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ABSTRACT

We present DeepMVI, a deep learning method for missing value im-

putation in multidimensional time-series datasets. Missing values

are commonplace in decision support platforms that aggregate data

over long time stretches from disparate sources, whereas reliable

data analytics calls for careful handling of missing data. One strat-

egy is imputing the missing values, and a wide variety of algorithms

exist spanning simple interpolation, matrix factorization methods

like SVD, statistical models like Kalman filters, and recent deep

learning methods. We show that often these provide worse results

on aggregate analytics compared to just excluding the missing data.

DeepMVI expresses the distribution of each missing value con-

ditioned on coarse and fine-grained signals along a time series, and

signals from correlated series at the same time. Instead of resort-

ing to linearity assumptions of conventional matrix factorization

methods, DeepMVI harnesses a flexible deep network to extract

and combine these signals in an end-to-end manner. To prevent

over-fitting with high-capacity neural networks, we design a ro-

bust parameter training with labeled data created using synthetic

missing blocks around available indices. Our neural network uses

a modular design with a novel temporal transformer with convolu-

tional features, and kernel regression with learned embeddings.

Experiments across ten real datasets, five different missing sce-

narios, comparing seven conventional and three deep learning

methods show that DeepMVI is significantly more accurate, reduc-

ing error by more than 50% in more than half the cases, compared

to the best existing method. Although slower than simpler ma-

trix factorization methods, we justify the increased time overheads

by showing that DeepMVI provides significantly more accurate

imputation that finally impacts quality of downstream analytics.
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1 INTRODUCTION

In this paper we present a system for imputing missing values

across multiple time series occurring in multidimensional databases.
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Examples of such data include sensor recordings along time of dif-

ferent types of IoT devices at different locations, daily traffic logs

of web pages from various device types and regions, and demand

along time for products at different stores. Missing values are com-

monplace in analytical systems that integrate data from multiple

sources over long periods of time. Data may be missing because

of errors or breakdowns at various stages of the data collection

pipeline ranging from faulty recording devices to deliberate obfus-

cation. Analysis on such incomplete data may yield biased results

misinforming data interpretation and downstream decision mak-

ing. Therefore, missing value imputation is an essential tool in any

analytical systems [3, 10, 18, 21].

Many techniques exist for imputing missing values in time-series

datasets including several matrix factorization techniques [2, 11,

19, 20, 24, 28], statistical temporal models [14], and recent deep

learning methods [4, 8]. Unfortunately, even the best of existing

techniques still incur high imputation errors. We show that top-

level aggregates used in analytics could get worse after imputation

with existing methods, compared to discarding missing data parts

before aggregation. Inspired by the recent success of deep learning

in other data analytical tasks like entity matching, entity extraction,

and time series forecasting, we investigate if better deep learning

architectures can reduce this gap for the missing value imputation

task.

The pattern of missing blocks in a time series dataset can be quite

arbitrary and varied. Also, datasets could exhibit very different

characteristics in terms of the length and number of series, amount

of repetitions (seasonality) in a series, and correlations across series.

An entire contiguous block of entries might be missing within a

time series, and/or across multiple time-series. The signals from

the rest of the dataset that are most useful for imputing a missing

block would depend on the size of the block, its position relative

to other missing blocks, patterns within a series, and correlation

(if any) with other series in the dataset. If a single entry is missing,

interpolation with immediate neighbors might be useful. If a range

of values within a single time series is missing, repeated patterns

within the series and trends from correlated series might be useful.

If the same time range across several series is missing, only patterns

within a series will be useful.

Existingmethods based onmatrix factorization can exploit across

series correlations but are not as effective in combining them with

temporal patterns within a series. Modern deep learning methods,

because of their higher capacity and flexibility, can in principle com-

bine diverse signals when trained end to end. However, designing

a neural architecture whose parameters can be trained accurately

and scalably across diverse datasets and missing patterns proved

to be non-trivial. Early solutions based on popular architectures

for sequence data, such as recurrent neural networks (RNNs) have

been shown to be worse both in terms of accuracy and running

time. We explored a number of alternative architectures spanning
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Transformers, CNNs, and Kernel methods. A challenge we faced

when training a network to combine a disparate set of potentially

useful signals was that, the network was quick to overfit on easy

signals. Whereas robust imputation requires that the network har-

ness all available signals. After several iterations, we converged

on a model and training procedure, that we call DeepMVI that is

particularly suited to the missing value imputation task.
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Figure 1: Grey-shaded regions denote missing blocks. Pat-

terns of left and right windows around each missing block

match with another part of the same series. Series 1-3 have

high similarity and series 1,2,4 show good window match

along time.

1.1 Contributions

(1) We propose a tractable model to express each missing value

using a distribution conditioned on available values at other times

within the series and values of similar series at the same time. (2)

We design a flexible and modular neural architecture to extract fine-

grained, coarse-grained, and cross-series signals to parameterize

this distribution. (3) We provide a robust method of training gener-

alizable parameters by simulating missing patterns around available

indices that are identically distributed to the actual missing entries.

(4) Our neural architecture includes a Temporal transformer that

differs from off-the-shelf Transformers in our method of creating

contextual keys used for self-attention. (5) We propose the use of

Kernel regression for incorporating information from correlated

time-series. This method of extracting relatedness is scalable and

extends naturally to multidimensional datasets, that none of the

existing methods handle. (6) We achieve 20ś70% reduction in impu-

tation error as shown via an extensive comparison with both state

of the art neural approaches and traditional approaches across ten

real-life datasets and five different patterns of missing values. We

show that this also translates to more accurate aggregates analytics

on datasets with missing entries. (7) Our method is six times faster

than using off-the-shelf deep-learning components for MVI.

2 PRELIMINARIES AND RELATED WORK

We present a formal problem statement, discuss related work, and

provide background on relevant neural sequence models.

2.1 Problem Statement

We denote our multidimensional time series dataset as an 𝑛 + 1
dimensional data tensor of real values𝑋 ∈ R𝑛+1. The dimensions of

𝑋 are denoted as (𝐾1,𝐾2,...,𝐾𝑛 , 𝐾𝑛+1). The dimension 𝐾𝑛+1 denotes
a regularly spaced time index which, without loss of generality

we denote as {1, . . . ,𝑇 }. Each 𝐾𝑖 is a dimension comprising of

a discrete set of members {𝑚𝑖,1, . . . ,𝑚𝑖, |𝐾𝑖 |}. Each member 𝑚𝑖 𝑗
could be either a categorical string or a real-valued vector. For

example, a retail sales data might consist of two such dimensions:

𝐾1 comprising of categorical members denoting identity of items

sold and 𝐾2 comprising of stores where a store is defined in terms

of its continuous latitude and longitude value. We denote a specific

combination of members of each dimension as k = 𝑘1, . . . , 𝑘𝑛 where

each 𝑘𝑖 ∈ Dim(𝐾𝑖 ). We refer to the value at a combination k and

time 𝑡 as𝑋k,𝑡 . For example in Figure 1 we show four series of length

50 and their index k sampled from a two dimensional categorical

space of item-ids and region-ids. We are given an 𝑋 with some

fraction of values 𝑋k,𝑡 missing. Let 𝑀 and 𝐴 be tensors of only

ones and zeros with same shape as 𝑋 that denote the missing

and available values respectively in 𝑋 . We use I(𝑀) to denote

all missing values’ (k, 𝑡) indices. The patterns in I(𝑀) of missing

index combinations can be quite varied Ð for example missing

values may be in contiguous blocks or isolated points; across time-

series the missing time-ranges may be overlapping or missing at

random; or in an extreme case called Blackout a time range may

be missing in all series. Our goal is to design a procedure that can

impute the missing values at the given indices 𝐼 (𝑀) so that the

error between the imputed values 𝑋 and ground truth values 𝑋 is

minimized.
∑

(k,𝑡 ) ∈I (𝑀)
E(𝑋k,𝑡 , 𝑋k,𝑡 ) (1)

where E denotes error functions such as root mean square error

(RMSE) and mean absolute error (MAE). As motivated in Figure 1

both patterns within and across a time series may be required to

fill a missing block.

