
Database Technology for the Masses:
Sub-Operators as First-Class Entities

Maximilian Bandle
Technische Universität München

bandle@in.tum.de

Jana Giceva
Technische Universität München

jana.giceva@in.tum.de

Abstract
A wealth of technology has evolved around relational databases
over decades that has been successfully tried and tested in many
settings and use cases. Yet, the majority of it remains overlooked in
the pursuit of performance (e.g., NoSQL) or new functionality (e.g.,
graph data or machine learning). In this paper, we argue that a wide
range of techniques readily available in databases are crucial to
tackling the challenges the IT industry faces in terms of hardware
trendsmanagement, growingworkloads, and the overall complexity
of a rapidly changing application and platform landscape.

However, to be truly useful, these techniques must be freed
from the legacy component of database engines: relational opera-
tors. Therefore, we argue that to make databases more flexible as
platforms and to extend their functionality to new data types and
operations requires exposing a lower level of abstraction: instead
of working with SQL it would be desirable for database engines to
compile, optimize, and run a collection of sub-operators for manipu-
lating and managing data, offering them as an external interface. In
this paper, we discuss the advantages of this, provide an initial list
of such sub-operators, and show how they can be used in practice.

PVLDB Reference Format:
Maximilian Bandle and Jana Giceva. Database Technology for the Masses:
Sub-Operators as First-Class Entities. PVLDB, 14(11): 2483 - 2490, 2021.
doi:10.14778/3476249.3476296

1 Introduction
Databases have been a cornerstone of enterprise computing for
decades. As is often pointed out, they offer what very few other sys-
tems, if any, provide: a powerful declarative language, a model and
algebra to enable reasoning about programs, sophisticated compi-
lation and optimization technologies, and a wealth of fundamental
techniques to support very high throughput rates. All this while
providing consistency, availability, and strong recoverability guar-
antees. Nevertheless, more and more users have been turning their
backs on databases in the pursuit of flexibility and performance,
willingly giving up the enumerated guarantees. For example, build-
ing directly upon intermediate formats like Apache Arrow has
grown in popularity, offering more flexibility for storing and pro-
cessing data. While this simplifies things in the short run, it makes
management more complicated in the long run, for instance, when
synchronizing data. The same holds for big data frameworks like

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476296

Compound Operator

SQL

Dataflow

Graph Analytics
Machine Learning

E

C A D

GA

A

B

D E F GCBA
Sub-Operators
A-G

C CC
Different hardware platform im-
plementations of sub-operator C

C

C CC4

1

2 3

Figure 1: Sub-operators 1 build more complex data oper-
ations 2 or dataflows 3 , where each sub-operator can be
implemented on multiple hardware platforms 4 .

Spark, which demonstrate the expressivity of offering finer granular
operations for constructing various dataflows. This supports many
use-cases but lacks some advanced features such as an optimizer.
We argue that there is no reason why traditional databases cannot
support more flexible ways of accessing and working with data.

Currently, both big data processing and hardware advancements
are driving the community to develop a variety of techniques. These
include domain-specific languages (DSLs) tailored to particular ap-
plications [11, 28], cross-compilation techniques to enable execu-
tion on different platforms [75, 78], automatic parallelization plat-
forms for running at large scale [30, 84], and connecting different
frameworks for cross-optimization [61]. Some of these mirror devel-
opments in the database world: new compilation techniques [36, 42],
new data types and languages for dealing with them [49], optimiza-
tions for multicore [88], designs for GPUs [25, 64] and FPGAs [59].

In this paper, we argue that the most concrete starting points
for such innovations are the concepts developed around database
engines. Moreover, a great deal of existing technology can be reused,
such as operator models [46], compilation techniques [38, 41, 53],
composability and orthogonality of operators [19, 39], optimization
and scheduling techniques [44], etc. However, the only way to
enable more flexibility is to change the explicit abstraction level of
the database engine interface. Thus, the system should also expose
sub-operators and provide them as an intermediate representation
to other applications and compilers (Figure 1).

By sub-operators, we mean logical functions that perform funda-
mental data transformations and management tasks. We call them
sub-operators because instead of implementing a full relational
operation (e.g., a join), they implement relatively basic functions,
for example, hashing, filtering, sorting, scattering, or gathering
data. Obviously, some of these are already used within database
engines (for optimization or compilation [9, 17, 36, 39, 71]), and

2483

https://doi.org/10.14778/3476249.3476296
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476296

the literature is full of new ideas for sub-operators tailored to new
hardware (from data exchange operators tailored to RDMA [40, 70]
to FPGA-based partitioning [32]). By exposing an interface at the
level of sub-operators, we can transform the database into a lan-
guage runtime engine capable of processing much more than just
SQL. This includes different dataflows, like machine learning, graph
processing, or easier mapping of the operators onto hardware.

Our proposal produces clear benefits and provides a more elegant
and more efficient solution to existing challenges than current ad-
hoc proposals. For example, by building complex dataflows using
sub-operators, we can reason about the workflow’s logic decoupled
from the hardware implementation details. Using sub-operators as
common building blocks for different dataflows would simplify the
maintenance of large codebases, especially when addressing the
challenges of a diverse and rapidly evolving hardware landscape, as
well as resource disaggregation in the cloud. Cross-compilation of
hybrid programs to heterogeneous hardware platforms (CPU, GPU,
FPGA) will be made easier by enabling alternative sub-operator
implementations. Additionally, small as they are, computationally
expensive but frequently used sub-operators can be integrated into
the hardware circuit logic, thereby influencing the design of future
hardware architectures. This especially pays off in cloud settings,
where a holistic approach to hardware/software co-design is of
particular interest.

