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ABSTRACT
Log-Structured Merge-trees (LSM-trees) have been widely used in
modern NoSQL systems. Due to their out-of-place update design,
LSM-trees have introduced memory walls among the memory com-
ponents of multiple LSM-trees and between the write memory and
the buffer cache. Optimal memory allocation among these regions
is non-trivial because it is highly workload-dependent. Existing
LSM-tree implementations instead adopt static memory allocation
schemes due to their simplicity and robustness, sacrificing perfor-
mance. In this paper, we attempt to break down these memory walls
in LSM-based storage systems. We first present a memory man-
agement architecture that enables adaptive memory management.
We then present a partitioned memory component structure with
new flush policies to better exploit the write memory to minimize
the write cost. To break down the memory wall between the write
memory and the buffer cache, we further introduce a memory tuner
that tunes the memory allocation between these two regions. We
have conducted extensive experiments in the context of Apache
AsterixDB using the YCSB and TPC-C benchmarks and we present
the results here.
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1 INTRODUCTION
Log-Structured Merge-trees (LSM-trees) [47] are widely used in
modern NoSQL systems, such as LevelDB [4], RocksDB [6], Cas-
sandra [2], HBase [3], X-Engine [30], and AsterixDB [1]. Unlike
traditional in-place update structures, LSM-trees adopt an out-of-
place update design by first buffering all writes in memory; they are
subsequently flushed to disk to form immutable disk components.
The disk components are periodically merged to improve query
performance and reclaim space occupied by obsolete records.

Efficient memory management is critical for storage systems to
achieve optimal performance. Compared to update-in-place systems
where all pages are managed within shared buffer pools, LSM-trees
have introduced additional memory walls1. Due to the LSM-tree’s
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1In this paper, the term memory wall refers to the barriers among various memory
regions that prevent efficient memory sharing.

out-of-place update nature, the write memory is isolated from the
buffer cache. Moreover, data management systems adopting LSM
storage engines, such as MyRocks [5] on RocksDB [6], PolarDB [18]
on X-Engine [30], and AsterixDB [9], must deal with multiple het-
erogeneous LSM-trees from multiple datasets and indexes. This
requires the write memory to be efficiently shared among multiple
LSM-trees. Since the optimal memory allocation heavily depends on
the workload, memory management should be workload-adaptive
to maximize the system performance.

Unfortunately, adaptivity is non-trivial, as it is highly workload-
dependent. Existing LSM-tree implementations, such as RocksDB [6]
and AsterixDB [32], have opted for simplicity and robustness over
optimal performance by adopting static memory allocation schemes.
For example, RocksDB sets a static size limit (default 64MB) for
each memory component. AsterixDB specifies the maximum num-
ber N of writable datasets (default 8) so that each active dataset,
including its primary and secondary indexes, receives 1/N of the
total write memory. Both systems allocate separate static budgets
for the write memory and the buffer cache. Despite their simplicity
and robustness, static memory allocation schemes may negatively
impact the system performance and efficiency due to sub-optimal
memory allocation.

Our Contributions. In this paper, we seek to break down these
memory walls in LSM-based storage systems to enable adaptive
memory memory management and maximize performance and
efficiency. As the first contribution, we present an adaptive mem-
ory management architecture for LSM-based storage systems. In
this architecture, the overall memory budget is divided into the
write memory region and the buffer cache region. Within the write
memory region, the memory allocation of each memory component
is purely driven by its demands, i.e., write rates, to minimize the
overall write amplification. The two regions are connected via a
memory tuner that adaptively tunes the memory allocation between
the write memory and the buffer cache.

As the second contribution, we present a series of techniques for
efficiently managing the write memory for LSM-trees in order to
minimize their write I/O cost. We first present a new LSM memory
component structure for managing the write memory for a single
LSM-tree, and then propose novel flush policies for managing the
write memory for multiple LSM-trees.

Our third contribution is the detailed design and implementation
of a memory tuner that adaptively tunes the memory allocation
between the write memory and the buffer cache to reduce the sys-
tem’s overall I/O cost. The memory tuner performs on-line tuning
by modeling the I/O cost of LSM-trees without any a priori knowl-
edge of the workload. This further allows the memory tuner to
quickly adjust the memory allocation when the workload changes.
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As the last contribution, we have implemented all of the pro-
posed techniques inside Apache AsterixDB [1]. We have carried
out extensive experiments on both the YCSB benchmark [22] and
the TPC-C benchmark [7] to evaluate the effectiveness of the pro-
posed techniques. The experimental results show that the proposed
techniques successfully reduce the disk I/O cost, which in turn
maximizes system efficiency and overall performance.

The remainder of this paper is organized as follows. Section 2 dis-
cusses background information and related work. Section 3 presents
our adaptive memory management architecture for LSM-trees. Sec-
tion 4 describes the new memory component structure for manag-
ing the write memory. Section 5 presents the design and implemen-
tation of the memory tuner. Section 6 experimentally evaluates the
proposed techniques. Finally, Section 7 concludes the paper.

2 BACKGROUND
2.1 Log-Structured Merge Trees
The LSM-tree [47] is a persistent index structure optimized forwrite-
intensive workloads. LSM-trees perform out-of-place updates by
always buffering writes into a memory component and appending
log records to a transaction log for durability. Writes are flushed to
disk when either the memory component is full, called a memory-
triggered flush, or when the transaction log length becomes too
long, called a log-triggered flush.

A query over an LSM-tree has to reconcile the entries with
identical keys from multiple components, as entries from newer
components override those from older components. A range query
searches all components simultaneously using a priority queue to
perform reconciliation. A point lookup query simply searches all
components from newest to oldest until the first match is found. To
speed up point lookups, a common optimization is to build Bloom
filters [15] over the sets of keys stored in disk components.

To improve query performance and space utilization, disk compo-
nents are periodically merged according a pre-defined merge policy.
In practice, two types of merge policies are commonly used [42],
both of which organize disk components into “levels”. The leveling
merge policy maintains one component per level. When a compo-
nent at Level i is T times larger than that of Level i − 1, it will be
merged into Level i + 1 to form a new component. In contrast, the
tiering merge policy maintains T components per level. When a
Level i becomes full with T components, they are merged together
into a new component at Level i + 1.

Partitioning. In practice, a common optimization is to range-
partition a disk component intomultiple (often fixed-size) SSTables2
to bound the processing time and temporary space of each merge.
This optimization is often used together with the leveling merge
policy, as pioneered by LevelDB [4]. An example of a partitioned
LSM-tree with the leveling merge policy is shown in Figure 1, where
each SSTable is labeled with its key range. Note that L0 is not
partitioned since its SSTables are directly flushed from memory.
L0 also stores multiple SSTables with overlapping key ranges to
absorb write bursts. To merge an SSTable from Li to Li+1, all of its
overlapping SSTables at Li+1 are selected and these SSTables are
merged to form new SSTables at Li+1. For example in Figure 1, the

2An SSTable (Sorted String Table) [20] stores a set of immutable rows sorted on keys.