2.2 Related Work

Missing value imputation in time series is an age-old problem [16],

with several solutions that we categorize into matrix-completion

methods, conventional statistical time-series models, and recent

deep learning methods (discussed in Section 2.4). However, all these

prior methods are for single-dimensional series. So, we will assume

𝑛 = 1 for the discussions below.

Matrix completion methods These methods [2, 11, 19, 20, 24,

28], view the time-series dataset as a matrix 𝑋 with rows corre-

sponding to series and columns corresponding to time. They then

apply various dimensional reduction techniques to decompose the

matrix as 𝑋 ≈ 𝑈𝑉𝑇 where 𝑈 and 𝑉 represent low-dimensional

embeddings of series and time respectively. The missing entry in a

series 𝑖 and position 𝑡 is obtained by multiplying the corresponding

embeddings. A common tool is the classical Singular Value Decom-

position (SVD) and this forms the basis of three earlier techniques:

SVDImp[24], SoftImpute [19], and SVT [2]. All these methods are

surpassed by a recently proposed centroid decomposition (CD) al-

gorithm called CDRec[11]. CDRec performs recovery by first using

interpolation/extrapolation to initialize the missing values. Second,
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it computes the CD and keeps only the first k columns of U and V,

producing𝑈𝑘 and 𝑉𝑘 , respectively. Lastly, it imputes values using

𝑋 = 𝑈𝑘𝑉
𝑇
𝑘
. This process iterates until the normalized Frobenius

norm between the matrices before and after the update reaches a

small threshold.

A limitation of pure matrix decomposition based methods is that

they do not capture any dependencies along time. TRMF[28] pro-

poses to address this limitation by introducing a regularization on

the temporal embeddings𝑉 so that these confirm to auto-regressive

structures commonly observed in time-series data. STMVL is an-

other algorithm that smooths along time and is designed to recover

missing values in spatio-temporal data using collaborative filtering

methods for matrix completion.

Statistical time-series models DynaMMO[14], is an algorithm

that creates groups of a few time series based on similarities that

capture co-evolving patterns. They fit a Kalman Filter model on the

group using the Expectation Maximization (EM) algorithm. The

Kalman Filter uses the data that contains missing blocks together

with a reference time series to estimate the current state of the

missing blocks. The recovery is performed as a multi-step process.

At each step, the EM method predicts the value of the current state

and then two estimators refine the predicted values of the given

state, maximizing a likelihood function.

Pattern Based Methods TKCM [26] identifies and uses repeat-

ing patterns (seasonality) in the time series’ history. They find

similarity between window of measures spanning all time series

and window around the query time index using Pearson’s correla-

tion coefficient and do 1-1 imputation using the mean value of the

matched blocks. Though promising this method performs poorly

compared to other baselines like CDRec, on each dataset [12], hence

we have excluded it from our analysis. Deep Learning architectures

have been shown to perform better at query-pattern search and

corresponding weighted imputation [25] which we exploit in our

work. We present an empirical comparison with SVDImp (as a

representative of pure SVD methods), CDRec, TRMF, STMVL, and

DynaMMO and show that our method is significantly more accurate

than all of them.

2.3 Background on Neural Sequence Models

We review1 two popular neural architectures for processing se-

quence data.

2.3.1 Bidirectional Recurrent Neural Networks. Bidirectional RNN

[9] is a special type of RNN that captures dependencies in a sequence

in both forward and backward directions. Unlike forecasting, con-

text in both forward and backward directions is available in MVI

task. Bidirectional RNN maintains two sets of parameters, one for

forward and another for backward direction. Given a sequence 𝑋 ,

the forward RNN maintains a state h
𝑓
𝑡 summarizing 𝑋1 . . . 𝑋𝑡−1,

and backward RNN maintains a state h𝑏𝑡 summarizing 𝑋𝑇 . . . 𝑋𝑡+1.
These two states jointly can be used to predict a missing value

at 𝑡 . Because each RNN models the dependency along only one

direction, a bidirectional RNN can compute loss at each term in the

input during training.

1Readers familiar with Deep Learning may skip this subsection.

2.3.2 Transformers. A Transformer [25] is a special type of feed-

forward neural network that captures sequential dependencies

through a combination of self-attention and feed-forward layers.

Transformers are primarily used on text data for languagemodelling

and various other NLP tasks [6], but have recently also been used

for time-series forecasting [15].

Given an input sequence 𝑋 of length 𝑇 , a transformer processes

it as follows: It first embeds the input 𝑋𝑡 for each 𝑡 ∈ [1,𝑇 ] into
a vector 𝐸𝑡 ∈ R𝑝 , called the input embedding. It also creates a

positional encoding vector at position 𝑡 denoted as 𝑒𝑡 ∈ R𝑝 .

𝑒𝑡,𝑟 =

{

sin(𝑡/10000
𝑟
𝑝 ), if 𝑟%2 == 0

cos(𝑡/10000
𝑟−1
𝑝 ), if (𝑟 − 1)%2 == 0

(2)

Then it uses linear transformation of input embedding and posi-

tional encoding vector to create query, key, and value vectors.

𝑄𝑡 = (𝐸𝑡 + 𝑒𝑡 )𝑊𝑄 𝐾𝑡 = (𝐸𝑡 + 𝑒𝑡 )𝑊𝐾 𝑉𝑡 = (𝐸𝑡 + 𝑒𝑡 )𝑊𝑉 (3)

where the𝑊 s denote trained parameters. Key and Value vectors

at all times 𝑡 ∈ [1,𝑇 ] are stacked to create matrices 𝐾 and 𝑉 re-

spectively. Then the query vector at time 𝑡 and keys pair at other

positions 𝑡 ′ ≠ 𝑡 are used to compute a self-attention distribution,

which is used to compute a vector at each 𝑡 as an attention weighted

sum of its neighbors as follows:

h𝑡 = Softmax(𝑄𝑡𝐾
𝑇

√
𝑝
)𝑉 (4)

Such self-attention can capture the dependencies between various

positions of the input sequence. Transformers use multiple such

self-attentions to capture different kinds of dependencies, and these

are jointly referred as multi-headed attention. In general, multiple

such layers of self-attention are stacked. The final vector h𝑡 at each

𝑡 presents a contextual representation of each 𝑡 .

