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ABSTRACT

Sharing trajectories is beneficial for many real-world applications,
such as managing disease spread through contact tracing and tai-
loring public services to a population’s travel patterns. However,
public concern over privacy and data protection has limited the
extent to which this data is shared. Local differential privacy en-
ables data sharing in which users share a perturbed version of their
data, but existing mechanisms fail to incorporate user-independent
public knowledge (e.g., business locations and opening times, pub-
lic transport schedules, geo-located tweets). This limitation makes
mechanisms too restrictive, gives unrealistic outputs, and ultimately
leads to low practical utility. To address these concerns, we propose
a local differentially private mechanism that is based on perturb-
ing hierarchically-structured, overlapping 𝑛-grams (i.e., contiguous
subsequences of length 𝑛) of trajectory data. Our mechanism uses a
multi-dimensional hierarchy over publicly available external knowl-
edge of real-world places of interest to improve the realism and
utility of the perturbed, shared trajectories. Importantly, includ-
ing real-world public data does not negatively affect privacy or
efficiency. Our experiments, using real-world data and a range of
queries, each with real-world application analogues, demonstrate
the superiority of our approach over a range of alternative methods.
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1 INTRODUCTION

Sharing trajectories has obvious benefits for many real-world appli-
cations, including managing disease spread through contact tracing,
and tailoring public services (such as bus routes) to a population’s
travel patterns. However, widespread public concern over privacy
and data protection has limited the extent to which this data is cur-
rently shared. Differential privacy (DP) is an increasingly popular
technique for publishing sensitive data with provable guarantees on

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476280

individual privacy. In contrast to centralized DP, local differential
privacy (LDP) allows users to share a perturbed version of their
data, thus allaying fears of an untrusted data collector.

Although LDP provides a more practical setting and more attrac-
tive privacy properties, its mechanisms often have lower utility due
to its stronger privacy requirements. This is (in part) because exist-
ing mechanisms fail to incorporate the wide range of real-world
knowledge that is publicly available. This is a major shortcoming,
especially as a wealth of accessible, open source information about
the real world exists: detailed mapping data describing roads and
points of interest; transit schedules; business opening hours; and
unstructured user-generated data, in the form of reviews, check-ins,
photos, and videos. These provide a rich and detailed (if somewhat
non-uniform) description of the real world within which people
navigate their lives. Within this context, approaches to data sharing
that rely on crude abstractions, such as describing counts within
uniform grids, appear simplistic. Moreover, they lead to synthetic
data that fails to respect common sense: showing movement pat-
terns that cross a mountain range as if there was a highway through
it, or trajectories in which travelers visit a sports stadium in the
middle of the night. We argue that, to be of value, efforts to share
trajectories must more explicitly model the real world, and combine
the private data with public information. To better capture realistic
behavior, we propose solutions that include a wide range of external
knowledge in a utility-enhancing manner, and show empirically
that including real-world information greatly improves the utility
of the perturbed data.

External knowledge can be incorporated in two ways. The first
is a series of (deterministic) constraints that simply state whether
one instance is feasible or not (e.g., someone cannot be ‘located’ in
the sea). The second (probabilistic) approach is to make certain out-
puts more likely than others. Indeed, the second approach relates
to another limitation of existing LDP mechanisms, wherein many
assume equal sensitivity across data points. That is, with respect
to place A, they treat places B and C to be equally sensitive, even
if place A is much ‘closer’ to place B than to place C. Although a
number of existing approaches instead use non-uniform probabili-
ties in a utility-minded manner [1, 3, 4, 26], these works use relaxed
definitions of 𝜖-LDP, which is unsatisfying.

Our framework includes both of these approaches. First, a ’reach-
ability’ constraint ensures adjacent points in a trajectory can be
reached in the respective time gap. Second, we use amulti-attributed
distance function that ensures semantically similar locations are
more likely to be returned by a perturbation mechanism. However,
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privately perturbing trajectories in the local setting while incorpo-
rating real-world knowledge effectively is non-trivial. Furthermore,
we go further than existing methods by proposing a solution that
satisfies the strict requirements of 𝜖-LDP.