Furthermore, databases can become extensible in a way they
currently are not. While UDFs still need to be parts of an SQL-
query or table functions have to mimic database functionality to
freely customize the query, sub-operators offer more degrees of
freedom, while reusing as much of the system as possible. They can
be modeled and analyzed more efficiently and thus incorporated
into a query optimizer without compromising performance. This
also makes them a more natural fit than UDFs, which are out of the
optimizer’s scope [15]. In such a setting, sub-operators resemble
instructions in a processor, available for both the optimizer to re-
arrange and the compiler to combine as needed. They transform
the database engine from a virtual machine for SQL programs to a
language runtime executing a complex Instruction Set Architecture
(ISA) made up of sub-operators, catering to a heterogeneous range
of dataflow workloads.

2 Sub-operators as first class entities
Figure 2 presents an overview of the solution we propose. We
envision a database engine that exposes a set of sub-operators as an
interface and combines them into more complex dataflows. Example
languages that can run on top are SQL operators and dataflow
models used by graph processing and machine learning systems.

Using the sub-operators as an ISA, the database engine becomes
more like a language runtime, executing a rich set of alternative
sub-operator implementations (as instructions) on heterogeneous
hardware platforms. The goal is to support not only relational
(column and row) data stores but also graphs, key-value stores, and
extensions for complex data types currently stored as blobs.

2.1 Sub-operators and interfaces
At present, our choice of sub-operators is based on analyzing prior
work that captures basic data access and compute patterns of
dataflows that can be mapped to modern hardware. We consider a

Sub-Operators ISA

Query
Optimizer

Query
Compiler

Execution
Engine

Existing Database Technology La
ng

ua
ge

 R
un

tim
e

Heterogeneous Hardware Platforms

SQL Operators Dataflow Models

Declarative Languages, DSLs (SQL, LINQ, HiveQL, Spark, ...)

Figure 2: Overview of a sub-operator-based database engine

sub-operator to be included in the ISA if it denotes an important
management task or if it operates at the right level of data granu-
larity. When an operator is too fine-grained, it becomes difficult to
optimize, while if is too coarse (e.g., an SQL join), it limits expres-
sivity and the flexibility to benefit from hardware accelerators.

Table 1 shows and categorizes an example set of sub-operator
types, which are sufficient to implement various dataflows. The set
can be easily extended with other sub-operator types and concrete
instances inspired either by prior work in relational databases (e.g.,
the exchange operator, range partitioning, string and bit manipu-
lations, fuzzy string matching) or other forms of data processing
like machine learning and graph-based analytics (e.g., complex
statistical operations over array data).
Sequential Access Scan and Materialize ensure that the system
can switch between streamed and buffered execution. It is crucial for
working with materialized intermediate states or when distributing
the compute pipelines to different hardware targets.
RandomAccess Scatter and Gather handle memory access to var-
ious locations. Combined, they can implement a join. Scatter takes
a tuple stream and materializes it based on the scatter function, e.g.,
the tuple’s hash value. Gather fetches tuples from different memory
locations based on an input stream and forwards the combined
stream for further processing.
Compute Map and Fold provide support for functional program-
ming primitives and typical Map-Reduce workloads. Map, for in-
stance, processes a stream of tuples and applies a mapping function
𝑓 to every element in the stream. It can return a varying amount
of return values per tuple, including zero. One example function is
predicate evaluation, but several different operations can be imple-
mented, serving as building blocks for more complex dataflows.
Control Flow Loop is different, as it is not part of a dataflow
pipeline. It is necessary for controlling flow and to formulate itera-
tive queries, often typical of incremental and converging workloads.

Depending on the use pattern, there may be compositions of sub-
operators that are frequently used by a variety of dataflows and,
thus, can be constructed as additional building blocks. For example,
an efficient implementation of radix partitioning is often an integral
part of relational operators (e.g., radix-join or aggregation).
2.1.1 Composing sub-operators We use partitioning to explain how
to combine sub-operators into a single, more complex operator.
Partitioning consists of several phases, often involving two passes

2484

Table 1: Example of possible sub-operators

Name Type Category Description Examples

Scan Sequential Access Scan materialized data into stream Tablescan, Buffer scan
Materialize Sequential Access Materialize data into buffer Output, Print
Scatter Random Access Write to different memory locations Build hash table
Gather Random Access Read from different memory locations Probe hash table
Map Compute Process stream with mapping function Hash, Compression, UDFs, Filter
Fold Compute Reduce streamed elements by combining Accumulate, Prefix sum
Loop Control Flow Pass data or state to next iteration K-means, Gradient descent

over the input data to enable efficient parallelization in a pipelined
system [7]. The left-hand part of Figure 3 illustrates this. Phase 1
performs the first scan and computes the histogram of how the input
tuples hash into the partitioning buckets. This phase is constructed
using map (hash) and scatter (build histogram). In Phase 2, each
thread calculates the prefix sum to determine each partition’s span.
To do this, it uses scan to read the partitions and gather to retrieve
the histograms. Then, the fold sub-operator computes the prefix
sums to determine the offset where each thread needs to write its
share of tuples. The final phase performs the second pass over the
input data and scatters the tuples to the precomputed locations.