For training the parameters of the transformer, a portion of the

input would be masked (replaced by 0). We denote the masked

indices by 𝑀 . The training loss is computed only on the masked

indices in𝑀 . This is because multiple layers of self-attention can

compute h𝑡 as a function of any of the input values. This is unlike

bidirectional RNNs where the forward and backward RNN states

clearly demarcate the values used in each state. This allow loss to

be computed at each input position. However, transformers are

otherwise faster to train in parallel unlike RNNs.

2.4 Related work in Deep-learning

In spite of the recent popularity and success of deep learning (DL)

in several difficult tasks, existing work on the MVI task are few in

number. Also there is limited evidence of DL methods surpassing

conventional methods across the board. MRNN[27] is one of the

earliest deep learning methods. MRNNs use Bidirectional RNNs

to capture context of a missing block within a series, and capture

correlations across series using a fully connected network. How-

ever, a detailed empirical evaluation in [12] found MRNN to be

orders of magnitude slower than above matrix completion meth-

ods, and also (surprisingly) much worse in accuracy. More recently,

BRITS[4] is another method that also uses bidirectional RNNs. At

each time step 𝑡 the RNN is input a column 𝑋:,𝑡 of 𝑋 . The RNN

state is the black box charged with capturing both the dependencies

across time and across series. GP-VAE[8] adds more structure to
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Figure 2: Architecture of DeepMVI. Heremodel is shown im-

puting the three circles marked in red at the top. The tempo-

ral transformer convolves on window of size𝑤 = 3 to create

queries, keys and values for themulti-headed attention. The

deconvolution creates three vectors, one for each red circle.

These are concatenated with fine-grained signal and kernel

regression to predict the final output.

the dependency by first converting each data column 𝑋:,𝑡 of 𝑋 to a

low-dimensional embedding, and then using a Gaussian Process to

capture dependency along time in the embedding space. Training

is via an elaborate structured variational method. On record time

series datasets GP-VAE has been shown to be worse empirically

than BRITS, and seems to be geared towards image datasets.

Compared to these deep models, our network architecture is

more modular and light-weight in design, allows for more stable

training without dataset specific hyper-parameter tuning, more

accurate, and significantly faster.

Other Deep Temporal Models Much of the work on modeling

time series data has been in the context of the forecasting task. State

of the art methods for forecasting are still RNN-based [5, 7, 22, 23].

The only exceptions is [15] that uses convolution to extract local

context features of the time-series and then a transformer to capture

longer-range features. Such transformer and convolutions models

have been quite successful in speech transcription literature [13].

Our architecture is also based on transformers and convolutions but

our design of the keys and queries is better suited for missing value

imputation. Further, we also include a fine-grained context and a

second kernel regression model to handle across time correlations.

3 DEEPMVI: THE CONCEPTUAL MODEL

We cast the missing value imputation task as solving an objective

of the form:

max
�̂�

∏

(k,𝑡 ) ∈I (𝑀)
Pr(𝑋k,𝑡 |𝑋,𝐴;𝜃 )

where 𝜃 are the parameters of the model and𝐴 is the mask denoting

available values in 𝑋 . 𝑋 is the entire set of available values, and

any tractable models will need to break-down the influence of 𝑋

at an (k, 𝑡) into simpler, learnable subparts. State of the art deep

learning methods such as BRITS, simplify the dependence as:

Pr(𝑋k,𝑡 |𝑋,𝐴;𝜃 ) = Pr(𝑋k,𝑡 |𝑋•,1...𝑡−1, 𝑋•,𝑡+1...𝑇 , 𝜃 )

The first part 𝑋•,1...𝑡−1 denotes the entire vector of values over all
times before 𝑡 and likewise 𝑋•,𝑡+1...𝑇 for after 𝑡 . Note here observed

values at time 𝑡 from correlated sequences are ignored. Also, each

of these sequences are summarized using RNNs that take as input

values over all series 𝑋•, 𝑗 at each step 𝑗 . This limits the scalability

on the number of series.

In contrast, DeepMVI captures the dependence both along time

within series k and along other related series at time 𝑡 to simplify

the dependency structure as:

Pr(𝑋k,𝑡 |𝑋,𝐴;𝜃 ) = Pr(𝑋k,𝑡 |𝑋k,•, 𝑋Sib(k),𝑡 , 𝐴, 𝜃 ) (5)

The first part 𝑋k,• is used to capture the long term dependency

within the series k and also fine-grained signals from the immedi-

ate temporal neighborhood of 𝑡 . The second part extracts signals

from related series Sib(k) at time 𝑡 . The notion of Sib(k) is defined
using learnable kernels that we discuss in Section 4.2. Unlike con-

ventional matrix factorization or statistical methods like Kalman

Filters that assume fixed functional forms, we depend on the uni-

versal approximation power of neural networks to extract signals

from the context 𝑋k,• and 𝑋Sib(k),𝑡 to create a distribution over the

missing value at k, 𝑡 . The neural network architecture we used for

parameterizing this distribution is described Section ??.

The parameters (𝜃 ) of high-capacity neural networks need to

be trained carefully to avoid over-fitting. We do not have separate

labeled datasets for training the model parameters. Instead, we need

to create our own labeled dataset using available values 𝐴 in the

same data matrix 𝑋 .

We create a labeled dataset from randomly sampled (k𝑖 , 𝑡𝑖 ) in-
dices from the available set 𝐴. Each index (k𝑖 , 𝑡𝑖 ) defines a training
instance with input x𝑖 = (𝑋k,•, 𝑋𝑆𝑖𝑏 (k),𝑡 , 𝐴) and continuous output

𝑦𝑖 = 𝑋k𝑖 ,𝑡𝑖 as label, and thus can be cast as a standard regression

model. In order for the trained parameters 𝜃 to generalize to the

missing indices in I(𝑀), the available values in the context of a

(k𝑖 , 𝑡𝑖 ) used in training need to be distributed identically to those in

I(𝑀). We achieve this by creating synthetic missing values around

each (k𝑖 , 𝑡𝑖 ). The shape of the missing block is chosen by sampling

a shape 𝐵𝑖 from anywhere in 𝑀 . Note the shape 𝐵𝑖 is a cuboid

characterized by just the number (and not the position) of missing

values along each of the 𝑛 + 1 dimensions. We then place 𝐵𝑖 ran-

domly around (k𝑖 , 𝑡𝑖 ), to create a new availability matrix 𝐴𝑖 after

masking out the newly created missing entries around (k𝑖 , 𝑡𝑖 ). Our
training objective thereafter is simple likelihood maximization over

the training instances as follows:

𝜃∗ = argmax𝜃

∑

(k𝑖 ,𝑡𝑖 ) ∈I (𝐴)
[log Pr(𝑋k,𝑡 |𝑋k,•, 𝑋Sib(k),𝑡 , 𝐴𝑖 , 𝜃 )]

Thus 𝜃∗ has been trained to predict the true value of |𝐴| instances,
where our method of sampling 𝐴𝑖 ensures that these are identically

distributed as the missing entries I(𝑀). We further prevent over-

fitting on the training instances by using a validation dataset to do
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early stopping. This implies that we can invoke the standard ML

guarantees of generalization to claim that our model will generalize

well to the unseen indices.

