
DeFiHap: Detecting and Fixing HiveQL Anti-Patterns
Yuetian Mao, Shuai Yuan, Nan Cui, Tianjiao Du, Beijun Shen, Yuting Chen

Shanghai Jiao Tong University, Shanghai, China
{mytkeroro,yssjtu,cuinan,tjsoulshe,bjshen,chenyt}@sjtu.edu.cn

ABSTRACT
The emergence of Hive greatly facilitates the management of
massive data stored in various places. Meanwhile, data scientists
face challenges during HiveQL programming – they may not
use correct and/or efficient HiveQL statements in their programs;
developers may also introduce anti-patterns indeliberately into
HiveQL programs, leading to poor performance, low maintainabil-
ity, and/or program crashes.This paper presents an empirical study
on HiveQL programming, in which 38 HiveQL anti-patterns are
revealed. We then design and implement DeFiHap, the first tool
for automatically detecting and fixing HiveQL anti-patterns. DeFi-
Hap detects HiveQL anti-patterns via analyzing the abstract syntax
trees of HiveQL statements andHive configurations, and generates
fix suggestions by rule-based rewriting and performance tuning
techniques. The experimental results show that DeFiHap is effec-
tive. In particular, DeFiHap detects 25 anti-patterns and generates
fix suggestions for 17 of them.

PVLDB Reference Format:
Yuetian Mao, Shuai Yuan, Nan Cui, Tianjiao Du, Beijun Shen, Yuting
Chen. DeFiHap: Detecting and Fixing HiveQL Anti-Patterns. PVLDB,
14(12): 2671-2674, 2021.
doi:10.14778/3476311.3476316

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ChrisCN97/DeFiHap.

1 INTRODUCTION
Hive, a distributed and parallel processing framework based on

Hadoop, is becoming increasingly popular for storing and access-
ing big data in recent years [9]. It enables developers to perform
MapReduce tasks by writing HiveQL (a SQL-like Hive query lan-
guage) programs.

HiveQL programming, however, is non-trivial since applications
may suffer from anti-patterns [6]. An anti-pattern (AP) refers to a
design pattern that is common in practice but is inefficient [4]. APs
usually lead toHiveQL programs’ poor performance, lowmaintain-
ability, and/or crashes, as Figure 1 shows.

Though AP has been intensively studied [4], how to detect and
fix HiveQL APs is still a challenging problem. First, little research
has ever identified and classified APs in HiveQL programs system-
atically. Thus it is necessary to investigate HiveQL APs and their
fix solutions. Second, HiveQL is similar to SQL [3, 7]. Thus HiveQL

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476316

SELECT SmallTable.city, BigTable.name

FROM BigTable JOIN SmallTable On BigTable.id = SmallTable.id

Figure 1: A HiveQL query which causes low performance
due to a “Large Table on the Left” anti-pattern.
APs can be revealed through parsing HiveQL statements using
a SQL parser followed by detecting SQL APs. Even though it is
promising, core HiveQL APs are highly related to the MapReduce
framework and the unique metadata of Hive. Existing solutions to
detecting SQL APs are not suitable for detecting HiveQL APs.

Furthermore, tools are needed for facilitating the development
of big data and distributed applications against APs, since scien-
tists who are experts in other domains may not be familiar with
these APs [1]. To the best of our knowledge, there exists little re-
search on APs in HiveQL (and other SQL-like languages) queries
on distributed clusters.

To tackle these challenges, we conduct an empirical study on
HiveQL programming, in which 38 HiveQL APs are revealed. We
then develop DeFiHap, the first tool for automatically detecting
and fixingHiveQLAPs.DeFiHap employs a rule-based method to
detect APs and generate fix suggestions, leveraging not only the
HiveQL statements but also Hive metadata and configurations. In
addition, it optimizes the performance of join queries by recom-
mending the number of reducers via a multi-layer perceptron.