Our first mechanism ś which models trajectories as individual
points in high-dimensional space ś can be seen as the elegant,
‘global’ solution. However, its time and space complexity makes
it computationally infeasible in most scenarios, which leads us to
introduce our more efficient and scalable solution, based on perturb-
ing overlapping, hierarchically-structured 𝑛-grams (i.e., contiguous
subsequences of length 𝑛) of trajectory data. 𝑛-gram perturbation
allows us to capture the spatio-temporal relationship between adja-
cent points, while remaining computationally feasible. Moreover,
using overlapping 𝑛-grams allows us to capture more information
for each point, whilst continuing to satisfy LDP. Our semantic
distance function incorporates a rich set of public knowledge to
adjust the probability of certain perturbations in a utility-enhancing
manner. We also exploit the (publicly-known) hierarchies that are
inherent in space, time, and category classifications to structure
𝑛-grams in a multi-dimensional hierarchy, which has notable bene-
fits for utility. Exploiting a hierarchically-structured space in this
manner also reduces the scale of the problem, which ensures that
our solution is scalable for large urban datasets. Finally, we use
optimization techniques to reconstruct the optimal realistic output
trajectory from the set of perturbed 𝑛-grams.

We compare our mechanism to a number of alternative ap-
proaches by comparing the real and perturbed trajectory sets, and
answering a range of application-inspired queries. Our mechanism
produces perturbed trajectory sets that have high utility, preserve
each location’s category better than alternatives in all settings, and
also preserve the temporal location of hotspots at a range of granu-
larities. Our solution scales well with city size (unlike some other
baselines), while remaining efficient and accurate.

In summary, the main contributions of our work are:

• an outline of the global solution, which we argue to be com-
putationally infeasible in most cases;

• a robust, scalable, and efficient mechanism for perturbing
spatio-temporal trajectory data in a way that satisfies 𝜖-LDP;

• amethod for integrating public knowledge into privatemech-
anisms to give significant utility improvements with no cost
to privacy; and

• extensive empirical analysis, including through a range of
queries, that indicate our work’s relevance in addressing
important data analytics problems in a private manner.

We consider related work (Section 2) before formally introducing
our problem and the guiding principles for our solution (Section 3).
We introduce key definitions that are integral to our solution in
Section 4. We begin Section 5 with the ‘global’ solution before
outlining our hierarchical, 𝑛-gram-based solution. We also outline
the semantic distance function and discuss the efficiency of our
mechanism. We set out our experiments in Section 6 and present
the results in Section 7. We discuss future work in Section 8.

2 RELATED WORK

Differential privacy [20] has become the de facto privacy standard.
While centralized DP assumes data aggregators can be trusted, LDP

[19] assumes that aggregators cannot be trusted and relies on data
providers to perturb their own data. Many early LDP mechanisms
[e.g., 5, 23, 44] assume all data points have equal sensitivity (i.e., the
probability of any other data point being returned is equal), which
can be unrealistic in practical settings, especially for spatial data.

There have been a number of recent relaxations of (L)DP to allow
perturbation probabilities to be non-uniform across the domain. In
𝑑𝜒 -privacy [9], and its location-specific variant geoindistinguisha-
bility [4], the indistinguishability level between any two inputs is a
function of the distance between them. This concept has since been
generalized to any metric, and extended to the local setting to give
metric-LDP [3]. Context-aware LDP [1] goes further by allowing
an arbitrary (non-metric) measure of similarity between points,
and input-discriminative LDP [26] assigns each data point its own
privacy level. Other relaxations to LDP rely on the provision of
some additional information. For example, personalized LDP [11]
lets users specify a desired privacy level, whereas local information
privacy [30] utilizes knowledge of users’ priors.