4 DEEPMVI: THE NEURAL ARCHITECTURE

We implement the conditional model of Equation 5 as a multi-

layered modular neural network. The first module is the tempo-

ral transformer that takes as input 𝑋k,• and extracts two types

of imputation signals along time: longer-term seasonality repre-

sented as a output vector htt = 𝑇𝑇𝜃 (𝑋k,•, 𝐴k,•), and a fine-grained

signal from the immediate neighborhood of (k, 𝑡) represented as

h
fg
= 𝐹𝐺𝜃 (𝑋k,•, 𝐴k,•). The second module is the kernel regression

that extracts information from related series at time 𝑡 i.e., from

𝑋Sib(k),𝑡 to output another hidden vector hkr = 𝐾𝑅𝜃 (𝑋•,𝑡 , 𝐴•, 𝑡).
The last layer combines these three outputs as a light-weight linear

layer to output a mean value of the distribution of 𝑋k,𝑡 as follows:

𝜇 [𝑋k,𝑡 ] = 𝒘
𝑇
𝑜 [htt, hfg, hkr] + 𝒃𝑜 (6)

The above mean is used to model a Gaussian distribution for the

conditional probability with a shared variance. A pictorial depiction

of our pipeline appears in Figure 2. We describe each of these

modules in the following sections.

4.1 Temporal Transformer Module

We build this module for capturing temporal dependency in the

series akin to seasonality and draw inspiration from the Trans-

former [25] architecture. The parallel processing framework of

attention module provides a natural formulation for handling miss-

ing values by masking inputs in contrast to the sequential modeling

in RNNs. However, our initial attempts at using the vanilla Trans-

former model (described in Section 2.3.2) for the MVI task was

subject to over-fitting on long time-series, and inaccurate for block

missing values. We designed a new transformer specifically suited

for the MVI task which we call the Temporal Transformer.

With the slight abuse of notation we override the definition of

data and availability tensors 𝑋 and 𝐴 to 1-dimensional data and

availability series respectively. Accordingly 𝐼 (𝐴) and 𝐼 (𝑀) are also
overridden to confirm to series data. We use 𝐼 (𝐴) = 𝐼 − 𝐼 (𝑀) to
denote all the indices that are not missing in 𝑋 . We next describe

how Temporal Transformer computes the function 𝑇𝑇𝜃 (𝑋,𝐴).

Window-based Feature Extraction A linear operation on the

window 𝑋 𝑗𝑤:( 𝑗+1)𝑤 computes a 𝑝-dimensional vector 𝑌𝑗 as follows:

𝑌𝑗 =𝑊𝑓 𝑋 𝑗𝑤:( 𝑗+1)𝑤 + 𝑏 𝑓 (7)

where𝑊𝑓 ∈ R𝑝×𝑤 and 𝑏 𝑓 ∈ R𝑝 are parameters. This operation

is also termed as non-overlapping convolutions in Deep Learning

literature.

We use self-attention on 𝑌𝑗 vectors obtained from Eqn. 7 above.

We now describe the computation of query, key and value vectors

for the self-attention.

Query, Key andValue functions For an index 𝑗 (corresponding

to the vector 𝑌𝑗 ), we define the functions query and key functions

𝑄 (·) and 𝐾 (·) as the functions of 𝑌𝑗−1 and 𝑌𝑗+1 respectively. Simi-

larly we define value 𝑉 (·) as function of 𝑌𝑗 .

𝑄 (𝑌, 𝑗) = ( [𝑌𝑗−1, 𝑌𝑗+1] + 𝑒 𝑗 )𝑊𝑞 + 𝑏𝑞 (8)

𝐾 (𝑌, 𝑗, 𝐴) = (( [𝑌𝑗−1, 𝑌𝑗+1] + 𝑒 𝑗 )𝑊𝑘 + 𝑏𝑘 ) ·
( 𝑗+1)𝑤
∏

𝑖=𝑗𝑤

𝐴𝑖 (9)

𝑉 (𝑌𝑗 ) = 𝑌𝑗𝑊𝑣 + 𝑏𝑣 (10)

where𝑊𝑞,𝑊𝑘 ∈ R2𝑝×2𝑝 ,𝑊𝑣 ∈ R𝑝×𝑝 , 𝑒 𝑗 is the positional encoding
of index 𝑗 defined in Eqn. 2. The product of𝐴𝑖 -s in Eqn. 9 is one only

if all values in the window are available. This prevents attention

on windows with missing values. Note that keys and values are

calculated for other indices 𝑗 ′ ≠ 𝑗 as well.

Attention Module Attention module computes the attention-

weighted sum of vectors 𝑉 (𝑌•). The attention-weighted sum at

index 𝑗 is calculated as follows:

Attn(𝑄 (·), 𝐾 (·),𝑉 (·), 𝐴, 𝑗) =
∑

𝑗 ′ ⟨𝑄 (𝑌, 𝑗), 𝐾 (𝑌, 𝑗 ′, 𝐴)⟩𝑉 (𝑌𝑗 ′)
∑

𝑗 ′ ⟨𝑄 (𝑌, 𝑗), 𝐾 (𝑌, 𝑗 ′, 𝐴)⟩
(11)

Note that for indices 𝑗 ′ with missing values, including the index 𝑗 ,

the key 𝐾 (𝑌, 𝑗 ′, 𝐴) is zero. Hence such indices are not considered

in the attention.

MultiHead Attention Instead of using only one attention mod-

ule, our temporal transformer uses multiple instantiations of the

functions𝑄 (𝑌, 𝑗),𝐾 (𝑌, 𝑗, 𝐴),𝑉 (𝑌𝑗 ). We compute 𝑛head such instan-

tiations and denote them using index 𝑙 = 1 . . . 𝑛head.

We obtain the output of multi-head attention by concatenating

the output vectors of all 𝑛head attentions (obtained from Eqn. 11)

into a vector h ∈ R𝑝𝑛head .

h𝑗 = [Attn1 (· · · ), . . . ,Attn𝑛head (· · · )] (12)

Decoding Attention Output Vector h𝑗 is the output vector for

window 𝑋 𝑗𝑤:( 𝑗+1)𝑤 . Decoding module first passes the vector h𝑗

through a feed-forward network to obtain the vector hff𝑗 . It then

transforms this vector to obtain the output vectors for positions

{ 𝑗𝑤, . . . , 𝑡, . . . , ( 𝑗 + 1)𝑤}:

h
ff
𝑗 = ReLU(𝑊𝑑2 (ReLU(𝑊𝑑1 (ReLU(h𝑗 ))))) (13)

h
tt
𝑗 = ReLU(𝑊𝑑hff𝑗 + 𝑏𝑑 ) (14)

where𝑊𝑑 ∈ R𝑤×𝑝×𝑝 . Note that htt𝑗 ∈ R
𝑤×• consists of output

vectors for all indices in the 𝑗-th window. We can obtain the output

vector corresponding to index 𝑡 as htt = h
tt
𝑗 [𝑡%𝑤] as the final output

of the 𝑇𝑇𝜃 (𝑋,𝐴, 𝑡) module.