L0

L1

L2

0-99

0-50 55-99

0-20 22-52 53-75 80-95

0-99

memory

disk

0-99

Before Merge

0-99
55-99

53-75 80-95

0-99

0-99

0-15 17-30 32-52
After Merge

merging SSTable
new SSTable

SSTable

Figure 1: Example Partitioned LSM-tree

Table 1: LSM-tree Notation

Notation Definition Example
Global Notation

T size ratio of the merge policy 10
P disk page size 4 KB/page
Mw total write memory size 1GB

Local Notation
ei entry size 100 B/entry

ai
ratio of an LSM-tree’s write
memory to total write memory 20%

Ni number of levels (excluding L0) 3
|Lli | size of Level Lli 10 GB
Ci write I/O cost per entry 4 pages/entry

SSTable labeled 0-50 at L1 will be merged with the SSTables labeled
0-20 and 22-52 at L2, which produce new SSTables labeled 0-15,
17-30, and 32-52 at L2. When the LSM-tree becomes too large, a new
level must be added. To maximize space utilization, the new level
should be added at L1 instead of the last level [27]. The last level
is always treated as full, which in turn determines the maximum
sizes of other levels. When the maximum size of L1 is larger thanT
times the write memory size (or the configured base level size), a
new L1 is added while all remaining levels Li become Li+1. In our
work, we will focus on the partitioned leveling structure due to its
wide adoption in today’s LSM-based systems.

Write Memory vs. Write Cost. Here we provide a simple cost
analysis to show the relationship between the write memory size
and the per-entry write I/O cost. Our notation is shown in Table 1.
Note that since we consider multiple LSM-trees, Table 1 contains
global notation that is valid for all LSM-trees and local notation that
is specific to one LSM-tree. In the remainder of this paper, for the
i-th LSM-tree, we add the subscript i to denote the local notation for
this LSM-tree. Note that we have further introduced the notation
a to denote the write memory ratio of an LSM-tree. Thus, for the
i-th LSM-tree, its write memory size is ai ·Mw . Moreover, given a
collection of K LSM-trees, we have

∑K
i=1 ai = 1.

Each entry written to an LSM-tree is flushed to disk once and
merged multiple times down to the last level. The per-entry flush
cost is e

P pages/entry. Merging an SSTable at Level Li usually hasT
overlapping SSTables at Level Li+1. Thus, to merge an entry from L0
to the last level, the overall merge cost is e

P · (T + 1) ·N pages/entry.
Here the number of levels N can be expressed using other terms
as follows. Given an LSM-tree whose write memory size is a ·Mw ,
the maximum size of i-th level is a · Mw · T i . Based on the size
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of the last Level |LN |, we have |LN | ≤ a ·Mw · TN . Thus, N can
be approximated as logT

|LN |
a ·Mw

. Putting everything together, the
per-entry write cost C is approximately

C =
e

P
+

e

P
· (T + 1) · logT

|LN |
a ·Mw

(1)

As Equation 1 shows, a larger write memory reduces the write
cost by reducing the number of disk levels. Thus, it is important to
utilize a large write memory efficiently to reduce the write cost.

2.2 Apache AsterixDB
Apache AsterixDB [1, 9, 19] is a parallel, semi-structured Big Data
Management System (BDMS) for efficientlymanaging large amounts
of data. It supports a feed-based framework for efficient data in-
gestion [29, 59]. The records of a dataset in AsterixDB are hash-
partitioned based on their primary keys across multiple nodes of
a shared-nothing cluster [10]. Each partition of a dataset uses a
primary LSM-tree to store the data records with each component
begin organized as a B+-tree. Local secondary indexes, including
LSM-based B+-trees, R-trees, and inverted indexes, can also be built
to expedite query processing.

AsterixDB uses a static memory allocation scheme for simplicity
and robustness [32]. It specifies static memory budgets for the
buffer cache and the write memory. Moreover, AsterixDB specifies
the maximum number D of writable datasets (default 8) so that
each active dataset receives 1/D of the total write memory. When
a dataset’s write memory is full, all of its LSM-trees, including
its primary index and secondary indexes, will be flushed to disk
together. If the user writes to the D+1-st dataset, the least recently
written active dataset will be evicted to reclaim its write memory. In
this work, we use AsterixDB as a testbed to evaluate the proposed
techniques and compare them to other baselines.

2.3 Related Work
LSM-trees. Recently, a large number of improvements have been
proposed to optimize the original [47] LSM-tree design. These im-
provements include optimizing write performance [11, 14, 25, 26, 33,
37, 45, 46, 50, 62], supporting auto-tuning of LSM-trees [23, 24, 35,
53], optimizing LSM-based secondary indexes and filters [39, 44, 49],
minimizing write stalls [12, 40, 54], and extending the applicability
of LSM-trees [43, 51]. We refer readers to a recent survey [42] for a
more detailed description of these LSM-tree improvements.

In terms of memory management, FloDB [13] presents a two-
level memory component structure to mask write latencies. How-
ever, it mainly optimizes for peak in-memory throughput instead
of reducing the overall write cost. Accordion [16] introduces a
multi-level memory component structure with memory flushes and
merges. One drawback is that Accordion does not range-partition
memory components, resulting in high memory utilization during
large memory merges. We will further experimentally evaluate
Accordion in Section 6. Monkey [23] uses analytical models to tune
the memory allocation between memory components and Bloom
filters. ElasticBF [34] proposes a dynamic Bloom filter management
scheme to adjust false positives rates based on the data hotness.
Different from Monkey and ElasticBF, in our work Bloom filters
are managed the same paged way as SSTables through the buffer
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Figure 2: Memory Management Architecture

cache. It should also be noted that virtually all previous research
only considers the memory management of a single LSM-tree.

Database Memory Management. The importance of memory
management, or buffer management, has long been recognized
for database systems. Various buffer replacement policies, such
as DBMIN [21], 2Q [31], LRU-K [48], and Hot-Set [52], have been
proposed to reduce buffer cache misses. These replacement policies
are orthogonal to this work becausewemainly focus on thememory
walls introduced by the LSM-tree’s out-of-place update design.

Automatic memory tuning is also an important problem for data-
base systems. Some commercial DBMSs have supported auto-tuning
the memory allocation among different memory regions [8, 55]. De-
pending on the tuning goals, the memory tuning techniques can be
classified as maximizing the overall throughput or meeting latency
requirements. DB2’s self-tuning memory manager (STMM) [55] is
an example of the former, using control theory to tune the memory
allocation. However, STMM targets targets a traditional in-place
update system, which does not include the write memory used
by LSM-trees. For the latter, the relationship between the buffer
cache size and the cache miss rate must be predicted, using either
analytical models [57] or machine learning approaches [56].

There has been recent interest in exploiting machine learning
to tune database configurations [28, 36, 58, 61], where memory
allocation is treated as one tuning knob. These approaches usually
require additional training steps and user inputs. Different from
these approaches, our memory tuner uses a white-box approach; it
carefully models the I/O cost of LSM-based storage systems.

3 MEMORY MANAGEMENT ARCHITECTURE
In this section, we present our memory management architecture to
enable adaptive memory management. In this architecture, depicted
in Figure 2, the total memory budget is divided into the write mem-
ory Mwrite and the buffer cache Mcache . These two regions are
further connected via a memory tuner, which periodically performs
memory tuning to reduce the total I/O cost.

Write Memory. The write memory stores incoming writes for
all LSM-trees. To maximize memory utilization, we do not set static
size limits for the individual memory components. Instead, all mem-
ory components aremanaged through a sharedmemory pool.When
an LSM-tree has insufficient memory to store its incoming writes,
more pages will be requested from the pool. When the overall
write memory usage is too high, an LSM-tree is selected to have its
memory component flushed to disk.