Once constructed, the new partition sub-operator can be used
as a building block for other relational operators or more complex
dataflows. All existing efforts regarding hardware tuning and opti-
mizing the implementation of various relational operators [37, 65],
can be immediately applied to the sub-operators, automatically
rendering them available to a wider set of operations. For instance,
the benefits of software write combining, used to implement the
radix-partitioning [83], can now be used for implementing one type
of a scatter sub-operator. As a result, fast data scattering for many
operations is available both in the relational domain and beyond.

Evenmore, sub-operators providemore intuitivemapping to data
processing pipelines and are a natural way to begin automating the
introduction ofmaterialization points.We can use them to introduce
mini-buffers, as demonstrated with relaxed operator fusion [50].
They also make it very easy to reason about distributing compute
functions of a data pipeline to different targets. As shown on the
right side of Figure 3, the data flow gradually transforms from
reading from storage to compute, which is typical of data processing

Scan

Map

Scatter

Scan

Gather

Fold

Scan

Scatter

Ph
as
e
1

Ph
as
e
2

Ph
.3

Read Tuples

Hash Function

Build Histogram

Read Partitions

Get Histogram

Prefix Sum

Read Tuples

Write Partitions

Scan 𝑅
scan

Scan 𝑆
scan

Filter
gather, map

Partition

Probe HT
gather

Partition

Build HT
scatter

Sm
artStorage

Sm
artN

IC
CPU

H
ardw

are
Targets

Figure 3: Composing a partitioner using sub-operators. The
new partition sub-operator can be used in hash-joins.

workloads. Close-to-storage workloads can be accelerated by smart
storage, like computational storage [57, 74], while partitioning is
a good candidate for FPGA acceleration, and the final join logic
works best on the CPU. This distributed use case is particularly
attractive to every data system in a cloud context.

Also, the hash-join can be further augmented, as shown in Fig-
ure 3. For example, a semi-join reducer can be added to avoid
materialization overhead in the join [7, 44] by plugging a filter just
before partitioning the probe side to drop non-matching tuples
early. Such flexibility also allows the database to react gracefully to
changes in selectivity and adapt to the workload [19].

Finally, working with sub-operators, also enables us to efficiently
compose hybrid relational operators. One example is the hash teams
operator [34], which merges a hash-join and group-by aggregation
to improve performance by performing several hash-based opera-
tions without repartitioning the intermediate results.
2.1.2 Interfacing sub-operators More complex dataflows can be con-
structed using sub-operators as graph vertices. The edges of the
dataflow represent data dependencies or how data moves from one
sub-operator to another. When composing, it needs to be ensured
that the input and output of the sub-operators are compatible. The
input-output properties can be roughly classified as buffered or
streamed. A streaming sub-operator () directly accepts the input
of its predecessor to further process each tuple immediately. A
buffered operator () needs to process all tuples before further
advancing, like fold and, thus, splits the dataflow at the material-
ization points into pipelines. The materialized buffers are stateful
and encapsulate valuable data properties, such as sortedness, parti-
tioned buffers, min/max statistics for pruning, and data distribution,
which can help with additional logical optimizations.

All operators in a pipeline (A B C) can be compiled into a
single function, which may be offloaded (run) as a compute kernel.
This process is referred to as operator fusion and enables performant
execution of query pipelines by keeping data in registers or hot
caches. To increase performance, the optimizer can introduce mini-
buffers, for example to improve locality. Together with the afore-
mentioned data properties, this exploits synergies to choose a faster
implementation or avoid extra work, such as sorting data twice.

Common formats like Apache Parquet [4] or Arrow [5] can be
used to ensure compatibility with other systems. The scan opera-
tor, for example, can use Parquet both for reading base tables and
for in-memory communication. We can use Apache Arrow as an
intermediate format for buffers to store data passed between the
pipelines. The materialize operator serializes the data stream to
allow efficient and convenient processing with existing libraries or
user-defined code, similar to user-defined table functions.

2485

Scan

Map

Aggregate

Fold

Loop

new
centroids

initial
centroids

final
centroids

Combined
Sub-Operator

Scatter
Scan

Gather

Read all Points

Assign closest centroid

Group by centroid

Calculate new centroids

Figure 4: Schematic overview of one k-means iteration.

2.2 Dataflows beyond standard SQL
Sub-operators offer a more expressive interface for constructing
non-conventional operators and generic dataflow systems. One
example would be shared operators, like a shared scan [80, 89]
or a shared join [10], which combine reads of input relations, for
example. They are thus effective at performing multiple queries at
the same time [47]. It is also possible to combine subsequent rela-
tional operators, for example aggregation (group by) and join into a
group join [21, 51]. This reuses the hash table for both probing and
aggregating if join and aggregation operate on the same predicate.

However, most importantly, we aim to support all other complex
dataflows, generated by higher-level declarative or domain-specific
languages like HiveQL, LINQ, or Spark. Raven, for example, has
previously demonstrated that in-DBMS machine learning can out-
perform dedicated frameworks [33]. Their system relies on a custom
intermediate representation consisting of relational and linear alge-
bra that allows for valuable cross-optimizations. Yet, they still need
support for generating code for different hardware platforms and
hence explore TVM [12] and Tensorflow [1].