4.1.1 Fine Grained Attention Module. We utilise this module to

capture the local structure from immediate neighbouring time in-

dices which are especially significant in the case of point missing

values. Let the time index 𝑡 be part of the window 𝑗 =
⌊

𝑡
𝑤

⌋

with

start and end times as 𝑡
𝑗
𝑠 and 𝑡

𝑗
𝑒 respectively. Then we define the

function 𝐹𝐺𝜃 (𝑋,𝐴) as
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𝐹𝐺𝜃 (𝑋,𝐴) = h
fg
=

∑

𝑗 ∈𝐼 (𝐴)
𝑋 𝑗

|𝐼 (𝐴) | (15)

4.2 Kernel Regression Module

We build the kernel regression module to exploit information from

correlated series along each of the 𝑛 data dimensions. A series in

our case is associated with 𝑛 variables k = 𝑘1, . . . , 𝑘𝑛 .

Index Embeddings First, we embed each dimension member in

a space that preserves their relatedness. If a member𝑚𝑖 𝑗 of a dimen-

sion 𝐾𝑖 is categorical we learn an embedding vector 𝐸𝜃 (𝑚𝑖 𝑗 ) ∈ 𝑅𝑑𝑖 .
When the dimension is real-valued, i.e.,𝑚𝑖 𝑗 ∈ 𝑅𝑝 , we use 𝐸𝜃 (𝑚𝑖 𝑗 )
to denote any feed-forward neural network to transform the raw

vector into a 𝑑𝑖 -dimensional vector.

We define relatedness among series pairs. We only consider

series pairs that differ in exactly one dimension. We call these

sibling series:

Defining Siblings We define siblings for an index k along di-

mension 𝑖 , Sib(k, 𝑖) as the set of all indices k′ such that k and k
′

differ only at 𝑖-th dimension.

Sib(k, 𝑖) = {k′ : 𝑘 ′𝑗 = 𝑘 𝑗 ∀𝑗 ≠ 𝑖 ∧ 𝑘
′
𝑖 ≠ 𝑘𝑖 } (16)

Here we override the notation Sib(k) (used earlier in Eqn. 5) to

identify the siblings along each dimension. For example, in a re-

tail sales data, that contains three items {𝑖0, 𝑖1, 𝑖2} and four regions

{𝑟0, 𝑟1, 𝑟2, 𝑟3}, siblings of an (item, region) pair k = (𝑖1, 𝑟2) along the

product dimension would be Sib(k, 0) = {(𝑖0, 𝑟2), (𝑖2, 𝑟2)} and along
the region dimension would be Sib(k, 1) = {(𝑖1, 𝑟0), (𝑖1, 𝑟1), (𝑖1, 𝑟3)}.

Regression along each dimension An RBF Kernel computes

the similarity score K(𝑘𝑖 , 𝑘 ′𝑖 ) between indices 𝑘𝑖 and 𝑘
′
𝑖 in the 𝑖-th

dimension:

K(𝑘𝑖 , 𝑘 ′𝑖 ) = exp
(

− 𝛾 ∗ ||𝐸 [𝑘𝑖 ] − 𝐸 [𝑘 ′𝑖 ] | |
2
2

)

(17)

Given a series𝑋 at index (k, 𝑡), for each dimension 𝑖 , we compute

the kernel-weighted sum of measure values as

𝑈 (k,𝑖),𝑡 =

∑

k′∈Sib(k,𝑖) 𝑋k′,𝑡K(𝑘𝑖 , 𝑘 ′𝑖 )𝐴k′,𝑡
∑

k′∈Sib(k,𝑖) K(𝑘𝑖 , 𝑘 ′𝑖 )𝐴k′,𝑡
(18)

where 𝐴k′,𝑡 = 1 for non-missing indices and 0 for missing indices.

When a dimension 𝑖 is large, we make the above computation

efficient by pre-selecting the top 𝐿 members based on their kernel

similarity.

We also compute two other measures: Sum of kernel weights

and the variance in 𝑋 values along each sibling dimension:

𝑊(k,𝑖),𝑡 =
∑

k′∈Sib(k,𝑖)
K(𝑘𝑖 , 𝑘 ′𝑖 )𝐴k′,𝑡 (19)

𝑉(k,𝑖),𝑡 = 𝑉𝑎𝑟 (𝑋Sib(k,𝑖),𝑡 ) (20)

The last layer of the kernel-regression module is concatenation

of𝑈 , 𝑉 , and𝑊 components:

h
kr

= Concat(𝑈 (k,𝑖),𝑡 ,𝑉(k,𝑖),𝑡 ,𝑊(k,𝑖),𝑡 ) (21)

where hkr ∈ R3𝑛 .

1: procedure DeepMVI(𝑋,𝐴,𝑀)

2: TrainData=(k𝑖 , 𝑡𝑖 ) ∈ 𝐴,𝐴𝑖=random misses around (k𝑖 , 𝑡𝑖 ).
3: model← CreateModel() /* Sec. 4.3 */

4: for iter = 0 toMaxIter do

5: for each (k𝑖 , 𝑡𝑖 , 𝐴𝑖 ) ∼ Batch(TrainData) do

6: 𝑋k𝑖 ,𝑡𝑖 ← ForwardPass(𝑋,𝐴𝑖 , k𝑖 , 𝑡𝑖 )
7: Update model parameters Θ.

8: Evaluate validation data for early stopping.

9: /* Impute test-blocks */

10: 𝑋 ← ForwardPass(𝑋,𝐴, •, •) over all test blocks in I(𝑀).
11: return 𝑋

12: procedure ForwardPass(𝑋 , 𝐴, k, 𝑡 )

13: h
tt, hfg = 𝑇𝑇 (𝑋,𝐴).

14: h
kr

= 𝐾𝑅(𝑋,𝐴). Section 4.2

15: return h
tt, hfg, hkr

16: procedure TT(𝑋 , 𝐴)

17: Index of the block containing time 𝑡 is 𝑗 = 𝑇%𝑤 .

18: 𝑌𝑗 =𝑊𝑓 𝑋 𝑗𝑤:( 𝑗+1)𝑤 + 𝑏 𝑓 .
19: /*Similarly compute 𝑌𝑗−1 and 𝑌𝑗+1 .*/
20: Compute Query, Keys, and Values using Equations 8, 9, 10.

21: Calculate Attn(Q(·),K(·),V(·),A, j) using Eqn. 11.

22: Calculate multi-head attention:

h𝑗 = [Attn1 (· · · ), . . . ,Attn𝑛head (· · · )]

23: Compute vector htt𝑗 using Equations 13 and 14.

24: h
tt
= h

tt
𝑗 [𝑡%𝑤].

25: Compute the fine grained attention vector:

h
fg
= 𝐹𝐺𝜃 (𝑋,𝐴)/* Eqn 15 */

return h
tt, hfg

26: procedure KR(𝑋 , 𝐴)

27: Compute the vectors𝑈•,𝑊•, and 𝑉• (Equations 18, 19, 20).
28: h

kr
= Concat(𝑈 (k,𝑖),𝑡 ,𝑉(k,𝑖),𝑡 ,𝑊(k,𝑖),𝑡 ).

29: return h
kr

Figure 3: The DeepMVI training and imputation algorithm

4.3 Network Parameters and
Hyper-parameters

The parameters of the network span the temporal transformer, the

embeddings of members of dimensions used in the kernel regres-

sion, and the parameters of the output layer. We use Θ to denote

all the trainable parameters in all modules:

Θ = {𝑊𝑓 , 𝑏 𝑓 ,𝑊𝑞, 𝑏𝑞,𝑊𝑘 , 𝑏𝑘 ,𝑊𝑣, 𝑏𝑣,𝑊𝑑1 ,𝑊𝑑2 ,𝑊𝑑 , 𝑏𝑑 ,𝒘𝑜 , 𝒃𝑜 , 𝐸 [𝑚•,•]}.