While the basic idea of this design is straightforward, there are
several technical challenges here. First, how can we best utilize
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the write memory to minimize the write cost? Second, since the
memory component of an LSM-tree now becomes dynamic, how
can we adjust the disk levels as the write memory changes to always
make optimal performance trade-offs? Finally, given a collection
of heterogeneous LSM-trees of different sizes, how can we allocate
the write memory to these LSM-trees to minimize the overall write
cost? We will present our solutions to these challenges in Section 4.

Buffer Cache. The buffer cache stores (immutable) disk pages
of the SSTables as well as their Bloom filters for all LSM-trees. Even
though all LSM-trees share the same buffer cache, their merges are
performed separately. As in traditional database systems, all disk
pages are managed together using a predefined buffer replacement
policy. For example, AsterixDB uses the clock replacement policy
to manage its shared buffer cache. In this work, we mainly focus on
the memory allocation given to the buffer cache instead of cache
replacement within the buffer cache.

Memory Tuner. Given a memory budget, the memory tuner
attempts to tune the memory allocation between the write memory
and the buffer cache to reduce the total I/O cost. The key property of
the memory tuner is that it takes a white-box approach by carefully
modeling the I/O cost of LSM-based storage systems and thus does
not require any offline training. We will describe the design and
implementation of the memory tuner in Section 5.

4 MANAGINGWRITE MEMORY
Now we present our solution for managing the write memory. We
first describe the memory component structure of a single LSM-tree
and then present techniques for managing multiple LSM-trees.

4.1 Partitioned Memory Component
4.1.1 Basic Design. With the new memory management architec-
ture, a memory component can become very large since its size
is not limited. Existing LSM-tree implementations use skiplists or
B+-trees to manage memory components and always flush a mem-
ory component entirely to disk. However, this reduces memory
utilization for two reasons. First, an updatable B+-tree has internal
fragmentation, as its pages are about 2/3 full [60]. Second, after a
flush a large chunk of write memory will be freed (vacated) all at
once, which reduces the average memory utilization over time. 3

To maximize the memory utilization, we propose to use a parti-
tioned in-memory LSM-tree to manage the write memory, which is
called a partitioned memory component. An example LSM-tree with
this structure is shown in Figure 3, which has an active SSTable
at M0 for storing incoming writes and a set of memory levels for
storing immutable SSTables. When a memory levelMi is full, one
of its SSTables is merged into the next level Mi+1 using a mem-
ory merge. We use a greedy selection policy to select SSTables to
merge by minimizing the ratio between the size of the overlapping
SSTables atMi+1 and the size of the selected SSTable atMi , i.e., the
overlapping ratio. Memory SSTables must be eventually flushed to
disk. For a memory-triggered flush, SSTables at the last memory
level (M2 in Figure 3) are flushed to disk in a round-robin way. For
a log-triggered flush, the SSTable with the minimum log sequence

3To see this, consider a single LSM-tree with a large memory component. If its memory
component is flushed entirely, the average memory utilization over time will be less
than 50%.

active0-100
0-50 55-99
0-20 25-53 55-80

M1
M2

L0

L1 0-15 20-35 38-45 50-60 65-80 85-99

81-99

10-30 32-55

0-23

Memory

Disk

flush

M0

25-50

65-80

group 1

group 0

Figure 3: LSM-tree with a Partitioned Memory Component

number (LSN) will be flushed (as well as all overlapping SSTables
at higher levels) to facilitate log truncation.

Compared to the monolithic memory component structure used
in existing systems, the proposed structure increases the memory
utilization and reduces the write amplification in several ways.
First, an LSM-tree achieves much higher space utilization than B+-
trees. For example, with a size ratio of 10, an LSM-tree achieves
90% space utilization, which is much higher than that of a B+-
tree. Moreover, since the proposed structure is range-partitioned,
it can naturally flush one memory SSTable at a time using partial
flushes so that the write memory stays full. Finally, partial flushes
further reduce the write amplification by creating skews at the last
level [35]. Since SSTables are flushed in a round-robin way, the
flushed SSTable will have received the most updates. Thus, the key
ranges of these SSTables will be denser than the average, which
reduces the subsequent merge cost. In the remainder of this section,
we further discuss the detailed design of the proposed structure.

4.1.2 Grouped L0. In the original LSM-tree design (Figure 1), the
disk level L0 stores a list of (unpartitioned) SSTables ordered by their
recency. When the number of SSTables at L0 exceeds a pre-defined
threshold, flushes will be paused to bound the worse-case query
performance. Multiple L0 SSTables are also merged together into
L1 to reduce the merge cost. In the partitioned memory component
structure, where the flushed SSTables are range partitioned, the
original L0 structure is unsuitable since non-overlapping SSTables
have no negative impact on queries. Thus, flushes should only be
paused when there are too many overlapping SSTables.

To better accommodate the new memory component structure,
we propose a new L0 structure by organizing its SSTables into
groups, where each group contains a set of disjoint SSTables. Groups
are ordered based on their recency, where the keys in a newer group
override the keys in an older group. When the total number of
groups at L0 exceeds a predefined threshold, incoming flushes will
be stopped. We further use the following heuristics to reduce the
number of groups at L0 and also the write amplification. First, when
an SSTable is flushed to disk, it is always inserted into the oldest
possible group where all newer groups do not have any overlapping
SSTables. Otherwise, if no such group can be found, a new group is
created. Second, SSTables from the smallest group that contains the
fewest SSTables will be merged into L1 first. Specifically, an SSTable
from this group as well as any overlapping SSTables from other L0
groups are merged with the overlapping SSTables at L1. To reduce
write amplification, the merging SSTable is selected to minimize
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L0
L1 0-46 52-97
L2 0-15 20-35 38-45 51-60 65-80 85-99

0-23
Disk merging

Figure 4: Example Merge for Removing L1

the ratio between the total size of the overlapping SSTables at L1
and the total size of the merging SSTables at L0.

4.1.3 Adjusting Disk Levels. In the new memory component archi-
tecture, the write memory of each LSM-tree is allocated on-demand
and is thus dynamic. Since the write cost of an LSM-tree depends
on the number of disk levels, the number of disk levels needs to be
adjusted as its write memory size changes4.

Recall that to maximize the space utilization, levels are only
added or deleted at L1. For each disk level Li , its maximum size
is a · Mw · T i . Here we assume that the size of each disk level
|Li | is relatively stable, but the write memory allocated to an LSM-
tree a · Mw is dynamic. When an LSM-tree’s write memory size
becomes too small, i.e., a ·Mw ·T < |L1 |, a new L1 should be added
to reduce the write cost. In this case, an empty L1 can be added
and all remaining levels Li simply become Li+1. In contrast, when
the write memory size becomes too big, i.e., a ·Mw ·T > |L2 |, L1
becomes redundant and can be deleted. However, implementing
this strategy directly can cause oscillation when the write memory
is close to this threshold. To avoid this, the deletion of L1 can be
delayed until the write memory further grows by a factor of f , i.e.,
a ·Mw ·T > f · |L2 |. As we will see in Section 6, delaying the deletion
of L1 has a much smaller impact than delaying the addition of a
level. In general, a larger f better avoids oscillation but may have a
larger negative impact on write amplification. By default, we set f
to 1.5 to balance these two factors.