The experimental results show that DeFiHap is effective. DeFi-
Hap detects 25 HiveQL APs and generates fix suggestions for 17 of
them. In addition, for AP detection, DeFiHap achieves a precision
of 100% and a recall of 96.88%; for AP fixing, it achieves a precision
of 92.11%.

2 AN EMPIRICAL STUDY
We conduct an empirical study to identify real-world HiveQL

APs by following three steps:
1) Data Collection. We search on StackExchange [2] using key-

words such as “Hive SQL anti-pattern”, “Hive SQL optimiza-
tion”, “Hive SQL bug”, etc. Each retrieved post contains one or
more keywords in its title, description, answers, and/or comments.
We filter out the posts having less than 3 votes or without accepted
answers. After this step, we get 458 high-quality posts in total.

2) Data Analysis. We manually analyze 458 posts by taking
an open coding procedure [8]. All posts are labeled independently,
and the conflicts are resolved at expert meetings. Posts not related
to HiveQL APs are then marked as false positives and removed.
We analyze the descriptions, answers, and comments of the 312
remaining posts and record their root causes and solutions.

3) APs Identification. Finally, we reveal 38 major HiveQL APs,
which can be further categorized into “Statement Anti-pattern” (S-
AP) and “ConfigurationAnti-pattern” (C-AP). Among them, 25APs
can be detected or fixed by DeFiHap, via a rule-based approach or

2671

Table 1: List of HiveQL anti-patterns detected and fixed by DeFiHap

Category Anti-Pattern Name Description Impact* Detection Fix

Statement
AP
(S-AP)

Large Table on the Left Putting table with more records on the left of JOIN. P rule-based rule-based
Greedy Selection Using SELECT * which could retrieve redundant result. P, M rule-based rule-based
Too Many JOINs Using more than one JOIN operation. P rule-based -
Misusing HAVING Using HAVING without GROUP BY. P rule-based rule-based
Misusing INTERVAL Combining INTERVAL and DATE_SUB() for date query. E rule-based rule-based
SELECT Inconsistent with GROUP BY Missing selected columns after GROUP BY. E rule-based rule-based
Calculation in Predicate Calculating in predicates after ON or WHERE. P rule-based -
Calling Functions in Predicate Calling functions in predicates after ON or WHERE. p rule-based -
No Group By Using aggregation functions without GROUP BY. E rule-based -
Using ORDER BY Using ORDER BY instead of SORT BY. P rule-based -
JOIN in Subquery Using JOIN in the sub-query. P rule-based -

Creating Duplicate Table Creating a table having the same column properties as another table
in the database. P, M rule-based -

Querying without Partition Querying on a partitioned table without using partition filter. P rule-based rule-based
Data Skew Querying on a dataset with a non-uniform distribution. P rule-based -

Configuration
AP
(C-AP)

Inappropriate Number of Reducers Setting too many or too few reducers for a JOIN operation. P tuning tuning
Disabled Column Pruner Not enabling the column pruner configuration item. P rule-based rule-based
Disabled Partition Pruner Not enabling the partition pruner configuration item. P rule-based rule-based
Disabled Output Compression Not enabling the output compression configuration item. P rule-based rule-based
Disabled Parallelization Not enabling the parallelization configuration item. P rule-based rule-based
Disabled Cost based Optimizer Not enabling the cost based optimizer (CBO) configuration item. P rule-based rule-based
ExecutorService Rejection Task is rejected by executorService. E rule-based rule-based
Inserting without Dynamic Partition Inserting the partition table without setting dynamic partition. E rule-based rule-based
Disabling Partial Aggregation Not enabling the function of partial aggregation on the map side. P rule-based rule-based
Disabling Map Join Not enabling Map Join when small tables join large tables. P rule-based rule-based
Disabling Small File Merging Not enabling the function of automatically merging small files. P rule-based rule-based

* “P” is for poor performance, “M” for low maintainability, and “E” for program error.

performance tuning techniques, as Table 1 shows. The complete
list and their examples are publicly available.