These parameters are trained using the training objective described

in Section 3 on the available data. Any off-the-shelf stochastic

gradient method can be used for solving this objective. We used

Adam with a learning rate 1e-3.

Network Hyper-parameters: Like any deep learning method, our

network also has hyper-parameters that control the size of the

network, which in turn impacts accuracy in non-monotonic ways.
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Table 1: Datasets: All except the last two have one categori-

cal dimension. Qualitative judgements on the repetitions of

patterns along time and across series appear in the last two

columns.

Dataset Number Length Repetitions Relatedness

of TS of TS within TS across series

AirQ 10 1k Moderate High

Chlorine 50 1k High High

Gas 100 1k High Moderate

Climate 10 5k High Low

Electricity 20 5k High Low

Temperature 50 5k High High

Meteo 10 10k Low Moderate

BAFU 10 50k Low Moderate

JanataHack 76*28 134 Low High

M5 10*106 1941 Low Low

Many techniques exist for automatically searching for optimal val-

ues of hyper-parameters [1] based on performance on a valida-

tion set. These techniques are applicable in our model too but we

refrained from using those for two reasons: (1) they tend to be

computationally expensive, and (2) we obtained impressive results

compared to almost all existing methods in more than 50 settings

without extensive dataset specific hyper-parameter tuning. This

could be attributed to our network design and robust training pro-

cedure. That said, in specific vertical applications, a more extensive

tuning of hyper-parameters using any of the available methods [1]

could be deployed for even larger gains.

The hyper-parameters and their default values in our network

are: the number of filters 𝑝 = 32 that controls the size of the first

layer of the temporal transformer, the window size 𝑤 of the first

convolution layer. The hyper-parameter𝑤 also determines the size

of the context key used for attention. If𝑤 is very small, the context

size may be inadequate, and if it is too large compared to the size

of each series we may over-smooth patterns. We use 10 by default.

When the average size of a missing block is large (> 100) we use

𝑤 = 20 to gather a larger context. The number of attention heads

𝑛head is four and embedding size 𝑑𝑖 is taken to be 10 in all our

experiments.

5 EXPERIMENTS

We present results of our experiments on ten datasets under four

different missing value scenarios. We compare imputation accuracy

of several methods spanning both traditional and deep learning and

approaches in Sections 5.3 and 5.4. We then perform an ablation

study to evaluate the various design choices of DeepMVI in Sec-

tion 5.5. In Section 5.6 we compare different methods on running

time. Finally, in Section 5.7 we highlight the importance of accurate

imputation algorithms on downstream analytics.

5.1 Experiment Setup

5.1.1 Datasets. We experiments on eight datasets used in earlier

papers on missing value imputation [12]. In addition, due to the

lack of multi-dimensional datasets in previous works, we introduce

two new datasets, łJanataHackž, łM5ž. Table 1 presents a summary

along with qualitative judgements of their properties.

AirQ brings air quality measurements collected from 36monitoring

stations in China from 2014 to 2015. AirQ time series contain both

repeating patterns and jumps, and also strong correlations across

time series. Replicating setup [12], we filter the dataset to get 10

time series of 1000 length.

Chlorine simulates a drinking water distribution system on the

concentration of chlorine in 166 junctions over 15 days in 5 minutes

interval. This dataset contains clusters of similar time series which

exhibit repeating trends.

Gas shows gas concentration between 2007 and 2011 from a gas

delivery platform of ChemoSignals Laboratory at UC San Diego.

Climate is monthly climate data from 18 stations over 125 locations

in North America between 1990 and 2002. These time series are

irregular and contain sporadic spikes.

Electricity is on household energy consumption collected every

minute between 2006 and 2010 in France.

Temperature contains temperature from climate stations in China

from 1960 to 2012. These series are highly correlated.

MeteoSwiss is weather from different Swiss cities from 1980 to

2018 and contains repeating trends with sporadic anomalies.

BAFU consists of water discharge data by the BundesAmt Für

Umwelt (BAFU), collected from Swiss rivers from 1974 to 2015.

These time series exhibit synchronized irregular trends.

JanataHack is a multidimensional time series dataset2 which con-

sists of sales data spanning over 130 weeks, for 76 stores and 28

products (termed "SKU").

Walmart M5 made available by Walmart, involves the daily unit

sales of 3049 products sold in 10 stores in the USA spanning 5 years.

Since most of the 3,049 items have 0 sales, we retain the 106 most

selling items averaged over stores. This gives us a 2 dimensional

data of sales of 106 items across 10 stores.

5.1.2 Missing Scenarios Description. Weexperimentwith fourmiss-

ing scenarios[12] considered to be the common missing patterns

encountered in real datasets. Here we consider continuous chunks

of missing values termed as blocks. We also consider a scenario

with point missing values scattered throughout the dataset in Sec

5.5.

Missing Completely at Random (MCAR) Each incomplete

time series has 10% of its data missing. The missing data is in

randomly chosen blocks of constant size 10. We experiment with

different % of incomplete time series.

Missing Disjoint (MissDisj) Here we consider disjoint blocks

to be missing. Block size is𝑇 /𝑁 , where𝑇 is the length of time series,

and 𝑁 is the number of time series. For 𝑖th time series the missing

block ranges from time step 𝑖𝑇
𝑁 to

(𝑖+1)𝑇
𝑁 − 1, which ensures that

missing blocks do not overlap across series.

Missing Overlap (MissOver) A slight modification on MissDisj,

MissOver has block size of 2∗𝑇 /𝑁 for all time series except the last

one for which the block size is still𝑇 /𝑁 . For the 𝑖-th time series the

2https://www.kaggle.com/vin1234/janatahack-demand-forecasting-analytics-
vidhya
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missing block ranges from time step 𝑖𝑇
𝑁 to

(𝑖+2)𝑇
𝑁 − 1, which causes

an overlap between missing blocks of series 𝑖 with 𝑖 − 1 and 𝑖 + 1

Blackout considers a scenario where all time series have missing

values for the same time range. Given a block size 𝑠 all time series

have values missing from 𝑡 to 𝑡 + 𝑠 , where 𝑡 is fixed to be 5%. We

vary the block size 𝑠 from 10 to 100.

5.1.3 MethodsCompared. We comparewithmethods from both

conventional and deep learning literature.

CDRec[11] is one of the top performing recent Matrix Factorisa-

tion based technique which uses iterative Centroid Decomposition.

DynaMMO[14] is a probabilistic method that uses Kalman Filters

to model co-evolution of subsets of similar time series.

TRMF [28] is a matrix factorisation augmented with an auto-

regressive temporal model.

SVDImp [24] is a basic matrix factorisation based technique which

imputes using top k vectors in SVD factorisation.

BRITS [4] is a recent Deep learning techniques that uses a Bidirec-

tional RNN that takes as input all the series’ values at time 𝑡 .

GPVAE [27] a deep learning method that uses Gaussian process in

the low dimensional latent space representation of the data. GPVAE

uses Variational Autoencoder to generate the imputed values in the

original data space.