To delete L1, all existing SSTables from L1 must be merged into
L2. Here we describe an efficient solution to delete L1 smoothly with
minimal overhead. To delete L1, SSTables from L0 can be directly
merged into L2 along with all overlapping SSTables at L1. Consider
the example in Figure 4. To delete L1, the SSTable labeled 0-23 at
L0 and the SSTable labeled 0-46 at L1 can be directly merged into
L2. This mechanism ensures that L1 will not receive new SSTables
but does not itself guarantee that L1 will eventually become empty.
To address this problem, low-priority merges are also scheduled to
merge SSTables from L1 into L2 when there are no merges at other
levels. These two operations ensure that L1 will eventually become
empty, and it can then be removed from the LSM-tree.

4.1.4 Partial Flush vs. Full Flush. As mentioned before, the new
memory component structure enables partial flushes, i.e., flushing
one SSTable at a time. While possible, partial flushes may not al-
ways be an optimal choice. Consider the case when the total write
memory is large and flushes are only triggered by log truncation.
Since the oldest entries can be distributed across all memory SSTa-
bles, most memory SSTables may have to be flushed in order to
truncate the log. If a full flush is performed, which will merge-sort
all memory SSTables across all levels, the flushed SSTables will have

4Our preliminary solution [38] was to only increase the number of disk on-levels
without ever decreasing it. However, our subsequent evaluation showed that this led
to 5%-10% performance loss compared to an optimal LSM-tree.

non-overlapping key ranges. In contrast, if partial flushes are used,
the flushed SSTables may have overlapping key ranges, which will
require subsequent merges to make these SSTables fully sorted and
thus incur extra merge I/O cost. Thus, for a log-triggered flush, the
optimal flush choice depends on the write memory size and the
maximum transaction log length.

Developing an optimal flush solution is non-trivial since it also
heavily depends on the key distribution of the write workload. Here
we propose a simple heuristic to dynamically switch between partial
and full flushes for log-triggered flushes. The basic idea is to use a
window to keep track of howmuchwrite memory has been partially
flushed before the log-triggered flush, where the window size is
set as the maximum transaction log length. When log truncation
is needed, if a large amount of write memory has already been
flushed before, then only a small number of remaining SSTables
will need to be flushed and thus partial flushes will be a better choice.
Otherwise, full flushes should be performed. Implementation-wise,
we introduce a threshold parameter β ranging from 0 to 1. When
the total amount of previously flushed write memory is larger than
β times the total write memory, partial flushes will be performed.
Otherwise, the entire memory component will be flushed together
using a full flush. Based on some preliminary simulation results,
we set our default value for β to be 0.5 to minimize the overall
write cost. (We leave the further exploration of the optimal choice
of partial and full flushes as future work.)

4.2 Managing Multiple LSM-trees
Whenmanaging multiple LSM-trees, a fundamental question is how
to allocate portions of the write memory to these LSM-trees. Since
write memory is allocated on-demand, this question becomes how
to select LSM-trees to flush. For log-triggered flushes, the LSM-tree
with the minimum LSN should be flushed to perform log truncation.
For memory-triggered flushes, existing LSM-tree implementations,
such as RocksDB [6] and HBase [3], choose to flush the LSM-tree
with the largest memory component. We call this policy the max-
memory flush policy. The intuition is that flushing this LSM-tree can
reclaim the most write memory, which can be used for subsequent
writes. However, this policy may not be suitable for our partitioned
memory components because flushing any LSM-tree will reclaim
the same amount of write memory due to partial SSTable flushes.

Min-LSN Policy. One alternative flush policy is to always flush
the LSM-tree with the minimum LSN for both log-triggered and
memory-triggered flushes. We call this policy the min-LSN flush
policy. The intuition is that the flush rate of an LSM-tree should
be approximately proportional to its write rate. A hotter LSM-tree
should be flushed more often than a colder one, but it still receives
more write memory. This policy also facilitates log truncation,
which can be beneficial if flushes are dominated by log truncation.

Optimal Policy. Given a collection ofK LSM-trees, our ultimate
goal is to find an optimal memory allocation that minimizes the
overall write cost. For the i-th LSM-tree, we denote ri as its the
write rate (bytes/s). The optimal memory allocation can be obtained
by solving the following optimization problem:

min
ai

K∑
i=1

ri
ei

·Ci , s.t.
K∑
i=1

ai = 1 (2)

245



By substituting Equation 1 from Section 2.1 into Equation 2 and
using the Lagrange multiplier method, the optimal write memory
ratio a

opt
i for the i-th LSM-tree is aopti = ri/

∑K
j=1 r j . This shows

that the write memory allocated to each LSM-tree should be propor-
tional to its write rate. We call this policy the optimal flush policy.
In terms of its implementation, we can use a window to keep track
of the total number of writes to each LSM-tree, where the window
size is set as the maximum transaction log length. When a memory-
triggered flush is requested, each active LSM-tree is checked in turn
and a flush is scheduled if its write memory ratio ai is larger than
its optimal write memory ratio aopti .

5 MEMORY TUNER
After discussing how to efficiently manage the write memory, we
now proceed to describe the memory tuner to tune the memory
allocation between the write memory and the buffer cache. We first
provide an overview of the tuning approach, which is followed by
its design and implementation.

5.1 Tuning Approach
The goal of the memory tuner is to find an optimal memory al-
location between the write memory and the buffer cache to min-
imize the I/O cost per operation. This should in turn maximize
the system efficiency as well as the overall throughput. Suppose
the total available memory is M . For ease of discussion, let us as-
sume the write memory size is x , which implies that the buffer
cache size isM − x . Letwrite(x) and read(x) be the write cost and
read cost per operation when the write memory is x . Our tuning
goal is to minimize the weighted I/O cost per operation (pages/op)
cost(x) = ω ·write(x) + γ · read(x). The non-negative weights ω
and γ allow users to adjust the tuning goal for different use cases.
For example, on hard disks, ω can be set smaller since LSM-trees
mainly use sequential I/Os for writes, while on SSDs ω can be set
larger since SSD writes are often more expensive than SSD reads.

In order to minimize the tuning goal cost(x), we use an online
gradient descent approach to adaptively tune thememory allocation
based on cost ′(x), which is ω ·write ′(x) + γ · read ′(x). Intuitively,
cost ′(x) measures how the I/O cost changes if more write memory
is allocated. Based on cost ′(x), the memory tuner can tune the
memory allocation accordingly to reduce cost(x). It should be noted
that the optimality of the memory tuner depends on the shape of
cost(x). We will discuss this issue further in Section 5.5.

Based on this idea, the memory tuner uses a feedback-control
loop to tune memory allocation, as depicted in Figure 5. The mem-
ory tuner continuously uses the collected statistics to tune the
memory allocation between the write memory and the buffer cache
without any user input nor training samples. Before describing the
details of the memory tuner, we first introduce some notation used
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Figure 5: Workflow of Memory Tuner

Table 2: Memory Tuner Notation

Notation Definition Example
Global Notation

K number of LSM-trees 8
op number of operations observed 10K ops

savedq
saved query disk I/O by the simu-
lated cache

0.01
page/op

savedm
saved merge disk I/O by the simu-
lated cache

0.002
page/op

sim simulated cache size 32 MB
Local Notation

wi
number of entries written to an
LSM-tree 50K entries

f lushloдi
write memory flushed by log trun-
cation 1 GB

f lushmemi
write memory flushed by high
memory usage 8 GB

by the memory tuner (Table 2) in addition to the LSM-tree notation
listed in Table 1. Note that with secondary indexes each operation
may write multiple entries to multiple LSM-trees.