Location data privacy (surveyed in [31]) has received a reason-
able degree of attention in both centralized and local DP studies,
(summarized in [24]). In addition to the aforementioned LDP re-
laxations, there have been some specific relaxations to LDP in the
location domain (summarized in [37]). Applying (L)DP techniques
to trajectory data, however, is less well-studied. Most early work
used trajectory data to answer common queries [e.g., 6, 10, 35],
which focus on returning summary level statistics, as opposed to
individual-level data, which gives end users more flexibility. More
recent DP-related work has focused on publishing and synthesizing
differentially private trajectories [e.g., 27ś29].

There has been DP-related work that considers user-specific
context in which user priors are utilized [e.g., 30, 33, 36], and Des-
fontaines et al. [15] study the notion of DP with ‘partial knowledge’
for a user. Finally, Cunningham et al. [14] use publicly available
geographic knowledge to improve the quality of private synthetic
location data (in the centralized setting). However, we are the first
to explicitly use external domain knowledge (i.e., user-independent
prior information that is known to all, such as the locations, busi-
ness opening hours, etc.) in the local setting to enhance utility.

In summary, our work introduces a rigorous and unified LDP-
based and utility-mindedmechanism for publishing individual-level
trajectory data that incorporates a wide range of public knowledge.

3 PROBLEM MOTIVATION

Imagine a city in which each resident visits a number of places of
interest (POIs) each day. These POIs link together in a time-ordered
sequence to form a trajectory. The city’s governmentwishes to learn
aggregate information on where residents are traveling but, wary of
governmental oversight, many residents are unwilling to share their
entire trajectories truthfully. However, they are willing to share a
slightly perturbed version of their trajectory, especially if it came
with privacy guarantees. Hence, we wish to create a mechanism for
users to share their trajectories in a privacy-preserving way, whilst
ensuring that the shared trajectories preserve the major underlying
patterns and trends of the real data at the aggregate level. We now
describe the three principles that motivate and guide our solution:
protecting privacy, enhancing utility, and ensuring efficiency.
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Protecting Privacy. Our primary aim is to protect the individual
privacy of each user so that she has plausible deniability within the
dataset. We seek to achieve this by perturbing each user’s trajectory
in order to satisfy the requirements of DP. Specifically, we will use
LDP wherein the data aggregator is not trusted. We assume that
each user shares one trajectory each, and it is shared at the end of
the data collection period. We discuss the privacy implications of
these assumptions in Section 5.7.

Enhancing Utility by Incorporating External Knowledge. Although
the primary aim of the mechanism is to preserve privacy, our prac-
tical goal is to ensure that the perturbed trajectories have high
utility. Information to preserve to ensure high utility can range
from hotspot information to co-location patterns and previous
travel history. We argue that an important way to boost utility is
to link the probability of perturbation from one location to any
other with the semantic distance between the two locations. That
is, one is more likely to be perturbed to another location if it is
more semantically similar to its current location.

Furthermore, traditional (L)DP models impose strong privacy
guarantees to protect against external information being used in
an adversarial attack. However, in real-world applications of (L)DP,
we argue that these protections can be too strong and can nega-
tively affect the utility of the output dataset. To improve utility,
we propose incorporating a range of publicly known external in-
formation to influence the output of our mechanisms. Examples
of this type of information include business opening hours, sports
teams schedules, and published maps. This knowledge can be used
to influence the likelihood of certain perturbations, with the aim of
boosting realism and utility. As this knowledge is publicly available,
it is assumed adversaries have access to it.

Ensuring Efficiency. As our solutions utilize a wide range of public
information from the real world, it is equally important that our
solution can be applied to real world settings, at scale. Consequently,
we complement our privacy and utility goals with the desire for
our solution to be efficient and scalable for large urban datasets.

Applications. Our work focuses on perturbing trajectories such that
aggregate statistics are preserved as much as possible, which leads
to many important end applications of our work. A notable (and
timely) one is the idea of societal contact tracing that seeks to iden-
tify the places and times in which large groups of people meet
(so-called ‘superspreading’ events), as opposed to chance encoun-
ters between individuals. Knowledge of such events can be used
for location-specific announcements and policy decisions. Other
applications include advertising and provision of public services.
For example, if a city council can identify popular trip chains among
residents, they can improve the public transport infrastructure that
links these popular places. Likewise, if a restaurant owner knows
that many museum-goers eat lunch out after visiting a museum,
she may consider advertising near museums.