It is along these lines that we propose lowering the data op-
erations for various neighboring data processing domains (e.g.,
pagerank, k-means, connected components, graph connectivity)
onto the sub-operator types: map, reduce, scatter and gather (to
name only a few), or adding new ones.To make things more con-
crete, Figure 4 shows how to compose one iteration of standard
k-means using sub-operators. We first scan all points and hand them
over to the map operator, which also accepts the current centroids
as parameters. It processes each tuple and determines the closest
centroid. The following aggregation is composed of sub-operators
and materializes the mapped point stream based on whichever cen-
troid is closest. It restarts streaming the data once everything has
been mapped and uses fold to calculate the new cluster centroids. If
the centroids have changed since the previous iteration, loop passes
the new ones as an argument to map, and the dataflow starts again
by scanning the points. Otherwise, k-means has converged, and
loop returns the centroids.

Upon closer examination of this idea, we notice that there are
many key optimizations in these dataflow frameworks that can
already benefit from existing techniques used in database engines.

Support for desired features such as differential computing has
already been addressed by database systems. For example, memo-
ization (caching and materializing intermediate results) within a
program and even across concurrent programs can be implemented
easily in a database engine, as the required techniques are already
in use for queries. Prior work has explored their benefits when im-
plementing memoization for streaming engines [18], or for data lin-
eage and provenance [27]. Similar effort allows efficient algorithm

re-computation when the input changes, needed by frameworks
like Noria [23] and Naiad [48]. Finally, by allowing alternative sub-
operator implementations, we can benefit from existing techniques
for processing complex data types, such as images or documents.

2.3 Cross-platform compilation and execution
An important feature for modern systems is that they simplify main-
tenance of complex data processing code-bases for evolving hard-
ware architectures and enabling easy cross-platform portability.

Offering alternative implementations tailored for different ar-
chitectures allows platform-specific implementations of the sub-
operators to be decoupled from the design of higher-level operations
and data-processing algorithms. While this allows to abstract from
the specifics of hardware implementation, which simplifies reason-
ing when designing optimal dataflows, it also provides freedom for
implementing various flavors of sub-operators, each exploiting the
full potential of the underlying architecture [31, 73, 79], deploying
it to the cloud [30], or even pushing the implementation down to
the hardware circuit logic.

Furthermore, it can simplify reasoning for hybrid platform co-
execution. Having multiple implementations of each sub-operator
allows us to execute portions of a dataflow computation on different
platforms as shown in Figure 3. The actual deployment may depend
on specific properties of the underlying resources, the data location,
the sub-operator’s requirements, and many other factors.

TVM [12] already demonstrates the potential of such an ap-
proach. It is an end-to-end ML compiler that picks up ideas from
Halide for image processing to separate compute and schedule [69].
Thus, it can optimize the required computations, like tensor op-
erations, and schedule them to run on various hardware targets.
Similarly, our sub-operators primarily describe the dataflow, allow-
ing it to be flexible in scheduling the concrete implementation.

This idea extends beyond the compute resources of a single ma-
chine. With today’s trend for resource disaggregation and compute-
capable devices (e.g., smart-NICs, programmable switches, compu-
tational storage), certain sub-operators (filtering, projection, partial
sorting, partial aggregation) can be offloaded, either down to where
the data sits [85], or the data can be processed as it moves (statistics,
regular expression evaluation, partial aggregation, partitioning).

2.4 Hardware integration
Using sub-operators as common application kernels can also in-
crease the influence that data-processing systems have on hardware
design and implementation. Provided that the selected sub-operator
instances are simple enough, the majority of them can be integrated
into the hardware circuit logic. After all, specialization is one of
the most effective ways of increasing performance, as successfully
demonstrated by the SIMD instructions present in virtually all
CPUs. SIMD instructions offer various primitives, for example, scat-
ter/gather, for vectorized random memory access, which match the
proposed sub-operators.

FPGAs have been shown to be an excellent platform for offload-
ing data operations onto hardware logic, as well as for prototyping
potential ASICs. Several enterprise systems are already using them
accelerate data processing [68, 77] or encrypt it [6].

Following recent trends towards building heterogeneous archi-
tectures, more powerful co-processors (e.g., GPUs) are being placed

2486

Query Optimizer

Query Compiler

Execution Engine

Dataflow Graph in DSL

Available Suboperators

Cost Models

Implementations

Runtime System Information

Sub-Operator Requirements

3.1

3.2

3.3

Figure 5: Overview of the sub-operator system stack.

the interconnect, to enable more effortless data transfer and co-
processing. Intel’s research-oriented Xeon+FPGA architecture, in
particular, has made the exploration and prototyping of costly data
processing primitives on the FPGA even more appealing. For ex-
ample, the work on FPGA-based histograms [29], while currently
used to maintain accurate database statistics, can be repurposed as
a sub-operator for data mining algorithms (e.g., for cluster analysis).
Similarly, approximated computations and various types of pre-
computations (partial sorting or partial aggregation) implemented
on an accelerator (FPGA, GPU, or programmable switches) can be
used not only in SQL queries, but also for traditional soft computing
algorithms, which are by design tolerant of imprecision, like in ML.

Such efforts will complement some of the work done by the ar-
chitecture community on the design and implementation of various
accelerators suitable for data-processing (e.g. Q100 [87], DRAM
support for gather-scatter [76], processing-in-memory (PIM) archi-
tecture for graph analysis [2], or Oracle’s DAX [62]).