5.2 Estimating the Write Cost Derivative
For the i-th LSM-tree, recall that Equation 1 computes the per-entry
write cost Ci . Since each operation writes wi

op entries to this LSM-
tree, its write cost per operationwritei (x) can computed as wi

op ·Ci .
By taking the derivative ofwritei (x), we have

write ′i (x) =
wi
op

· ei
P

· (T + 1) · 1
x · lnT (3)

To reduce the estimation error, instead of collecting statistics for op,
wi , ei and P , we simply collect the total number of merge writes
per operation,merдei (x), in the last tuning cycle. By substituting
merдei (x) into Equation 3, we have

write ′i (x) = − merдei (x)
x · ln |LNi |

ai ·x
(4)

Here we assume that the write memory of an LSM-tree is always
smaller than its last level size. Thus, the estimated value ofwrite ′i (x)
in Equation 4 is always negative as long asmerдei (x) is not zero.
This implies that adding more write memory can always reduce
the write cost, which may not hold in practice. Once flushes are
dominated by log truncation, adding more write memory will not
further reduce the write cost. To account for the impact of log-
triggered flushes, we further multiply Equation 4 by a scale factor

f lushmemi
f lushmemi +f lushloдi

that we also keep statistics for. Intuitively,
this scale factor will be close to 1 if flushes are mainly triggered
by high memory usage and it will approach to 0 if flushes are
mostly triggered by log truncation. Finally,write ′(x) is the sum of
write ′i (x) for all LSM-trees:

write ′(x) =
K∑
i=1

− merдei (x)
x · ln |LNi |

ai ·x
· f lushmemi

f lushmemi + f lushloдi
(5)
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5.3 Estimating the Read Cost Derivative
read ′(x)measures how the read cost per operation changes if more
write memory is allocated. Since disk reads are performed by both
queries and merges, we rewrite read(x) = readq (x) + readm (x),
where readq (x) is the number of query disk reads per operation
and readm (x) is the number of merge disk reads per operation.

read ′q (x) measures the impact of larger write memory on the
query read cost, as larger write memory increases the buffer cache
miss rate. To estimate read ′q (x), we use a simulated cache as sug-
gested by [55]. This simulated cache only stores page IDs.Whenever
a page is evicted from the buffer cache, its page ID is added to the
simulated cache. Whenever a page is about to be read from disk,
a disk I/O could have been saved if the simulated cache contains
that page ID. Suppose that the simulated cache size is sim and the
saved read cost per operation is savedq , then read ′q (x) =

savedq
sim .

read ′m (x) measures the impact of larger write memory on the
merge read cost. Intuitively, larger write memory reduces the disk
merge cost, but also increases the buffer cache miss rate. Thus, to
estimate read ′m (x), we first rewrite readm (x) = pinm (x) ·missm (x).
pinm (x) is the number of page pins performed by disk merges per
operation and it can be obtained by collecting runtime statistics.
missm (x) is the cache miss rate for merges and it can be com-
puted asmisssm (x) = r eadm (x )

pinm (x ) . Based on the derivative rule, we
have read ′m (x) = pin′m (x) ·missm (x)+pinm (x) ·miss ′m (x). pin′m (x)
is the number of saved merge page pins per unit of write mem-
ory. Recall that we have computed write ′(x), which is the num-
ber of saved disk writes per unit of write memory. On average,
each merge disk write requires pinm (x )

merдe(x ) page pins. As a result,

pin′m (x) = write ′(x)·
pinm (x )
merдe(x ) . To estimatemiss ′m (x), we again use

the simulated cache to estimate the number of saved merge reads
per operation savedm . Thus,miss ′m (x) = savedm

pinm (x )·sim . Putting ev-

erything together, read ′m (x) = write ′(x) · r eadm (x )
merдe(x ) +

savedm
sim .

Finally, read ′(x) can be computed as

read ′(x) =
savedq + savedm

sim
+write ′(x) ·

readm (x)

merдem (x)
(6)

5.4 Tuning Memory Allocation
Based on the computed cost ′(x), the memory allocation can then be
tuned to reduce cost(x). Intuitively, the write memory size x should
be decreased if cost ′(x) > 0 and it should be increased if cost ′(x) <
0. To speed up the tuning process, we use the Newton–Raphson
method to find the root of cost ′(x) directly, as cost ′(x) = 0 is a nec-
essary condition for minimizing cost(x). cost ′(x) is approximated
as a linear function cost ′(x) = Ax + B using the last K memory
allocations, where K by default is set to 3. Given the current write
memory size xi , the next value is computed as xi+1 = xi −

cost ′(xi )
A .

Since the memory tuner deals with a complex system with con-
stantly changing workloads and possible estimation errors, several
heuristics are used to ensure the stability of the memory tuner.
First, when the tuner does not have enough samples to construct
the linear function or when the estimated memory allocation xi+1
does not reduce the total cost, we simply fall back to a fixed step
size, e.g., 5% of the total memory. Second, the maximum step size

is limited based on the memory region whose memory needs to
be decreased. The intuition is that taking memory from a region
may be harmful because both the write memory and the buffer
cache are subject to diminishing returns. Thus, at each tuning step,
we limit the maximum decreased memory size for either memory
region to 10% of its currently allocated memory size. Finally, the
memory tuner uses two stopping criteria to avoid oscillation. The
memory allocation is not changed if the step size is too small, e.g.,
smaller than 32MB, or if the expected cost reduction is too small,
e.g., smaller than 0.1% of the current I/O cost.

The last question for implementing the memory tuner is de-
termining the appropriate tuning cycle length. Ideally, the tuning
cycle should be long enough to capture the workload characteristics
but be as short as possible for better responsiveness. To balance
these two requirements, memory tuning is triggered whenever the
accumulated log records exceed the maximum log length. This al-
lows the memory tuner to capture the workload statistics more
accurately by waiting for log-triggered flushes to complete. For
read-heavy workloads, it may take a very long time to produce
enough log records. To address this, the memory tuner also uses a
timer-based tuning cycle, e.g., 10 minutes.

5.5 Optimality of Memory Tuner
The optimality of thememory tuner depends on the shape of cost(x).
To ensure that the memory tuner always finds the global minimum,
cost ′(x) should have at most one root. However, after analyzing
cost ′′(x), i.e., the derivative of cost ′(x), we have found that this
condition may not always hold. Intuitively, it is easy to see that
write(x) is monotonically decreasing and readq (x) is monotonically
increasing. However, readm (x) is not monotonic because a larger
x may both reduce the number of merge reads and increase the
cache miss rate. Even though the memory tuner may not be able
to always find an optimal memory allocation, this does not limit
its applicability in practice. First, it can still find a better memory
allocation to reduce the overall I/O cost. Moreover, we have found
that cost(x) for many practical workloads often allows the memory
tuner to find the global minimum. For example, Figure 6 plots the
I/O costs for the the YCSB [22] write-heavy workload and the TPC-
C [7] workload. We used the YCSB write-heavy workload with 50%
writes and 50% reads. The operations were distributed among 10
LSM-trees, each of which had 10 million records, following an 80-20
hotspot distribution. For TPC-C, the scale factor was set at 2000.
(The detailed experimental setup is further described in Section 6.1.)
For both workloads, the total I/O cost has one global minimum. The
reason is that the merge read cost readm (x) is relatively small, even
under the YCSB write-heavy workload, because many SSTables at
small levels are often cached due to frequent merges and accesses.
Thus, non-monotonicity of readm (x) does not affect the total I/O
cost too much. We also evaluated other configurations by changing
the total memory size and the read-write ratio and found that the
total I/O cost always has the same general shape.