4 DEFINITIONS

In this section, we introduce necessary notation and definitions;
commonly-used notation is summarized in Table 1. We denote a set
of POIs, as P, where an individual POI is denoted by 𝑝𝑖 . Each POI
𝑝𝑖 ∈ P has a number of attributes ś 𝛼𝑖𝑡 , 𝛽𝑖𝑡 , etc. ś associated with
it, which could represent the popularity, privacy level, category,

Table 1: Commonly-Used Notation

Notation Meaning

𝑝,P Point of interest (POI), and set of POIs
𝑔𝑡 , 𝑔𝑠 Time and space granularity
𝑡,𝑇 Timestep, and set of all timesteps
𝜏,T Trajectory, and set of trajectories
𝜒 Dimension subscript (e.g., 𝑡 for temporal dimension)

𝑟𝜒 ,R𝜒 STC region, and set of regions
𝑛 Length of trajectory fragment (i.e., 𝑛-gram)

𝑤,W𝑛 𝑛-gram, and set of (reachable) 𝑛-grams
𝜏 (𝑎, 𝑏) Trajectory fragment; covers 𝑎th to 𝑏th elements of 𝜏

𝜃 Reachability threshold
𝑑𝜒 (·) Distance function for dimension 𝜒

𝜖 Privacy budget

etc. of the POI, and they can vary temporally. We quantize the time
domain into a series of timesteps 𝑡 , the size of which is controlled
by the time granularity, 𝑔𝑡 . For example, if 𝑔𝑡 = 5 minutes, the time
domain would be: 𝑇 = {...10:00, 10:05, 10:10,...}.

We define a trajectory, 𝜏 , at the POI level as a sequence of
POI-timestep pairs such that 𝜏 = {(𝑝1, 𝑡1), ...(𝑝𝑖 , 𝑡𝑖 ), ..., (𝑝 |𝜏 |, 𝑡 |𝜏 |)},
where |𝜏 | denotes the number of POI-timestep pairs in a trajectory
(i.e., its length). For each trajectory, we mandate that 𝑡𝑖+1 > 𝑡𝑖 (i.e.,
one cannot go back in time, or be in two places at once). Each
trajectory is part of a trajectory set, T . Perturbed trajectories and

trajectory sets are denoted as 𝜏 and ˆ︁T , respectively.
We use combined space-time-category (STC) hierarchical parti-

tions in which we assign POIs to different STC regions. 𝑟𝜒 denotes
an individual region where 𝜒 denotes the dimension of the region
(i.e., 𝑠 for space, 𝑡 for time, etc.). Regions can be combined to form
STC regions 𝑟𝑠𝑡𝑐 and R𝜒 denotes region sets. A trajectory can be
represented on the region level as 𝜏 = {𝑟1, ...𝑟𝑖 , ..., 𝑟 |𝜏 |} whereby 𝑟𝑖
represents the 𝑖-th STC region in the trajectory. Consider the first
point in a trajectory being {Central Park, 10:54am}. This might give
𝑟𝑠 = {Upper Manhattan}, 𝑟𝑐 = {Park}, and 𝑟𝑡 = {10-11am}, leading to
𝑟𝑠𝑡𝑐 = 𝑟1 = {Upper Manhattan, 10-11am, Park}.

Chaining regions (or POIs) together forms 𝑛-grams, denoted as
𝑤𝑛 , whereby: 𝑤𝑛

= {𝑟𝑖 , . . . , 𝑟𝑖+𝑛−1}. W𝑛 is the set of all possible
𝑛-grams. We use 𝜏 (𝑎, 𝑏) to specify a sub-sequence of 𝜏 such that:
𝜏 (𝑎, 𝑏) = {𝑟𝑎, ..., 𝑟𝑖 , ...𝑟𝑏 }, where 𝑎 and 𝑏 are the indices of 𝜏 . For
example, 𝜏 (1, 3) denotes the first three STC regions (or POI-timestep
pairs) of 𝜏 . 𝑑𝑠 (𝑝𝑖 , 𝑝 𝑗 ) denotes the physical distance between 𝑝𝑖 and
𝑝 𝑗 , and 𝑑 (𝑟𝑖 , 𝑟 𝑗 ) denotes the distance between 𝑟𝑖 and 𝑟 𝑗 .