3 SYSTEM DESIGN
We developDeFiHap for automatically detecting and fixing APs

in HiveQL applications. Application developers can leverage DeFi-
Hap to create efficient, maintainable, and accurate queries in big
data applications. The architecture of DeFiHap is shown in Fig-
ure 2. It detects HiveQL APs; after that, it generates fixes by com-
bining rule-based and performance tuning techniques.

3.1 Detecting HiveQL Anti-Patterns
Instead of employing machine learning methods which require

intensive training [5], DeFiHap employs a rule-based detection
method through analyzing HiveQL statements, data, Hive config-
urations, and other metadata.
AST Parsing. DeFiHap parses HiveQL statements into abstract
syntax trees (ASTs), aiming at extracting their key elements and
structure, and facilitating follow-up AP detection and fix activi-
ties. Moreover, the tree-structures allow rules to be recursively
represented and improve the extensibility of the tool. We employ
Antlr41 to implement the AST parser since Antlr4 is a powerful
parser generator and is also used by Hive for parsing statements.
Rule-based AP detection. DeFiHap’s AP checker implements a
static analysis of ASTs, HiveQL metadata, and the data in the data-
base, aiming at searching for the latent statementAPs.While travers-
ing an AST, it triggers detection rules on nodes. The detection

1https://github.com/antlr/antlr4

rules range from simple pattern-matching functions in regular ex-
pressions to complex functions leveraging Hive data and metadata.
Similarly, the AP checker conducts rule-based checks on each Hive
configuration obtained via a “set” command, and reports the de-
tected configuration APs.
Example: Let the HiveQL statement in Figure 1 be chosen as an ex-
ample. In this example, the tablewithmore records named BigTable
is placed on the left side of “JOIN”, which leads to a “Large Ta-
ble on the Left” AP. DeFiHap builds and traverses the AST of this
statement. On the JOIN node, the detection rule is triggered: De-
FiHap obtains the two table names and queries the Hive meta-
data tables (TBLS, PARTITIONS, PARTITION_PARAMS, TA-
BLE_PARAMS). Since the records of the left table are more than
those of the right table,DeFiHap reports a “Large Table on the Left”
AP.

3.2 Fixing Statement Anti-Patterns
DeFiHap uses an S-AP fix engine to fix the detected statement

APs through rewriting a given HiveQL statement. Instead of gen-
erating the target statement from scratch, the S-AP fix engine con-
structs statement templates in order to revise a small part of the
elements via a sequence editor. Specifically, the S-AP fix engine
first constructs a template for the statement under revision. It then
traverses the AST and uses the fix rules to edit elements in the tem-
plate.

DeFiHap defines four editing operations for each element: DEL,
KEEP, SWAP, and ADD. The S-AP fix engine processes the original
statement element-by-element. It copies relevant elements (tagged

2672

HiveQL
Statement

Hive
Configurations

AST Parser

AP
Candidates

AP Detection Rules

Detected APs

HiveQL
Template

S-AP
Fix Engine

Fixing HiveQL Configuration APs

Execution Time
Predicting Model

Fixed
HiveQL

Statement

Recommended
Hive

Configuration

Fixing HiveQL Statement APs

Detecting HiveQL APs

Configuration
Ranker

Hive
Data/MetaData

AP Checker
C-AP

Fix Engine

Configuration APs

Statement APs

Join Query

AP Fix Rules

Figure 2: An overview of DeFiHap.

as KEEP), removes the irrelevant elements (tagged as DEL), and ex-
changes two elements (tagged as SWAP). It can alsoADD elements,
i.e., inserting a span. We implement the template and the S-AP fix
engine using StringTemplate42, a Java template library.
Example: Given the HiveQL statement in Figure 1, DeFiHap iden-
tifies the fault elements in the AST, i.e., “BigTable” and “Small-
Table”. During traversing the AST, DeFiHap invokes a fix rule to
swap these two table names and fills the elements in the slots of
the template.ThusDeFiHap generates the fixed HiveQL statement,
as Figure 3 shows.