6 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed techniques
in the context of Apache AsterixDB [1]. Throughout the evaluation,
we focus on the following two questions. First, what are the benefits
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Figure 6: I/O Costs under Different Write Memory Sizes

of the partitioned memory component compared to alternative
approaches? Second, what is the effectiveness of the memory tuner
in terms of its accuracy and responsiveness? In the remainder of this
section, we first describe the general experimental setup followed
by the detailed evaluation results.

6.1 Experimental Setup
Hardware. All experiments were performed on a single node
m5d.2xlarge on AWS. The node has an 8-core 2.50GHZ vCPUs,
32GB of memory, a 300GB NVMe SSD, and a 500GB elastic block
store (EBS). We use the native NVMe for LSM storage and EBS for
transactional logging. The NVMe SSD provides a write throughput
of 250MB/s and a read throughput of 500MB/s. The EBS also pro-
vides a write throughput of 250MB/s. Asynchronous log flushing
and group commit were further used to ensure that logging on
the EBS is not the bottleneck. We allocated 26GB of memory for
the AsterixDB instance. Unless otherwise noted, the total storage
memory budget, including the buffer cache and the write memory,
was set at 20GB. Both the disk page size and memory page size were
set at 16KB. The maximum transaction log length was set at 10GB.
Finally, we used 8 worker threads to execute workload operations.

LSM-tree Setup.All LSM-trees used a partitioned levelingmerge
policy with a size ratio of 10, which is a common setting in existing
systems. Unless otherwise noted, the number of disk levels was
dynamically determined based on the current write memory size.
For the partitioned memory component, its active SSTable size was
set at 32MB and the size ratio of the memory merge policy was
also set at 10. We used 2 threads to execute flushes, 2 threads to
execute memory merges, and 4 threads to execute disk merges. In
each set of experiments, we first loaded the LSM storage based on
the given workload. Each experiment always started with a fresh
copy of the loaded LSM storage. For both memory and disk levels,
we built a Bloom filter for each SSTable with a false positive rate
of 1% to accelerate point lookups. Finally, both the memory flush
threshold and the log truncation threshold were set at 95%.

Workloads.We used two popular benchmarks YCSB [22] and
TPC-C [7]. YCSB is a popular and extensible benchmark for eval-
uating key-value stores. Due to its simplicity, we used YCSB to
understand the basic performance of various techniques. In all ex-
periments, we used the default YCSB record size, where each record
has 10 fields with 1KB size in total, and the default Zipfian distri-
bution. Since YCSB only supports a single LSM-tree, we further
extended it to support multiple primary and secondary LSM-trees,

which is described in Section 6.2. TPC-C is an industrial standard
benchmark used to evaluate transaction processing systems. We
chose TPC-C because it represents a more realistic workload with
multiple datasets5 and secondary indexes. It should be noted that
AsterixDB only supports a basic record-level transaction model
without full ACID transactions. Thus, all transactions in our evalua-
tion were effectively running under the read-uncommitted isolation
level from the TPC-C perspective. Because of this, we disabled the
client-triggered aborts (1%) of the NewOrder transaction.

6.2 Evaluating Write Memory Management
We first evaluated the proposed techniques for managing the write
memory with the following experiments. The first set of experi-
ments uses a single LSM-tree to evaluate the basic performance
of various memory component structures. The second set of ex-
periments uses multiple datasets, each of which just has a primary
LSM-tree. The third set of experiments focuses on LSM-based sec-
ondary indexes, all belonging to the same dataset. The last set of
experiments uses a more realistic workload that contains multiple
primary and secondary indexes. For the first three sets of experi-
ments, we used the YCSB benchmark [22] due to its simplicity and
customizability. For the last set of experiments, we used the TPC-C
benchmark [7] since it represents a more realistic workload. Due
to space limitations, we leave the third set of experiments to the
extended version of this paper [41]. In general, we found that the
performance trends in the secondary LSM-tree case were consistent
with the results of the multiple primary LSM-tree case.

Evaluated Write Memory Management Schemes. First, we
evaluated two variations of AsterixDB’s static memory allocation
scheme. The first variation, called B+-static, uses AsterixDB’s de-
fault number of active datasets, which is 8. The second variation,
called B+-static-tuned, configures the number of active datasets
parameter setting based on each experiment. We further evaluated
an optimized version of the write memory management scheme
(called B+-dynamic) used in existing systems, e.g., RocksDB and
HBase. This scheme uses a B+-tree to manage the memory com-
ponent of each LSM-tree without any static size limit. We also
evaluated two variations of Accordion [16]. Accordion separates
keys from values by storing keys into an index structure while
putting values into a log. The first variation, called Accordion-index,
only merges the indexes without rewriting the logs. The second
variation, called Accordion-data , merges both the indexes and logs.
Finally, we evaluated the partitioned memory component structure,
called Partitioned. For both B+-dynamic and Partitioned, we evalu-
ated three variations based on the three flush policies described in
Section 4.2, namely max-memory (called MEM), min-LSN (called
LSN ), and optimal (called OPT ). It should be noted that B+-dynamic
as implemented in existing systems always uses the max-memory
policy to flush the LSM-tree with the largest memory component.

6.2.1 Single LSM-tree. In this experiment, the LSM-tree had 100
million records with a 110GB storage size. We evaluated four types
of workloads, namely write-only (100% writes), write-heavy (50%
writes and 50% lookups), read-heavy (5% writes and 95% lookups),

5A dataset in AsterixDB is equivalent to a table in the TPC-C benchmark.
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Figure 7: Experimental Results for a Single LSM-tree

and scan-heavy (5% writes and 95% scans). A write operation up-
dates an existing key and each scan query accesses a range of 100
records. Each experiment ran for 30 minutes and the first 10-minute
period was excluded when computing the throughput. It should be
noted that in this experiment all flush policies have the identical
behavior because there was only one LSM-tree.

Basic Performance. Figure 7 shows the throughput of each
memory component scheme under different workloads and write
memory sizes. In general, the write memory mainly impacts write-
dominated workloads, such as write-only and write-heavy, and
larger write memory improves the overall throughput by reducing
the write cost. Among these structures, B+-static always performs
the worst since any one LSM-tree is only allocated 1/8 of the write
memory. B+-dynamic performs slightly better than B+-static-tuned
because the former does not leave memory idle by preallocating two
memory components for double buffering. Partitioned has the high-
est throughput under write-dominated workloads since it better
utilizes the write memory. It also improves the overall throughput
slightly under the read-heavy workload by reducing write amplifi-
cation. For both B+-dynamic and Partitioned, the throughput stops
increasing after the write memory exceeds 4GB because flushes
are then dominated by log-truncation. Finally, Accordion does not
provide any improvement compared to B+-dynamic.Accordion-data
actually reduces the overall throughput because a large memory
merge will temporarily double the memory usage, forcing memory
components to be flushed. Moreover, Accordion was designed for
reducing GC overhead since HBase [3] uses Java objects to manage
memory components. Although AsterixDB is written in Java, it
uses off-heap structures for memory management [17, 32]. In all
experiments, its measured GC time was always less than 1% of the
total run time. Based on these results, and because Accordion is
mainly designed for a single LSM-tree, we excluded Accordion for
further evaluation with multiple LSM-trees.