4.1 Reachability

The notion of reachability is needed to ensure realism in perturbed
trajectories. We begin by identifying the subset of POIs that can
be reached from any particular POI, based on the relative physical
distance between them. A threshold, 𝜃 , represents the maximum
distance that one can travel in a certain time period. 𝜃 can be
specified directly, or be a function of 𝑔𝑡 and a given travel speed.

Definition 4.1 (Reachability). A POI 𝑝𝑏 ∈ P is reachable from 𝑝𝑎
at time 𝑡 if 𝑑𝑠 (𝑎, 𝑏) ≤ 𝜃 (𝑡), where 𝑝𝑎 ∈ P.
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Reachability prevents illogical trajectories from being produced.
For example, a trajectory of {New York City, Tokyo, London} would
be unrealistic if the time granularity was one hour. Alternatively,
imagine the trajectory: {Grand Central Station, Empire State Build-
ing, Central Park}. A realistic bigram to perturb to might be {Em-
pire State Building, Times Square} (i.e., the two locations can be
reached within one hour), whereas {Empire State Building, Mount
Rushmore} is unrealistic as it would not satisfy the reachability con-
straint. The definition of reachability accommodates time-varying
and asymmetric distances (e.g., caused by congestion and one-way
roads, respectively). For 𝑛-gram perturbations, W𝑛 is the set of all
𝑛-grams that satisfy the requirements of reachability. Formally, for
the 𝑛-gram 𝑤 = {𝑝𝑎, ...𝑝𝑖 , 𝑝𝑖+1, ..., 𝑝𝑏 }, the reachability constraint
requires 𝑝𝑖+1 to be reachable from 𝑝𝑖 at time 𝑡𝑖 for all 𝑎 ≤ 𝑖 < 𝑏.

4.2 Privacy Mechanisms

Definition 4.2 (𝜖-local differential privacy [19]). A randomized
mechanismM is 𝜖-local differentially private if, for any two inputs
𝑥, 𝑥 ′ and output 𝑦:

Pr[M(𝑥)=𝑦 ]
Pr[M(𝑥 ′)=𝑦 ]

≤ 𝑒𝜖 (1)

Whereas centralized DP allows the aggregator to add noise, LDP
ensures that noise is added to data before it is shared with an
aggregator. Like its centralized analogue, LDP possesses two funda-
mental properties that we use in our mechanism [13]. The first is
the composition theorem, which states that one can apply 𝑘 𝜖𝑖 -LDP
mechanisms, with the result satisfying 𝜖-LDP, where 𝜖 =

∑︁
𝑖 𝜖𝑖 . The

second property allows post-processing to be performed on private
outputs without affecting the privacy guarantee.

Definition 4.3 (Exponential Mechanism (EM) [39]). For an input
𝑥 and output 𝑦 ∈ Y, the result of mechanism M is 𝜖-differentially
private if one randomly selects 𝑦 such that:

Pr[M(𝑥) = 𝑦] =
exp(𝜖𝑞 (𝑥,𝑦)/2Δ𝑞)∑︁

𝑦𝑖 ∈Y
exp(𝜖𝑞 (𝑥,𝑦𝑖 )/2Δ𝑞)

(2)

where, 𝑞(𝑥,𝑦) is a quality (or utility) function, and Δ𝑞 is the sensi-
tivity of the quality function, defined as max𝑦,𝑦′ |𝑞(𝑥,𝑦) −𝑞(𝑥,𝑦′) |.