Ideally, we can use the generality of the common sub-operators to
influence future industry-scale architecture platforms. For instance,
an on-chip circuit for automatic (hash and/or range) partitioning
and routing of data across parallel entities (hardware threads or
machines) can be leveraged bymany operators [65]. One example of
enterprise chip design, in which such a hardware based partitioner
could be integrated, is Oracle’s SPARC M8. It refined the DAX (data
analytics accelerators) introduced by M7, which are specialized
circuits on the memory controller used for the basic data processing
operations of selection, scanning, and decompression as data moves
between the DRAM and the LLC of the invoking core [3]. Rather
than hiding such features behind a faster implementation of SQL, a
database engine can encapsulate them as sub-operators and offer
them as row primitives.

3 Impact on system design
Making sub-operators first-class entities of a data processing system
also affects the design and implementation of the system stack.
Figure 5 illustrates the components we discuss in this section.

3.1 Query Optimizer
One immediate challenge is that query optimization becomes more
involved the more choices we have for executing a query. By adding
sub-operators, we add a whole new level of customization to each
query plan, which is why we propose optimizing statically in layers
and dynamically during runtime.
High-Level Optimization: The first layer acts on higher-level
operations before lowering to sub-operators. For example, by the
time the database processes a SQL query, it has already parsed and
optimized the query, e.g., decorrelating subqueries [55], and given

Query Plan Sub-Operators Machine Code Microadaptivity

High-Level Mid-Level Low-Level Runtime

𝜎
S

R

E

C A

mov rax, [rbx]
add rax, 25
cmp rax, rdx
je #found

Slow Fast

Static Optimization Dynamic Opt.
Figure 6: Optimization levels using sub-operators.

hints, which physical operator to use [56]. This demonstrates how
we still benefit from existing techniques.
Mid-Level Optimization: Our optimizer then receives a data-
flow graph as input. Each relational operator is deconstructed into
sub-operators, as outlined in Section 2.1. This opens up more opti-
mization opportunities at the sub-operator layer, such as reasoning
about which physical implementation to choose. This means that
we have to decide whether and where to offload computation, and
as a direct result, how to split the dataflow between all available
hardware resources. Relatively small sub-operators considerably
simplify the analysis and derivation of their individual cost models
compared to the cost functions for full SQL operators or UDFs.

Since sub-operators typically have a clear data access pattern and
mostly consist of a single iteration over the data, the cost models
can re-use a significant amount of prior work that has identified
how to model the costs of the access patterns for different hard-
ware platforms. For example, for modern multicore machines [46],
GPUs [26], or other heterogeneous architectures [82].
Low-Level Optimizations: Meta-frameworks like MLIR are used
to lower the dataflow to target architectures. [43] They can be ap-
plied after the sub-operators are assigned to a hardware target,
consider the whole dataflow, and offer their own specific optimiza-
tions, such as constant propagation or auto-vectorization.
Dynamic Optimization: However, the opportunities of having
so many compatible variants of the same sub-operator still poses a
lot of challenges, Depending on where the data sits and how busy
each of the disaggregated hardware resources is at the moment,
offloading might be beneficial or not. Since we cannot foresee all
these parameters while preparing the query, we also need runtime
adaptivity. The idea is that, each sub-operator implementation al-
ternative can be augmented with auxiliary information, such as
the cost of its execution on the particular hardware platform, or
its resource footprint (i.e., the resource requirements for efficient
execution). The latter is in particular useful for multi-query, parallel
executions in a noisy environment (e.g., in the cloud) or microad-
aptivity, as we discuss in Section 3.3.

3.2 Query Compiler
The compiler takes the output from the optimizer and generates a
program executable. In doing so, modern compilers already blur the
boundaries between relational operators and operate on pipelines
of sub-operators until a pipeline breaker is reached [36, 50]. Gener-
ating pipelines and pipeline breakers follows on naturally from our
discussion on streaming vs. buffering sub-operators in Section 2.1.2.

The query compiler splits relational operators into smaller units.
For example, even if an operator consists of multiple stages that
logically belong together (build and probe in a join), it is often phys-
ically separated into units as parts of different execution pipelines.

2487

As a result, both compiler and execution engine do not operate inter-
nally with relational operators, but with their building blocks [44].

To further enhance the flexibility of data processing engines,
a compiler could use ready-generated sub-operator implementa-
tions, either with different resource footprint(s) [8] or variants that
match the desired hardware platform, as suggested by the optimizer.
These alternative sub-operator implementations can be either hand-
crafted using existing optimization techniques for SQL operators
or automatically generated. Frameworks like LLVM [42, 43, 75],
Voila [24] or Lightweight Modular Staging (LMS) [71] support spe-
cialization and are already in use in systems like Tupleware [16],
HyPer [35], Umbra [54], and Legobase [38].

Finally, the mere idea of using sub-operators as an IR and ex-
plicitly exposing them as an external interface is highly compatible
with recent proposals for meta-compiler frameworks like MLIR [43].
Combined with sub-operators as an IR, we consider this to be the
only systematic way of developing database systems for heteroge-
neous hardware. A common intermediate representation enables
our community to rely on proposals like MLIR for low-level opti-
mizations or offloading to accelerators like FPGAs [75].

3.3 Execution engine
The query executor caches alternative implementations of the same
sub-operator, and choose one of them dynamically during query
execution, based on the preference(s) suggested by the optimizer.

If integrated within an (operating) system runtime, the query ex-
ecution engine can also leverage information about current queue
lengths and the utilization of various resources on heterogeneous
hardware platforms (such as current GPU or FPGA use). Such infor-
mation is particularly important when executing concurrent work-
loads, and, hence, multiple dataflows. This, together with auxiliary
information about the resource footprint and the requirements at-
tached to the sub-operators can enable the execution engine to
react better to runtime noise [22]. Similar to the microadaptivity
technique, used by Vectorwise [72], this flexibility enables the sys-
tem to adapt better to changing environments, which can result in
both improved performance and better resource utilization.