As suggested by [40], we further carried out an experiment to
evaluate the 99th percentile write latencies of each scheme using a
constant data arrival process, whose arrival rate was set at a high
utilization level (95% of the measured maximum write throughput).
We found out that the resulting 99th percentile latencies of all
schemes were less than 1s, which suggests that all structures can
provide a stable write throughput with a relatively small variance,
even under a very high utilization level.

CPU Overhead of Memory Merges. We have seen that Parti-
tioned outperforms other memory component structures by better
utilizing the write memory. However, it may incur additional CPU
overhead due to memory merges. To evaluate this overhead, we
carried out an experiment focusing exclusively on the memory com-
ponent performance. We used a smaller YCSB dataset with only 10
million records. We set the maximumwrite memory to be 20GB and
disabled transaction logging so that the dataset always fits in the
memory component. All operations were executed using a single
thread and memory merges were always executed synchronously.

Figure 8 shows the resulting throughput under different work-
loads. To store the same experiment dataset, Partitioned only used
12GB of write memory while B+-dynamic used 15.5GB. In gen-
eral, Partitioned reduces the in-memory throughput by 20%-40% as
compared to B+-dynamic due to memory merges, where the write
amplification was about 11.36. However, it should be noted that
in-memory workloads are not the focus of this work. The parti-
tioned memory component structure thus trades some CPU cycles
to reduce the overall disk write amplification.

Benefits of Dynamically Adjusting Disk Levels. To evalu-
ate the benefit of dynamically adjusting disk levels as the write
memory changes, we conducted an experiment where the write
memory size alternates between 1GB and 32MB every 30 minutes.
Each experiment ran for two hours in total. We used the partitioned
memory component structure but the disk levels were determined
differently. In addition to the proposed approach that adjusts disk
levels dynamically (called dynamic), we used two baselines where
the number of disk levels is determined statically by assuming that
the write memory is always 32MB (called static-32MB) or always
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1GB (called static-1GB). The resulting write throughput, aggregated
over 5-minute windows, is shown in Figure 9. The dynamic ap-
proach always has the highest throughput, which confirms the
utility of adjusting disk levels as the write memory changes. More-
over, we see that having fewer levels when the write memory is
small has a more negative impact than having more levels when
the write memory is large since the write throughput for static-1GB
is much lower under the small write memory.

6.2.2 Multiple Primary LSM-trees. In this set of experiments, we
used 10 primary LSM-trees, each of which had 10 million records.
Since the write memory mainly impacts write performance, a write-
only workload was used in this experiment. Writes were distributed
among the multiple LSM-trees following a hotspot distribution,
where x% of the writes go to y% of the LSM-trees. For example,
an 80-20 distribution means that 80% of the writes go to 20% of
the LSM-trees, i.e., 2 hot LSM-trees, while the 20% of the writes go
to 80% of the LSM-trees, yielding 8 cold LSM-trees. Within each
LSM-tree, writes still followed YCSB’s default Zipfian distribution.

Impact ofWrite Memory.We first evaluated the impact of the
write memory size by fixing the skewness to be 80-20. The resulting
write throughput is shown in Figure 10a. Note that B+-static results
in a much lower throughput because of thrashing. Since the default
number of active datasets in AsterixDB is only 8, some LSM-trees
have to be constantly activated and deactivated, resulting in many
tiny flushes. B+-static-tuned avoids the thrashing problem, but it
still performs worse than the other baselines because it does not
differentiate hot LSM-trees from cold ones. Both B+-dynamic and
Partitioned allocate the write memory dynamically, improving the
write throughput. Moreover, we see that the min-LSN and optimal
flush policies perform better than the max-memory flush policy for
both structures. Since the max-memory policy always flushes the
largest memory component, the memory components of the cold
LSM-trees are not flushed until they are large enough or until the
transaction log has to be truncated. The min-LSN policy also has a
write throughput comparable to the optimal policy, which makes
it a good approximation but with less implementation complexity.
Finally, even under the same flush policy, we see that Partitioned
still outperforms B+-dynamic because it performs memory merges
to further increase memory utilization.

Impact of Skewness. Next, we evaluated the impact of skew-
ness by fixing the write memory to be 1GB. The resulting write

throughput is shown in Figure 10b. All memory component struc-
tures except B+-static-tuned benefit from skewed workloads. The
problem of is that B+-static-tuned always allocates the write mem-
ory evenly to the active datasets without differentiating hot LSM-
trees from cold ones. For B+-static, the thrashing problem is alle-
viated under skewed workloads since most writes go to a small
number of LSM-trees. When the workload is more skewed, we
see two interesting trends. First, under the min-LSN and optimal
flush policies, the performance difference between Partitioned and
B+-dynamic becomes larger. This is because a small number of hot
LSM-trees occupy most of the write memory, allowing more mem-
ory merges to be performed in these hot LSM-trees to reduce the
write amplification. Moreover, the performance differences among
the three flush policies also become larger since the min-LSN and
optimal policies allocate more write memory to the hot LSM-trees.

6.2.3 TPC-C Results. Finally, we used the TPC-C benchmark to
evaluate the alternative memory management schemes on a more
realistic workload. We used two scale factors (SF) of TPC-C, i.e.,
500, which results in a 50GB storage size, and 2000, which results
in a 200GB storage size. Each experiment ran for one hour and the
throughput was measured excluding the first 30 minutes.

The resulting throughput and the per-transaction disk writes
(KB) under the two scale factors are shown in Figure 11. Note
that B+-static-tuned is omitted here, because the number of active
datasets in TPC-C is 8, which is the same as the default value
used in AsterixDB. B+-static still has the highest I/O cost because
it allocates write memory evenly to all datasets. TPC-C contains
some hot datasets, such as order_line and stock, that receive most
of the writes, as well as some cold datasets, such as warehouse
and district, that only require a few megabytes of write memory.
As we have seen in Figure 10, the min-LSN and optimal policies
have reduced the write cost for both B+-dynamic and Partitioned.
Partitioned-OPT also led to the lowest write cost via extra memory
merges, improving the system I/O efficiency. However, since TPC-C
is a CPU-heavy workload, doing so may not always improve the
overall transaction throughput due to the CPU overhead of memory
merges as we have seen before. When the workload is CPU-bound
at scale factor 500, the extra CPU overhead incurred by memory
merges actually decreases the overall throughput as compared to
B+-dynamic. Thus, we observe that it is useful to design a memory
management scheme to balance the CPU overhead and the I/O
cost, which we leave as future work. Finally, the results also show
that increasing the write memory may not always increase the
overall transaction throughput. For example, when the scale factor
is 2000, the optimal throughput is reached when the write memory
is between 1GB and 2GB. This confirms the importance of memory
tuning, which will be evaluated next.