The utility of the EM can be written as:

Pr
[︂
𝑞(𝑥,𝑦) ≤ 𝑂𝑃𝑇𝑞 −

2Δ𝑞

𝜖

(︂
ln |Y |

|Y𝑂𝑃𝑇 |
+ 𝜁

)︂]︂
≤ 𝑒−𝜁 (3)

where 𝑂𝑃𝑇𝑞 is the maximum value of 𝑞(𝑥,𝑦), and Y𝑂𝑃𝑇 ⊆ Y is
the set of outputs where 𝑞(𝑥,𝑦) = 𝑂𝑃𝑇𝑞 [22].

Although more commonly used for centralized DP, the EM can
be applied in LDP, where we consider different inputs (for LDP) to
be equivalent to neighboring datasets of size 1 (for centralized DP).
By using the EM with a distance-based quality function, we achieve
𝜖-LDP (i.e., the probability ratio for any perturbation is upper-
bounded by 𝑒𝜖 ). This is in contrast to relaxations of LDP, such as
metric-LDP [3], context-aware LDP [1], or input-discriminative
LDP [25]. All of these have upper bounds for the probability ratio
of a perturbation of the form 𝑒 𝑓 (𝑥,𝑥

′) , where 𝑓 is a function that
quantifies the distance between two inputs 𝑥 and 𝑥 ′. Note that our
setting is a specific (stricter) case in which 𝑓 (𝑥, 𝑥 ′) = 𝜖 for all 𝑥, 𝑥 ′.

5 TRAJECTORY PERTURBATION

In this section, we first present a global solution that perturbs
the whole trajectory (Section 5.1), before outlining our 𝑛-gram-
based mechanism that addresses the infeasible aspects of the global
solution (Sections 5.2ś5.6).We provide theoretical analysis (Sections
5.7 and 5.8), a number of alternative approaches (Section 5.9), and
an outline of our multi-attributed distance function (Section 5.10).

5.1 Global Solution

In the global solution, we model entire trajectories as points in high-
dimensional space. Having instantiated all possible trajectories, we
determine the distance between these high-dimensional points and
the real trajectory, and use this distance to determine the probability
distribution. The probability of 𝜏 being perturbed to 𝜏 is:

Pr(𝜏 = 𝜏𝑖 ) =
exp(−𝜖𝑑𝜏 (𝜏,𝜏𝑖 )/2Δ𝑑𝜏 )∑︁

𝜏𝑖 ∈S
exp(−𝜖𝑑𝜏 (𝜏,𝜏𝑖 )/2Δ𝑑𝜏 )

(4)

where, S is the set of all possible trajectories, and 𝑑𝜏 is the distance
function that represents the distance between trajectories (see Sec-
tion 5.10). We use the EM (2) to perturb trajectories. Proof that the
global solution satisfies 𝜖-LDP follows from (4) and Definition 4.3.

Theorem 5.1. The utility of the global solution is expressed as:

Pr
[︂
𝑑𝜏 (𝜏, 𝜏) ≤ −

2Δ𝑑𝜏
𝜖 (ln |S| + 𝜁 )

]︂
≤ 𝑒−𝜁 (5)

Proof. The quality function is the distance function 𝑑𝜏 , and
its maximum value is obtained iff 𝜏 = 𝜏 . Hence, 𝑂𝑃𝑇𝑞 = 0 and
|Y𝑂𝑃𝑇 | = 1. Substituting this into (3) yields (5). □

To assess the feasibility of the global solution, we first analyze
its worst-case time complexity. The number of possible timestep

sequences is |𝑇 |!
|𝜏 |!×( |𝑇 |− |𝜏 |)! where |𝑇 | is the number of timesteps,

which is a function of 𝑔𝑡 (in minutes): |𝑇 | = 24×60
𝑔𝑡

. The number of

possible POI sequences is |P | |𝜏 | . Hence, the maximum size of S is:

|S| =
|P | |𝜏 |×|𝑇 |!

|𝜏 |!×( |𝑇 |− |𝜏 |)! The global solution requires instantiating all

trajectories in S, the size of which grows exponentially with |𝜏 |.
In reality, the reachability constraint reduces the number of pos-

sible trajectories. Assuming that (on average) 𝜇% of all POIs are
reachable between successive timesteps, the number of possible tra-
jectories is reduced by a factor of 𝜇 |𝜏 |−1. To illustrate this, imagine
a small-scale example where |𝜏 | = 5, 𝑔𝑡 = 15 minutes, |P | = 1,000,
and 𝜇 = 20%. Even under these settings, |S| ≈ 9.78 × 1019, which
means S remains computationally infeasible to compute and store.