4 Related work
The benefits of working with sub-operators (or fragmenting tradi-
tional SQL operators into smaller components) are already known
to our community; it is just that we have never properly formalized
them or exposed the sub-operators as an interface.

For example, Dittrich et al. [19] propose splitting relational op-
erators, like joins, into smaller fragments that allow finer, more
granular performance tuning in the optimizer. Voila [24] uses a
custom IR to chart the design space between vectorization and com-
pilation, CVM [52] outlines how to build a common infrastructure,
while Voodoo [64] shows that we can use an intermediate IR of
database kernels to generate more efficient parallel executables
for a variety of hardware platforms. Unsurprisingly, the ideas are
also explored in other contexts. For instance, Love et al. [20] iden-
tify the most common shuffle kernels that can be used as building
blocks for various graph algorithms. It is also an attractive approach
for engines that support cross-platform execution. He et al. based
their design of a hybrid CPU/GPU co-processing system GDB [26]

on a set of data-parallel primitives, later used to implement com-
mon SQL operators. PyWren further demonstrates the elasticity
and simplicity of serverless lambda functions as building blocks
for maps [30]. Prior work also explored alternative methods of of-
floading parts of the operator computation onto a co-processor or
accelerator [31, 63]. From an optimization perspective, our proposal
shares a lot of challenges with workflow management systems that
build dataflows from sub-operators that are backed by different
variations, even though our focus is much closer to the hardware.

Novel framework proposals from the compiler community, like
MLIR [43], LLHD [75] and TVM [12], outline a more generic ap-
proach of lowering dataflow systems in a multi-level process of
graph transformation and optimization through different granular-
ites of intermediate representations before generating executables
for various hardware targets, including accelerators.

Regarding the domain of hardware specialization, we have al-
ready referred to the DAX engines introduced in Oracle’s SPARC
M7 [62] and refined in M8. Other examples are Google’s TPU, the
Q100 data processing unit [87], the energy-efficient hardware par-
titioner [86], and Baidu’s data-processing accelerators [58, 60]. Re-
configurable hardware, like FPGAs, is an immediate choice for
exploring operation offloading down to hardware. However, coarse-
grained reconfigurable architectures (CGRA) [67, 81] are even closer
to our concept of sub-operators. They are not only faster to re-
program, but work at a coarser granularity with so-called parallel
hardware primitives, which are powerful enough to express a vari-
ety of dataflows [66]. Templated-based FPGA framework designs
customized for data-processing [45] are also worth considering.

We would like to emphasize that we propose building a language
runtime using sub-operators as an ISA rather than locally extending
the database to run programs, as was the case with stored proce-
dures. An ISA, allowing execution of complex dataflows composed
of sub-operators, can be used to augment existing efforts that revisit
the interface between applications and databases [13]. In particu-
lar, if extended, the QBS [14] optimizer can use sub-operators to
execute the application converted code beyond SQL-only queries.

5 Conclusion
In this paper, we present the benefits of lowering the explicit level
of abstraction on which database engines traditionally operate by
making sub-operators first-class entities. This enables a database en-
gine to overcome the current limitations of the relational model and
SQL and serves as a language runtime that executes an ISA of sub-
operators. Such a change makes database engines flexible platforms,
which execute various complex dataflows from a range of applica-
tions, so that they benefit from existing database technologies and
non-functional properties, like consistency or recoverability.

Looking ahead, we believe that the proposed sub-operators are
especially attractive in the context of today’s trends towards in-
creased hardware specialization and resource disaggregation. In
addition to accelerators, pushing compute functions either down
to where the data sits (in smart storage) or as the data moves over
the network (via smart NICs) is a promising way to address the
widening gap of data deluge and the bandwidth capacities of today’s
hardware. Thinking in terms of sub-operators is an elegant and
intuitive way of efficiently approaching the problem of executing
dataflow pipelines in such deployment environments.

2488

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-in-memory
Accelerator for Parallel Graph Processing. In ISCA ’15, pages 105–117.

[3] K. Aingaran et al. M7: Oracle’s next-generation sparc processor. IEEE Micro,
35(2):36–45, 2015.

[4] Apache Software Foundation. Parquet—Columnar storage for the people. https:
//parquet.apache.org, 2013.

[5] Apache Software Foundation. Arrow—A cross-language development platform
for in-memory data. https://arrow.apache.org, 2019.

[6] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and
R. Venkatesan. Orthogonal Security with Cipherbase. In CIDR 2013.

[7] M. Bandle, J. Giceva, and T. Neumann. To partition, or not to partition, that is
the join question in a real system. In SIGMOD ’21.

[8] S. K. Begley, Z. He, and Y. P. Chen. Mcjoin: a memory-constrained join for
column-store main-memory databases. In SIGMOD’12, 2012.

[9] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
monetdb. Commun. ACM, 2008.

[10] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join operator
for highly concurrent data warehouses. PVLDB ’09, 2(1):277–288.

[11] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A
Domain-specific Approach to Heterogeneous Parallelism. In PPoPP ’11, pages
35–46.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: an automated end-to-
end optimizing compiler for deep learning. In USENIX ’18, 2018.

[13] A. Cheung. Rethinking the Application-Database Interface. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, USA, 2015.