6.2.4 Summary. As all experiments have illustrated, it is impor-
tant to utilize a large write memory efficiently to reduce the I/O
cost. Although the static memory allocation scheme is relatively
simple and robust, it leads to sub-optimal performance because the
write memory is always evenly allocated to active datasets. The
optimized version of the memory management scheme used by
existing systems reduces the I/O cost by dynamically allocating the
write memory to active LSM-trees. This still does not achieve opti-
mal performance, however, because it fails to manage large memory
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Figure 11: Experimental Results on TPC-C
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Figure 12: Evaluation of Memory Tuner on YCSB

components efficiently and its choice of flushes does not optimize
the overall write cost. Finally, the proposed partitioned memory
component structure and the optimal flush policy minimize the
write cost for all workloads. The use of partitioned memory compo-
nents manages the large write memory more effectively to reduce
the write amplification of a single LSM-tree. The optimal flush
policy allocates the write memory to multiple LSM-trees based on
their write rates to minimize the overall write cost. However, the
partitioned memory component structure may incur extra CPU
overhead, which makes it less suitable for CPU-heavy workloads.
Finally, we have observed that the min-LSN policy achieves com-
parable performance to the optimal policy, which makes it a good
approximation but with less implementation complexity.

6.3 Evaluating the Memory Tuner
We now proceed to evaluate the memory tuner with the focus on
the following questions: First, what are the basic mechanics of the
memory tuner in terms of how it tunes the memory allocation for
different workloads? Second, what is the accuracy of the memory
tuner as compared to manually tuned memory allocation? Finally,
how responsive is the memory tuner when the workload changes?

In all experiments below, the initial write memory size was set
at 64MB and the simulated cache size was set to 128MB. Unless
otherwise noted, other settings of the memory tuner, such as the
number of samples for fitting the linear function, the stopping
threshold, and the maximum step size, all used the default values
given in Section 5.4.

6.3.1 Basic Mechanics. To understand how the memory tuner per-
forms memory tuning to reduce the I/O cost for different workloads,
we carried out a set of experiments using YCSB [22] with a single
LSM-tree. We set both weights ω and γ to 1 since we focus on the
I/O cost in this experiment. The LSM-tree had 100 million records
with 110GB in total. We used a mixed read/write workload where
the write ratio varied from 10% to 50%. The total memory budget
was set at 4GB or 20GB. Each experiment ran for 1 hour.

The tuned write memory size and the corresponding I/O costs
over time are shown in Figure 12. Note that each point denotes one
tuning step performed by the memory tuner. We see that the mem-
ory tuner balances the relative gain of allocating more memory to
the write memory and the buffer cache to reduce the overall I/O cost.
As shown in Figures 12a and 12c, when the overall memory budget
is fixed, the memory tuner allocates more write memory when the
write ratio is increased because the benefit of having a large write
memory increases. Moreover, by comparing the allocated write
memory sizes in Figures 12a and 12c, we can see that when the
write ratio is fixed, the memory tuner also allocates more write
memory when the total memory becomes larger. This is because
the benefit of having more buffer cache memory plateaus. Finally,
as shown in Figures 12b and 12d, the overall I/O cost also decreases
after the memory allocation is tuned over time.

6.3.2 Accuracy. To evaluate the accuracy of the memory tuner, we
carried out a set of experiments on TPC-C to compare the tuned
performance versus the optimal performance. Here we used TPC-C
because it represents a more complex and more realistic workload
than YCSB. The scale factor was set at 2000. Since for our SSDwrites
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Figure 13: Memory Tuner’s Accuracy on TPC-C

are twice as expensive as reads, we set the write weightω to be 2 and
the read weight γ to be 1 in the remaining experiments to balance
these two costs. To find the optimal memory allocation (called
opt), we used an exhaustive search to evaluate different memory
allocations with an increment of 128MB. To show the effectiveness
of the memory tuner, we included two additional baselines. The first
baseline (called 64M) always set the write memory at 64MB, which
was the starting point of the memory tuner. The second baseline
(called 50%) divided the total memory budget evenly between the
buffer cache and the write memory. We further varied the total
memory budget from 4GB to 20GB. Each experiment ran for 1 hour
and the initial 30 minutes were excluded from the measurement.

Figure 13 shows the weighted I/O cost per transaction and the
transaction throughput for the different memory allocations. Using
exhaustive search, we found that minimizing the weighted I/O cost
also maximized the transaction throughput. The auto-tuned I/O
cost and throughput (called tuned) are very close to the optimal
ones found via exhaustive search, which shows the effectiveness of
our memory tuner. Moreover, the memory tuner performs notably
better than the two heuristic-based baselines. Allocating a small
write memory minimizes the read cost but leads to a higher write
cost. In contrast, allocating a large write memory minimizes the
write cost but the read cost becomes much higher. As a result, both
allocations also fail to maximize the overall transaction throughput.

6.3.3 Responsiveness. Finally, we used a variation of TPC-C to
evaluate the responsiveness of the memory tuner. This experiment
started with the default TPC-C transaction mix and the workload
changed into a read-mostly variation, one which contains 5% write
transactions, i.e., new_order, payment, and delivery, and 95% read
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Figure 14: Memory Tuner’s Responsiveness on TPC-C

transactions, i.e., order_status and stock_level. Each experiment
ran for two hours and the workload was changed after the first
hour. The resulting allocated write memory and weighted I/O cost
over time are shown in Figure 14. After the workload changes,
the memory tuner immediately starts to allocate more memory to
the buffer cache. Note that the write memory decreases relatively
slowly because the memory tuner limits its step size to 10% of the
current write memory size to ensure stability. However, this does
not impact the overall I/O cost too much because the buffer cache
already occupies most of the memory. Also note that the write
memory size does not change in response to the workload shift
when the total memory is larger than 8GB. This is because the
buffer cache already occupies most of the memory and allocating
more memory would not change the I/O cost too much.

In [41], we further evaluated the impact of the maximum step
size on the responsiveness and stability of the memory tuner. Even
though a large step size allows the memory tuner to change the
memory allocation more rapidly, it also leads to instability and oscil-
lation. Thus, the memory tuner’s default maximum step size is set at
10% to ensure stability while providing reasonable responsiveness.

6.3.4 Summary. We have evaluated the memory tuner in terms of
its mechanics, accuracy, and responsiveness. Our tuner uses a white-
box to minimize the overall I/O cost based on the relative gains of
allocating more memory to the buffer cache or to the write memory.
The experimental results show that this white-box approach enables
the memory tuner to achieve both high accuracy with reasonable
responsiveness, making it suitable for online tuning.

7 CONCLUSION
In this paper, we have described and evaluated a number of tech-
niques to break down the memory walls in LSM-based storage sys-
tems. We first presented an LSM memory management architecture
that facilitates adaptive memory management. We further proposed
a partitioned memory component structure with new flush polices
to better utilize the write memory in order to minimize the overall
write cost. To break down the memory wall between the write mem-
ory and the buffer cache, we further introduced a memory tuner
that uses a white-box approach to continuously tune the memory
allocation. We have empirically demonstrated that these techniques
together enable adaptive memory management to minimize the
I/O cost for LSM-based storage systems. In the future, we plan to
extend the memory tuner to incorporate other memory regions,
such as query operator memory, to perform global memory tuning.
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