relationships
between these nodes. A data node is identified by a URI and does not
contain any raw data. KGLac detects similarity, i.e., edges, between
a pair of nodes of the same type based on embedding similarity
between the pair. KGLac generates two types of embeddings. The
first type is based on a column’s raw content and is used to identify
content similarity relationships. For the first type, we developed a
model inspired by [7]. The second type of embeddings is based on
column or table names to identify semantic or schema similarity
relationships. For the second type, we utilized a method based on
Word Embeddings [5]. In KGLac, other kinds of edges connect a
column to its table or a table to its dataset.

Lac Ontology: We developed the Lac 7 ontology, which conceptual-
izes relationships and entities in data lakes. For example, suppose
column A has a contentSimilarity with column B. In this case, we
represent it as a triple: ⟨lac:A, lac:contentSimilarity, lac:B⟩
where lac:contentSimilarity accepts lac:Column as domain and
range. To annotate the relationships, we represent triples in RDF-
star, e.g., if we are 75% certain that columnA has a content similarity
with column B, we add ⟨lac:A lac:contentSimilarity lac:B,
lac:certainty, 0.75⟩. Figure 3 illustrates part of a GLac graph.
Lac could be used and extended by different data discovery systems
to model their navigational data structure.

Deductive Linker: In KGLac, the local datasets newly added to the
data lake are profiled individually to construct a sub-graph for
them. Then, KGLac identifies links between nodes in the sub-graph
and nodes in the main GLac. Thus, our GLac is a deductive graph
that utilizes inference rules and automatic graph learning methods
to incrementally introduce and enhance the relationships among

7Lac means lake in French
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Figure 3: A GLac graph has three classes: Column, Table,
and Dataset. KGLac detects different content-based rela-
tions, such as content similarity, primary key foreign key
(PKFK) and inclusion dependency, and schema-based re-
lations, such as semantic similarity based on the column
names.

the different nodes in the graph. We solve this problem as a link
prediction problem using GNN-based models.

2.2 Interface Services
GLac is hosted on an RDF-star engine, such as Blazegraph or Apache
Jena. To interact with GLac, KGLac supports various data discovery
operations via both predefined and ad hoc SPARQL queries. KGLac
formulates the query results as a Pandas Dataframe, which is widely
used in data science pipelines. Thus, different data science platforms
can easily interact with KGLac. Examples of the KGLac discovery
operations are finding: a) tables or columns based on schema simi-
larity, b) a common schema to union two tables, c) columns to be
used in joining two tables, d) paths between two tables. In addition
to these operations, KGLac enables users to annotate data nodes
with insights and descriptions.

KGLac also supports embedding similarity search, i.e., finding
a table or column based on the stored embeddings. For exam-
ple, KGLac can generate embeddings for a given Dataframe and
search the document database for similar embeddings, i.e., discover
datasets based on content similarity. On the one hand, this func-
tionality enables an enterprise to allow data scientists to search
all the enterprise datasets without exposing the raw data. On the
other hand, we have a fixed size vector regardless of the raw data’s
actual size. Thus, this method can scale easily to large datasets. In
KGLac, GLac could be annotated using SPARQL update queries
to interlink triples or data nodes with insights derived from data
science projects benefiting from these datasets.

2.3 KGLac in Use
After deploying KGLac, a data owner needs first to profile the
local datasets and construct a GLac. The next step is to enable data
scientists to access KGLac via its interface library to utilize KGLac’s
data discovery operations and query the GLac or the generated
embeddings. KGLac is not a static platform. As more datasets are
added, KGLac continuously and incrementally maintains the GLac.

Table 1: A schema similarity evaluation.

Systems Precision Recall Macro F1
KGLac 0.89 0.69 0.78
Aurum 0.79 0.26 0.39

The KGLac portal might have access restrictions to prevent unau-
thorized users or could be public for anyone. Authorized users have
access to query GLac or embeddings. However, accessing the actual
data files in the data lake may need another level of authorization.
KGLac can provide a get operator to extract raw data of a data
node, i.e., dataset or table, in case of open datasets, e.g., open data
portals of Quebec or Kaggle.

Our platform will open a new business model for companies
selling datasets, i.e., the cost of datasets could be per access instead
of selling an entire dataset. Moreover, KGLac will allow data owners
to track the use of their data nodes and enable better utilization of
them to maximize data science potentials.

3 DEMONSTRATION SCENARIO
Wewill demonstrate that KGLac could be seamlessly integrated into
data science pipelines to facilitate data discovery and enrichment.
During the demonstration, the audience will experience several
aspects of KGLac using real datasets of topics most of them are
familiar with, such as income, job classifications, and gender. We
collected more than 125 real datasets from sources, such as Kaggle
and governmental open data portals. The collected datasets contain
thousands of columns of different data types. In our main scenario,
a data scientist has access to this data lake and wants to examine
salary-related issues, such as potential gender pay gap or salary
bias. The audience may find it easy to adjust the main scenario to
explore different issues.