[14] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing Database-backed
Applications with Query Synthesis. In PLDI ’13, pages 3–14.

[15] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Çetintemel, and
S. Zdonik. An architecture for compiling udf-centric workflows. Proc. VLDB
Endow., 8(12):1466–1477, 2015.

[16] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B. Zdonik.
Tupleware: "Big" Data, Big Analytics, Small Clusters. In CIDR 2015.

[17] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher, N. Verma,
and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP engine. In
SIGMOD ’13.

[18] Y. Diao, D. Florescu, D. Kossmann, M. J. Carey, and M. J. Franklin. Implementing
Memoization in a Streaming XQuery Processor. In XSym’04, pages 35–50.

[19] J. Dittrich and J. Nix. The Case for Deep Query Optimisation. In CIDR 2020.
[20] Eric Love. Ressort: An Auto-Tuning Framework for Parallel Shuffle Kernels.

Master’s thesis, University of California, Berkeley, Berkeley, California, USA,
2016.

[21] P. Fent and T. Neumann. A practical approach to groupjoin and nested aggregates.
VLDB ’21.

[22] J. Giceva, G. Alonso, T. Roscoe, and T. Harris. Deployment of Query Plans on
Multicores. PVLDB ’14, 8(3):233–244, 2014.

[23] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler, M. F.
Kaashoek, and R. T. Morris. Noria: dynamic, partially-stateful data-flow for
high-performance web applications. In OSDI, 2018.

[24] T. Gubner and P. Boncz. Charting the design space of query execution using
voila. In VLDB ’21.

[25] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA, pages 197–208. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[26] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational Query Coprocessing on Graphics Processors. ACM Trans. Database
Syst., 34(4):21:1–21:39.

[27] T. Heinis and G. Alonso. Efficient lineage tracking for scientific workflows. In
SIGMOD ’08, pages 1007–1018.

[28] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL for easy and
efficient graph analysis. In ASPLOS, pages 349–362, 2012.

[29] Z. Istvan, L.Woods, and G. Alonso. HistogramsAs a Side Effect of DataMovement
for Big Data. In SIGMOD ’14, pages 1567–1578.

[30] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud:
Distributed computing for the 99In SoCC, 2017.

[31] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU Join Processing Revisited.
In DaMoN ’12, pages 55–62.

[32] K. Kara, J. Giceva, and G. Alonso. FPGA-based Data Partitioning. In SIGMOD ’17.
[33] K. Karanasos, M. Interlandi, F. Psallidas, R. Sen, K. Park, I. Popivanov, D. Xin,

S. Nakandala, S. Krishnan, M. Weimer, Y. Yu, R. Ramakrishnan, and C. Curino.

Extending relational query processing with ML inference. In CIDR 2020.
[34] A. Kemper, D. Kossmann, and C. Wiesner. Generalised Hash Teams for Join and

Group-by. In VLDB ’99, pages 30–41.
[35] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory

database system based on virtual memory snapshots. In ICDE, 2011.
[36] T. Kersten, V. Leis, and T. Neumann. Tidy tuples and flying start: Fast compilation

and fast execution of relational queries in umbra. Proc. VLDB Endow., 2021.
[37] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,

A. Di Blas, and P. Dubey. Sort vs. Hash revisited: fast join implementation on
modern multi-core CPUs. PVLDB ’09, 2(2):1378–1389, 2009.

[38] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building Efficient Query Engines
in a High-level Language. PVLDB, 7(10):853–864.

[39] A. Kohn, V. Leis, and T. Neumann. Building Advanced SQL Analytics From
Low-Level Plan Operators. In SIGMOD’21.

[40] D. Koutsoukos, I. Müller, R. Marroquín, and G. Alonso. Modularis: Modular data
analytics for hardware, software, and platform heterogeneity, 2020.

[41] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query
evaluation. In ICDE’10, pages 613–624.

[42] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In CGO ’04, pages 75–, 2004.

[43] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR: A Compiler Infrastructure
for the End of Moore’s Law, 2020.

[44] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven Parallelism: A
NUMA-aware Query Evaluation Framework for the Many-core Age. In SIG-
MOD’14, pages 743–754, 2014.

[45] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and
H. Esmaeilzadeh. TABLA: A unified template-based framework for accelerating
statistical machine learning. In HPCA ’16, 2016.

[46] S. Manegold, P. Boncz, and M. L. Kersten. Generic Database Cost Models for
Hierarchical Memory Systems. In VLDB ’02, pages 191–202.

[47] R. Marroquín, I. Müller, D. Makreshanski, and G. Alonso. Pay one, get hundreds
for free: Reducing cloud costs through shared query execution. In Proceedings of
the ACM Symposium on Cloud Computing, pages 439–450, 2018.

[48] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential Dataflow. In
CIDR 2013.

[49] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object, Relations and
XML in the .NET Framework. In SIGMOD ’06, pages 706–706.

[50] P. Menon, A. Pavlo, and T. C. Mowry. Relaxed operator fusion for in-memory
databases: Making compilation, vectorization, and prefetching work together at
last. Proc. VLDB Endow., 11(1):1–13, 2017.

[51] G. Moerkotte and T. Neumann. Accelerating queries with group-by and join by
groupjoin. Proc. VLDB Endow., 4(11):843–851, 2011.

[52] I. Müller, R. Marroquin, D. Koutsoukos, M. Wawrzoniak, S. Akhadov, and
G. Alonso. The collection virtual machine: an abstraction for multi-frontend
multi-backend data analysis. In DaMoN, pages 7:1–7:10. ACM, 2020.