SELECT

SmallTable.city BigTable.name

Columns Columns

JOIN

FROM

BigTable SmallTable

Left Right

=

BigTable.id SmallTable.id

ON

Expr Expr

KEEP KEEP KEEP KEEP

KEEP KEEPSWAP SWAP

SELECT SmallTable.city, BigTable.name

FROM SmallTable JOIN BigTable On BigTable.id = SmallTable.id

SWAP(Left, Right)

Figure 3: A fixedHiveQL statement generated via a template-
based rewriting technique.

3.3 Fixing Configuration Anti-Patterns
Given a join query, DeFiHap does not only detect and fix its

statement APs, but also tune the Hive configuration to optimize
the query’s performance on the Hadoop MapReduce framework.

We observe that the performance of a join query heavily de-
pends on the number of reducers. As Figure 4 shows, the execution

2https://github.com/antlr/stringtemplate4

0

50000

100000

150000

200000

250000

300000

350000

2 3 4 5 6 7 8 9 10 11 12 13 14 20 40 80 120

Ex
ec
ut
io
n
Ti
m
e
(m
s)

Number of Reducers

Figure 4: A comparison of the execution time of a join query
with different reducer numbers.

time can be improved by up to 57.8% by setting the “mapred.redu-
ce.tasks” parameter of a join query properly. Intuitively, perfor-
mance tuning can be conducted – DeFiHap employs a machine
learning based approach to search for and recommend reducer set-
tings for different join queries.
Model selection and training. We first conduct experiments to
identify the parameters that affect the reduce process, including
the numbers of records in each table, different join key values in
each table, and reducers. Next, we train multiple machine learning
models (multi-layer perceptron (MLP), support vector regression
(SVR), and decision tree (DT)) with these parameters to predict the
execution time of join queries. We obtain the training data by exe-
cuting join queries with different table sizes and reducers and col-
lecting the execution time from the Hive log in the cluster. Indeed,
the testing results indicate that MLP is the most effective model in
this study.
Configuration recommendation. DeFiHap employs the trained
MLP model, and recommends the reducer number w.r.t. a given
join query by following three steps: (1) obtain the join table names
and join key from the AST, and query the number of table records
and join key values from Hive and its metadata; (2) predict the
query execution time using the MLP with the parameter values

2673

Figure 5: A snapshot of DeFiHap.

and reducer numbers; (3) rank the reducer numbers in ascending
order of the predicted execution time and recommend the most
efficient one.

Besides, for simple configuration APs, such as “Disabled Col-
umn Pruner”, DeFiHap’s C-AP fix engine suggests to enable the
column pruner with a general configuration recommendation.
Rather than using a machine learning model to fix some APs (such
as the “Inappropriate Number of Reducers” AP), DeFiHap allows
fixes of these APs to be manually collected and applied.

4 DEMONSTRATION AND EVALUATION
We have implemented DeFiHap as a web system. The snapshot

of DeFiHap UI is shown in Figure 5. Using a web interface, the
user first enters a HiveQL statement for diagnosis. As section 3
explains, DeFiHap parses the statement into an AST and checks
it by employing all of the AP detection rules. If statement or/and
configurationAPs are detected,DeFiHap fixes the faulty statement
or/and suggests desired configurations. In addition, DeFiHap rec-
ommends the reducer number for the given join query by taking a
machine learning based approach.