Variants of the EM approach have been proposed, with the aim
of tackling the high cost of enumerating all possible outputs. The
subsampled exponential mechanism applies the EM to a sample
of possible outputs [34]. In our case, we would need the sampling
rate to be very small to make this approach computationally feasi-
ble. However, the highly skewed distribution of 𝑑𝜏 means that the
sampling rarely selects trajectories with low 𝑑𝜏 values, which ulti-
mately leads to poor utility in the perturbed dataset. The ‘Permute
and Flip’ approach [38] instead considers each output in a random
order, and performs a Bernoulli test to see if it can be output. How-
ever, the success probability, which is proportional to exp(−𝜖𝑑𝜏 ),
is generally low, meaning that efficiency gains are limited. Instead,
we look to alternative models to make our approach feasible.
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5.2 n-gram Solution Overview

Instead of considering trajectories as high-dimensional points, we
propose using overlapping fragments of the trajectories to capture
spatio-temporal patterns with efficient privacy-preserving computa-
tions. Specifically, we consider a hierarchical 𝑛-gram-based solution
that aims to privately perturb trajectories more quickly. Using (over-
lapping) 𝑛-grams allows us to consider the spatio-temporal link
between any 𝑛 consecutive points, which is necessary to accurately
model trajectory data.

Our solution (summarized in Figure 1) has four main steps: hier-
archical decomposition, 𝑛-gram perturbation, optimal STC region-
level reconstruction, and POI-level trajectory reconstruction. Hi-
erarchical decomposition is a pre-processing step that only uses
public information, so it can be done a priori and without use of
the privacy budget. Similarly, both trajectory reconstruction steps
do not interact with private data, thus allowing us to invoke LDP’s
post-processing property without using the privacy budget.

5.3 Hierarchical Decomposition

As |P | increases, the number of feasible outputs for POI-level per-
turbation grows exponentially. To address this challenge, we utilize
hierarchical decomposition to divide POIs into STC regions.

STC Region Composition. We first divide the physical space into
𝑅𝑠 spatial regions. For each 𝑟𝑠 ∈ R𝑠 , we create 𝑅𝑐 regions ś one
for each POI category. For each space-category region, we create
𝑅𝑡 regions, which represent coarse time intervals. POIs are then
assigned to STC regions, based upon their location, opening hours,
and category. POIs can appear in more than one STC region (e.g.,
they are open throughout the day and/or the POI has more than
one category). We remove all STC regions that have zero POIs
within them (e.g., 𝑟𝑠𝑡𝑐 = (top of mountain, 3am, church)), which
ensures that these regions will not be included inW𝑛 . As all this
information is public, it does not consume any privacy budget.

R𝑠 can be formed using any spatial decomposition technique,
such as uniform grids or clustering, or it can use known geography,
such as census tracts, blocks, or boroughs. We find that our mecha-
nism is robust to the choice of spatial decomposition technique. R𝑐

can be derived from known POI classification hierarchies, such as
those published by OpenStreetMap, etc. R𝑡 is most easily formed
by considering a number of coarse (e.g., hourly) time intervals.

STC Region Merging. Depending on the number of STC regions, and
the number of POIs within them, STC regions can be merged across
any (or all) of the three dimensions. For example, instead of 𝑟𝑠𝑡𝑐 =

(Main Street, 1am, Nightclub) and 𝑟𝑠𝑡𝑐 = (Main Street, 11pm, Bar),
they could be merged into 𝑟𝑠𝑡𝑐 = (Main Street, 11pm-2am, Nightlife),
which represents merging in the time and category dimensions.