[53] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB ’11, 4(9):539–550.

[54] T. Neumann and M. J. Freitag. Umbra: A disk-based system with in-memory
performance. In CIDR 2020. www.cidrdb.org.

[55] T. Neumann and A. Kemper. Unnesting arbitrary queries. In BTW 2015.
[56] T. Neumann, V. Leis, and A. Kemper. The complete story of joins (in hyper). In

BTW 2017.
[57] NGD Systems. Newport Platform. https://www.ngdsystems.com/, 2021.
[58] Nicole Hemsoth. An Early Look at Baidu’s Custom AI and Analytics Proces-

sor. https://www.nextplatform.com/2017/08/22/first-look-baidus-custom-ai-
analytics-processor/, 2017.

[59] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F. Martínez,
and C. Guestrin. GraphGen: An FPGA Framework for Vertex-Centric Graph
Computation. In FCCM ’14, pages 25–28.

[60] J. Ouyang, W. Qi, Y. Wang, YichenTu, J. Wang, and B. Jia. SDA: software-defined
accelerator for general-purpose big data analysis system. In Hot Chips, 2016.

[61] S. Palkar, J. J. Thomas, A. Shanbhag, M. Schwarzkopf, S. P. Amarasinghe, and
M. Zaharia. A common runtime for high performance data analysis. In CIDR
2017.

[62] S. Phillips. M7: Next Generation SPARC. Presented at Hot Chips (HC 26): A
symposium on High Performance Chips, August, 2014.

[63] H. Pirk, S. Manegold, and M. Kersten. Waste not... efficient co-processing of
relational data. In IEEE International Conference on Data Engineering, 2014.

[64] H. Pirk, O. R. Moll, M. Zaharia, and S. Madden. Voodoo - A vector algebra for
portable database performance on modern hardware. VLDB’16, 2016.

[65] O. Polychroniou and K. A. Ross. A Comprehensive Study of Main-memory
Partitioning and Its Application to Large-scale Comparison- and Radix-sort. In
SIGMOD’ 14, pages 755–766, 2014.

[66] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. D. Sa, C. Kozyrakis, and
K. Olukotun. Generating configurable hardware from parallel patterns. In
ASPLOS’16, 2016.

2489

https://parquet.apache.org
https://parquet.apache.org
https://arrow.apache.org
https://www.ngdsystems.com/
https://www.nextplatform.com/2017/08/22/first-look-baidus-custom-ai-analytics-processor/
https://www.nextplatform.com/2017/08/22/first-look-baidus-custom-ai-analytics-processor/

[67] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. Plasticine: A reconfigurable architecture for
parallel paterns. In ISCA’17, 2017.

[68] A. Putnam et al. A reconfigurable fabric for accelerating large-scale datacenter
services. In ISCA, pages 13–24, 2014.

[69] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P. Amaras-
inghe. Halide: A language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In PLDI ’13.

[70] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann. High-speed Query
Processing over High-speed Networks. PVLDB ’15, 9(4):228–239.

[71] T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs. In GPCE ’10, pages 127–136.

[72] B. Răducanu, P. Boncz, and M. Zukowski. Micro Adaptivity in Vectorwise. In
SIGMOD ’13, pages 1231–1242.

[73] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey.
Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In
SIGMOD, pages 351–362, 2010.

[74] ScaleFlux. An Early Look at Baidu’s Custom AI and Analytics Processor. https:
//www.scaleflux.com/, 2021.

[75] F. Schuiki, A. Kurth, T. Grosser, and L. Benini. LLHD: a multi-level intermediate
representation for hardware description languages. In SIGPLAN ’20, 2020.

[76] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry. Gather-scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-unit Strided Accesses. In MICRO’15, pages 267–280.

[77] M. Singh and B. Leonhardi. Introduction to the ibm netezza warehouse appliance.
In CASCON’11.

[78] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. IEEE Des. Test, 12(3):66–73.

[79] J. Teubner and R. Mueller. How Soccer Players Would Do Stream Joins. In
SIGMOD ’11, pages 625–636.

[80] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann. Predictable
performance for unpredictable workloads. PVLDB ’09, 2(1):706–717.

[81] M. Vilim, A. Rucker, Y. Zhang, S. Liu, and K. Olukotun. Gorgon: Accelerating
machine learning from relational data. In ISCA’20, 2020.

[82] Z. Wang, B. He, and W. Zhang. A study of data partitioning on OpenCL-based
FPGAs. In FPL, 2015.

[83] J. Wassenberg and P. Sanders. Engineering a multi-core radix sort. In Euro-Par’11,
pages 160–169. Springer, 2011.

[84] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
[85] L. Woods, Z. István, and G. Alonso. Ibex: An Intelligent Storage Engine with

Support for Advanced SQL Offloading. PVLDB’14, 7(11):963–974.
[86] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating Big Data with High-

throughput, Energy-efficient Data Partitioning. In ISCA ’13, pages 249–260.
[87] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The Architecture

and Design of a Database Processing Unit. In ASPLOS ’14, pages 255–268.
[88] C. Zhang and C. Ré. Dimmwitted: A study of main-memory statistical analytics.

PVLDB, 7(12):1283–1294.
[89] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans: dynamic

bandwidth sharing in a DBMS. In VLDB ’07, pages 723–734.

2490

https://www.scaleflux.com/
https://www.scaleflux.com/