DeFiHap can be used in two main scenarios.
Scenario 1: Detecting and fixing a HiveQL statement AP. When
a user enters a HiveQL statement suffering from some APs, DeFi-
Hap invokes the detection and fix rules sequentially. A list of the
detected APs and their fix suggestions are returned. For further un-
derstanding these APs, users can learn their descriptions, impacts,
and code examples in the “AP dictionary” panel.
Scenario 2: Hive configuration tuning. On receiving an input join
query, DeFiHap automatically tunes the reducer number to opti-
mize its performance on the Hadoop MapReduce framework. De-
FiHap recommends the number of reducers, and the user then de-
cides whether the original configuration needs to be adjusted.
Evaluation. We evaluate DeFiHap on a variety of real-world
HiveQL statements to quantify its capabilities of processing
HiveQL APs. Three widely-used metrics are selected: precision, re-
call, and F1.

We collect 110 non-duplicated HiveQL statements from Stack
Overflow. Among them, 67% are faulty statements and their APs
aremanually labeled.These statements correspond to all statement
APs and their user fixes are extracted from the post descriptions or

comments. The dataset also contains 14 different join queries for
evaluating the technique of recommending reducer settings. We
build Hive tables and load synthetic data for each statement.

DeFiHap runs on Hive 2.3.4 with default configurations in a 3-
node Hadoop cluster, and the Hive metadata is stored in MySQL.
The MLP model for recommending the reducer number is trained
on 3640 Hive logs of 91 different join queries with different reducer
numbers.
Result analysis. We runDeFiHap against 110 HiveQL statements
diversify the Hive configurations for covering all configuration
APs. Wemanually check the detection results and compare the sug-
gestions with user fixes.

Table 2: Results
Function Precision Recall F1
Detecting HiveQL APs 100% 96.88% 98.42%
Fixing HiveQL APs 92.11% - -
Recommending the reducer number 78.57% - -

As Table 2 shows, DeFiHap achieves promising results – its AP
detection reaches a precision of 100%, a recall of 96.88%, and an
F1 score of 98.42%; its AP fix reaches a precision of 92.11%; its rec-
ommendation of reducer numbers reaches a precision of 78.57%.
The main reason for its effectiveness is that DeFiHap applies goal-
driven detecting and fixing strategy onASTs of HiveQL statements,
which restricts the scope of a rule to a limited number of elements
of the objective statement. This design mitigates the mutual im-
pacts of different rules.

However, a few statements still cannot be fixed correctly. After
a manual analysis, we find that the template-based rewrite tech-
nique taken by DeFiHap is less effective in fixing APs in complex
statements. Besides, though the MLP model can correctly reflect
the trends of execution time as reducer number changes, for some
join statements whose execution time fluctuates repeatedly in a
small range, MLP cannot predict the extreme point well. It can be
one of our future work in employing other machine learning mod-
els to enhance the capabilities of DeFiHap.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-

dation of China (Grant No. 62032004). Beijun Shen is the corre-
sponding author for this paper.

REFERENCES
[1] 2018. https://www.stitchdata.com/resources/the-state-of-data-science/.
[2] 2020. https://data.stackexchange.com/stackoverflow/query/new.
[3] P. Dintyala, A. Narechania, and J. Arulraj. 2020. SQLCheck: automated detection

and diagnosis of SQL anti-patterns. In SIGMOD. 2331–2345.
[4] M. H. Dodani. 2006. Patterns of Anti-Patterns. J. Object Technol. 5, 6 (2006), 29–33.
[5] Shizhe Fu and Beijun Shen. 2015. Code bad smell detection through evolutionary

data mining. In International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE Computer Society, 41–49.

[6] A. Holmes. 2012. Big Data Patterns. In Hadoop in practice. Manning, 194–249.
[7] C. Nagy andA. Cleve. 2017. A static code smell detector for SQL queries embedded

in Java code. In SCAM. 147–152.
[8] C. B. Seaman. 1999. Qualitative methods in empirical studies of software engi-

neering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.
[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu,

and R. Murthy. 2010. Hive-a petabyte scale data warehouse using hadoop. In IEEE
ICDE. 996–1005.

2674