Transformer [25] is a deep learning method that uses a multi-head

self-attention based architecture to impute the missing values in

time-series.

5.1.4 Other Experiment Details.

Platforms Our experiments are done on the Imputation Bench-

mark3 for comparisons with conventional methods. The benchmark

lacks in support for deep learning based algorithms hence we com-

pare our numbers for those outside this framework.

Evaluation metric We use Mean Absolute Error as our evalua-

tion metric.

5.2 Visual Comparison of Imputation Quality

We start with a visual illustration of how DeepMVI’s imputations

compare with those of two of the best performing existing methods:

CDRec and DynaMMO. In Figure 4, we visualize the imputations

for different missing blocks on the Electricity dataset. First row is

for MCAR scenario whereas second row is for Blackout scenario.

First observe how DeepMVI(Blue) correctly captures both the shape

and scale of actual values (Black) over a range of missing blocks.

On the MCAR scenario CDRec gets the shape right, only in the

first and fourth blocks, however it is off with scale. In the Blackout

scenario, CDRec only linearly interpolates the values in missing

block, whereas DynaMMO is only slightly inclined towards ground-

truth. However, both CDRec and DynaMMO miss the trend during

Blackout whereas DeepMVI successfully captures it because of

careful pattern match within a series.

5.3 Comparison on Imputation Accuracy

Given the large number of datasets, methods, missing scenarios and

missing sizes we present our numbers in stages. First in Figure 5

3https://github.com/eXascaleInfolab/bench-vldb20
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0

2

Ground Truth CDRec DynaMMO DeepMVI

Figure 4: Visualised Imputations on Electricity Dataset. The

top row showsMCARmissing blocks while the bottom rows

is for Blackout scenario.

we show comparisons in MAE of all conventional methods on five

datasets under a fixed 𝑥 =10% of series with missing values in

MCAR, MissDisj, MissOver and all series in Blackout with a block

size of 10. Then, in Figure 6 we show more detailed MAE numbers

on three datasets (AirQ, Climate and Electricity) where we vary

the percent of series with missing values (𝑥) from 10 to 100 for

MCAR, MissDisj, MissOver and the block size from 10 to 100 in

Blackout. From these comparisons across eight datasets we make

the following observations:

First, observe that DeepMVI is better or comparable to all other

methods under all missing values scenarios and all datasets. Our

gains are particularly high in the Blackout scenario seen in the

last column in graphs in Figure 6 and in the bottom-right graph of

Figure 11. For accurate imputation in Blackouts, we need to exploit

signals from other locations of the same series. Matrix factorisation

based methods such as SVDImp and TRMF fail in doing so and

rely heavily on correlation across time series. TRMF’s temporal

regularisation does not seem to be helping in capturing long term

temporal correlations. DynaMMO and CDRec are able to capture

within time series dependencies better than matrix factorisation

methods. But they are still much worse than DeepMVI, particularly

on Gas in Figure 11, and Climate, Electricity in Figure 6.

In the MissDisj/MissOver scenario where the same time range is

not missing across all time series, methods that effectively exploit

relatedness across series perform better on datasets with highly

correlated series such as Chlorine and Temp. Even in these scenarios

we provide as much as 50% error reduction compared to existing

methods.

MCAR is the most interesting scenario for our analysis. Most of

the baselines are geared towards capturing either inter or intra TS

correlation but none of them are able to effectively combine and

exploit both. MCAR owing to small block size and random missing

position can benefit from both inter and intra correlation which

are fully exploited by our model. DeepMVI achieves strictly better

numbers than all the baselines on all the datasets. For Climate and

Electricity datasets, we reduce errors between 20% and 70% as seen

in the first column of Figure 6.
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Figure 5: Mean Absolute Errors (y-axis) on five other datasets (on x-axis) on all four scenarios ś MCAR, MissDisj, MissOver,

and Blackout. Here, a fixed 𝑥 = 10% of the series in each dataset has missing blocks.
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Figure 6: Mean Absolute Errors (y-axis) on three datasets along rows and under four missing scenarios along columns. X-axis

is percent of time-series with a missing block for MCAR, MissDisj, MissOver and size of the missing block for Blackout.

5.4 Comparison with Deep Learning Methods

We compare our method with with two state-of-the-art deep learn-

ing imputation models, along with a vanilla transformer model. We

use the official implementation of BRITS and GP-VAE to report

these numbers. We present MAE numbers in Table 2. First consider

the comparison on the two multi-dimensional datasets: M5 and

JanataHack. Both have store and items as the two dimensions in ad-

dition to time (Table 1). We experiment in the MCAR scenario with

𝑥 = 100% time-series with a missing block. We find that DeepMVI

outperforms all the other imputation models on both these datasets.
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Table 2: Comparison with Deep Learning Methods. Blackout has missing blocks of size 100, and MCAR has missing values in

100% of the time series.

Model
Walmart M5 JantaHack Climate Electricity Meteo

MCAR MCAR MCAR Blackout MCAR Blackout MCAR Blackout

BRITS [4] 0.69 0.22 0.26 0.69 0.28 1.16 0.19 0.77

GPVAE[8] 0.60 0.28 0.43 0.81 0.33 1.08 0.26 1.31

Transformer [25] 0.56 0.24 0.29 0.67 0.36 0.97 0.29 0.48

DeepMVI(Ours) 0.53 0.16 0.28 0.38 0.31 0.60 0.20 0.46
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Figure 7: Ablation Study done via 3 datasets represented by different plots AirQ,Climate,Electricity on MCAR scenario. y-axis

shows MAE and x-axis % of Missing TS.

The decrease in MAE is especially significant for JantaHack which

has high correlations across different stores for given products.

We next present our numbers on Climate, Electricity and Meteo,

onMCAR and Blackout. Here tooDeepMVI is either the best or close

to the best in all dataset-scenario combinations. On the Blackout

scenario our method is significantly better than BRITS, the state-

of-the-art. We attribute this to our method of creating artificial

blackouts around training indices. In contrast, the BRITS model

depends too much on immediate temporal neighborhood during

training. We see that the Transformer model can capture periodic

correlations within time series such as those in Climate MCAR.

However it fails to capture more subtle non-periodic repeating

pattern which requires attention on window feature vectors. Such

patterns are prevalent in Electricity and Meteo datasets.

5.5 Justifying Design Choices of DeepMVI

DeepMVI introduces a Temporal transformer with an innovative

left-right window feature to capture coarse-grained context, a fine-

grained local signal, and a kernel regression module that handles

multi-dimensional data. Here we perform an ablation study to

dissect the role of each of these parts.

5.5.1 Role of Context Window Features. We study the role of query

and key used in our Temporal Transformer module. Our query/key

consists of concatenated window features of previous and next

block arithmetically added with positional encoding. Positional

encoding encode the relative positions and have no information

pertaining to the context of the block where imputation needs to

be performed. A question to be asked here was whether the contex-

tual information around a missing block help in a better attention

mechanism or whether the attention mechanism just ignores this

contextual information doing a fixed periodic imputation. Figure 7

shows this method (Green). These experiments are on MCAR and

x-axis is increasing % of missing TS. Comparing the green and blue,

we see that our window context features did help on two of the

three datasets, with the impact on Electricity being quite significant.

This might be attributed to the periodic nature of the climate dataset

compared to non-periodic but strongly contextual information in

electricity.