As a preprocessing step, KGLac profiled the data lake and stored
the profiling information including the generated embeddings into
Elasticsearch, i.e., our document store. Using the collected datasets,
Table 1 illustrates the outstanding performance of KGLac w.r.t Au-
rum due to KGLac’s data cleaning and context-based semantic
affinity. KGLac, then, constructed the GLac, a knowledge graph rep-
resenting a global schema for the data lake. The constructed GLac
is stored in Blazegraph, i.e., our RDF-star engine. We developed our
data profiling sub-system on top of Apache Spark to easily scale
to large datasets. The data scientist uses KGLac interface services
in Jupyter Notebook for the data discovery and enrichment phase.
KGLac enables embedding similarity search to discover tables or
columns that have similar representations without revealing the
raw data. The data scientist can also annotate datasets or tables
with derived insights.

3.1 Find Salaries Datasets
KGLac enables keyword search to find datasets, tables, or columns
of similar names. KGLac returns the results encapsulated in a Pandas
Dataframe that has information, such as origin, number of rows
and columns, and paths to the physical CSV files. To start, the
data scientist looks for tables with column names similar to pay or
salary. This could be expressed using KGLac’s discovery operation
as the following:
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Figure 4: There are two paths between the selected tables.

stables = KGLac.search_tables_on([['salary', 'pay']])

With this successful start, the user discovered tables related to
salaries. Using native Pandas APIs, the user can examine the table
with the largest number of rows that include employee IDs, job titles,
and salaries. The discovered salary tables do not have information
regarding gender. Thus, the next step is to discover tables containing
information regarding the person name and gender using a similar
KGLac operation to find tables with information about gender or
sex. The user finds a dataset that includes names and gender and
then uses KGLac to discover how this table could be merged with
the salaries dataset chosen before.
gtables = KGLac.search_tables_on([['gender', 'sex']])

3.2 Join Path Discovery
KGLac leverages its knowledge graph to find potential join paths
between any two tables. The data scientist, in this scenario, uses the
discovery of intermediate joinable tables feature. KGLac discovers
intermediate tables, e.g., number of hops, and shows the connection
between them. This could be expressed as the following:
KGLac.get_path_between_tables(

stables.iloc[0],gtables.iloc[3], hops=2)

KGLac discovers join paths between two tables using a SPARQL
query. We also support more challenging queries, such as the short-
est path between nodes, e.g., tables. Figure 4 shows the intermediate
tables connecting the salary and gender tables. There is a path that
maps employee IDs to their names. The user can easily use Pandas
DataFrame to join the three tables to infer the employees’ genders.

3.3 Discover Unionable Columns
While the user finding a path between the salary and gender table,
she finds an opportunity to union the selected salary table with
another table that contains information related to salary (Total
Pay) and gender, as shown in Figure 4. KGLac provides support to
find a common schema, i.e., columns that could be used to union
two tables. This is very useful as tables may have a large number
of columns. As Pandas DataFrame, the user can union the tables
using the recommended common schema by KGLac.

3.4 Embedding Similarity Search
The remaining step is to enrich the dataset with job fields, which
requires a table containing a mapping from job titles to job cat-
egories such as IT, health, and sales. After the union of the two

tables, the user introduces a DataFarme containing data that are
not seen together for a table by KGLac. KGLac enables a user to
generate column embeddings on the fly for columns in a given
DataFrame. The data scientists using embedding similarity search
operation will find a table of job titles and classifications to join
with the current table. After joining the tables based on the job title
column, the data scientist manages to get a DataFrame with the
required information namely, salary, gender, and job field and can
filter records belonging only to IT jobs. Finally, the data scientist op-
tionally leaves a review of the datasets used to build their pipeline,
which might help other practitioners work on similar problems.

4 CONCLUSION
In this paper, we demonstrate KGLac, a holistic system that helps
organizations leverage the rich data they have in their data lake by
profiling them and creating a knowledge graph for data integration.
KGLac allows organizations to increase the efficiency of their data
science team. KGLac can play a pivotal role in allowing different
teams to check data across different departments based on the col-
umn embeddings without having access to the data. In KGLac, data
discovery based on embeddings similarity enables a new horizon
towards responsible data science, allowing enterprises to unleash
their teams’ innovation potential without sacrificing privacy.

KGLac offers a set of discovery operations that interact with the
constructed knowledge graph and query the embedding generated
to the datasets. KGLac could be easily integrated into existing data
science platforms. We built KGLac to be a platform with state-of-
the-art algorithms assisting data scientists in data discovery, data in-
tegration, data exploration, and data enrichment. KGLac empowers
data discovery on data lakes using knowledge graph technologies.
We are developing different methods to enable automatic graph
learning for advanced and semantic data discovery.
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