5.5.2 Role of Temporal Transformer and Kernel Regression. In Fig-

ure 7 we present error without the Temporal Transformer Mod-

ule(Red) and without Kernel Regression Module(Brown). We see

some interesting trends here. On Climate and Electricity where each

series is large (5k) with repeated patterns across series, we see that

dropping the temporal transformer causes large jumps in error. On

Climate error jumps from 0.15 to 0.55 with 10% missing! In AirQ we

see little impact. However, on this data dropping Kernel regression

causes a large increase in error jumping from 0.04 to 0.25 on 10%

missing. Kernel regression does not help much beyond temporal

transformer on Climate and Electricity. These experiments show

that DeepMVI is capable of combining both factors and determining

the dominating correlation via the training process.

5.5.3 Role of Fine-Grained Local Signal. (Equation 15). This signal

is most useful for small missing blocks. Hence wemodify the MCAR

missing scenario such that missing percentage from all time series

is still 10%, but the missing block size is varied from 1 to 10. Figure 8

shows the results where we compare our MAE with and without

fine grained local signal with CDRec algorithm on the Climate

Dataset. The plot shows that including fine grained signal helps

improve accuracy over a model which ignores the local information.
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Figure 9: MAE (y-axis) for MCAR scenario on JanataHack.

X-axis is percent of time series with missing blocks.

Also the gain in accuracy with fine grained local signal diminishes

with increasing block size which is to be expected.

5.5.4 Effect of multidimensional kernel regression. For this task, we

run two variants of our model. The first model dubbed as Deep-

MVI1D flattens the multidimensional index of time series by getting

rid of the store and product information. The second variant is the

proposedmodel itself which retains themulti-dimensional structure

and applies kernel embeddings in two separate spaces. In DeepMVI

each time series is associated with two embeddings of size 𝑘 each.

To keep the comparison fair, DeepMVI1D uses embedding of size 2𝑘 .

Since other methods have no explicit model for multi-dimensional

indices, the input is a flattened matrix, similar to DeepMVI1D.

Figure 9 shows the performance of the variants compared to the

baselines on MCAR for increasing percentage 𝑥 of number of series

with a missing block. Observe how in this case too DeepMVI is

significantly more accurate than other methods including Deep-

MVI1D. If each series is small and the number of series is large,

there is a greater chance of capturing spurious correlation across

series. In such cases, the external multidimensional structure that

DeepMVIexploits helps to restrict relatedness only among siblings

of each dimension. We expect this difference to get magnified as

the number of dimensions increase.

5.6 Running Time

The above experiments have shown that DeepMVI is far superior

to existing methods on accuracy of imputation. One concern with
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(a) Absolute Runtime (𝑠) on y-axis with dataset arranged in in-

creasing data set size.MCAR scenariowith all time series having

missing blocks (x=100%).
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(b) Absolute Runtime (𝑠) for DeepMVI on y-axis with X-axis

showing series length in factor of 1K. The numbers are on real

datasets (AirQ,Climate,Meteo,BAFU). Number of time series is

10. More details in Section 5.6

Figure 10: Runtime Analysis of DeepMVI

any deep learning based solution is its runtime overheads. We show

in this section that while DeepMVI is slower than existing matrix

factorization methods, it is more scalable with TS length and much

faster than off-the-shelf deep learning methods.

We present running times on AirQ, Climate, Meteo, BAFU, and

JanataHack datasets in Figure 10a. The x-axis shows the datasets

ordered by increasing total size and y-axis is running time in log-

scale. In addition to methods above we also show running time

with an off the shelf transformer method. Matrix factorisation based

method like CDRec and SVDImp are much faster than DynaMMO

andDeepMVI. But compared to the vanilla Transformer our running

time is a factor of 2.5 to 7 smaller. The running time of DynaMMO

exceeds the running time of other algorithms by a factor of 1000

and increases substantially with increasing series length, which

undermines the accuracy gains it achieves. On the JanataHack

dataset, DynaMMO took 25 mins (1.5e9 𝜇𝑠) compared to DeepMVI

which took just 2.5 mins.

We next present our numbers on scalability of DeepMVI in Figure

10b. The x axis denotes the length of times series in factors of 1K.

The points correspond to datasets AirQ, Climate, Meteo and BAFU

for 1K, 5K, 10K and 50K respectively. All these datasets have 10

time series. We can see a sub-linear growth of running time with

the series length. An intuition behind the same is that our training

algorithm learns patterns, which in case of seasonal time series can

be learnt by seeing a small number fraction of the series, abstractly

one season worth of data.
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5.7 Impact on downstream analytics

A major motivation for missing value imputation is more accurate

data analytics on time series datasets [3, 10, 18, 21]. Analytical

processing typically involves studying trends of aggregate quan-

tities. When some detailed data is missing, a default option is to

just ignore the missing data from the aggregate statistic. Any MVI

method to be of practical significance in data analysis should result

in more accurate top-level aggregates than just ignoring missing

values. We present a comparison of the different MVI methods on

the average over the first dimension so the result is a 𝑛 − 1 dimen-

sional aggregated time series. Except in JanataHack and M5, this

results in a single averaged time series.

Apart from computing the above statistic on the imputation

output by various algorithms, we also compute this statistic with

just the missing values in the set dropped from the average. We

call this the DropCell method. We consider four datasets: Climate,

Electricity, JanntaHack, and M5, each in MCAR with 100% of the

time series containing missing values. On each of these datasets, we

first compute the aggregate statistic using true values. For Climate

and Electricity, this returns a single series with value at time 𝑡

as the average of values at all series at time 𝑡 . For JantaHack, we

average over 76 stores resulting in average sales of 28 products.

Similarly on M5, we average over 10 stores giving us sales of 106

items. Next we compute the aggregate statistic with missing values

imputed by five algorithms: CDRec, BRITS, GPVAE, Transformer,

and DeepMVI. We compute MAE between aggregate with imputed

values and aggregate over true values.

In Figure 11, we report the difference between MAE of DropCell

and MAE of the algorithm. We see that on the JanataHack dataset,

three existing imputation method CDRec, GPVAE, and Transformer

provide worse results than just dropping the missing value in com-

puting the aggregate statistic. In contrast DeepMVI provides gains

over this default in all cases. Also, it is overall better than exist-

ing methods, particularly on the multidimensional datasets. This

illustrates the impact of DeepMVI on downstream data analytics.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose DeepMVI, a deep learning method for

missing value imputation in multi-dimensional time-series data.

DeepMVI combines within-series signals using a novel temporal

transformer, across-series signals using a multidimensional kernel

regression, and local fine-grained signals. The network parameters

are carefully selected to be trainable across wide ranges of data

sizes, data characteristics, and missing block pattern in the data.

We extensively evaluate DeepMVI on ten datasets, against com-

paring seven conventional and three deep learning methods, and

with five missing-value scenarios. DeepMVI achieves up to 70%

error reduction compared to state of the art methods. Our method

is up to 50% more accurate and six times faster than using off-the-

shelf neural sequence models. We also justify our module choices

by comparing DeepMVI with its variants. We show that DeepMVI’s

performance on downstream analytics tasks is better than dropping

the cells with missing values as well as existing methods.

Future work in this area includes applying our neural architec-

ture to other time-series tasks including forecasting.
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