Merging regions is done primarily for efficiency reasons as it
prevents many semantically similar, but sparsely populated, regions
from existing. Additional POI-specific information (e.g. popularity)
can be included into merging criteria to prevent significant negative
utility effects. For example, if the data aggregator wishes to preserve
large spatio-temporal hotspots, they will want to prevent merging
very popular POIs with semantically similar but less popular POIs.
For example, consider a conference center complex. Although all
conference halls are semantically similar, one hall might have a
large trade show, whereas the others may have small meetings. It is
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Figure 1: Solution Overview

important not to merge all halls in this case, as this might result in
less accurate responses to downstream data mining tasks. Hence,
we require that each STC region has𝜅 POIs associated with it where
𝜅 is a pre-defined function of POI attributes.

To further illustrate this, consider Figure 2a, which shows ten
POIs, divided in a 3 × 3 grid where larger circles indicate a more
popular POI. Figure 2b shows how regions might be merged if we
only consider geographic proximity, whereas Figure 2c shows the
resultant regions when merging accounts for perceived popularity.
We see more POIs in regions with less popular POIs, whereas very
popular POIs exist singly in a region. Deciding along which dimen-
sions to merge regions, as well as the priority and extent of merging,
depends ultimately on the utility goals of the data aggregator. For
example, if preserving the category of POIs is important, merging
in the time and space dimensions first would be preferable.

𝑛-gram Set Formation. As a final pre-processing step, we define
W𝑛 by first instantiating all possible 𝑛-gram combinations of STC
regions.We then remove all𝑛-gram combinations that do not satisfy
the reachability constraint. For the region level, we deem any 𝑟𝑎
and 𝑟𝑏 to be reachable if there is at least one 𝑝𝑖 ∈ 𝑟𝑎 and at least
one 𝑝 𝑗 ∈ 𝑟𝑏 that satisfy reachability.

5.4 n-gram Perturbation

Once W𝑛 has been defined, we convert each trajectory from a
sequence of POI-timestep pairs to a sequence of STC regions. The
next step is to perturb the STC regions of 𝜏 by using overlapping
𝑛-grams and the EM.

Notation.Wedefine𝑍 to be a set that holds all the perturbed𝑛-grams
of 𝜏 . We then use 𝑧 (𝑎, 𝑏) = {𝑟𝑎, ..., 𝑟 𝑖 , ...𝑟𝑏 } to be the perturbed 𝑛-
gram, where𝑎 and𝑏 are the indices of 𝜏 and 𝑧 (𝑎, 𝑏) ∈ 𝑍 . Importantly,
there is a subtle difference between 𝜏 (𝑎, 𝑏) and 𝑧 (𝑎, 𝑏). In 𝑍 , for any
timestep, there are multiple possible regions associated with each
trajectory point, whereas 𝜏 is the final reconstructed trajectory and
so there is only one region for each trajectory point.

Main Perturbation. For each perturbation, we take W𝑛 and define
the probability that 𝜏 (𝑎, 𝑏) is perturbed to𝑤𝑖 ∈ W𝑛 as:

Pr(𝑧 (𝑎, 𝑏) = 𝑤𝑖 ) =
exp(−𝜖′𝑑𝑤 (𝜏 (𝑎,𝑏),𝑤𝑖 )/2Δ𝑑𝑤 )∑︁

𝑤∈W𝑛 exp(−𝜖′𝑑𝑤 (𝜏 (𝑎,𝑏),𝑤𝑖 )/2Δ𝑑𝑤 )
(6)

where 𝜖 ′ = 𝜖
|𝜏 |+𝑛−1 , and 𝑑𝑤 (𝜏 (𝑎, 𝑏),𝑤𝑖 ) is the function that quanti-

fies the distance between 𝑛-grams. To ensure that 𝑛-grams are per-
turbed, we specify the ranges of 𝑎 and 𝑏 such that 𝑎 = (1, |𝜏 | −𝑛+1)
and 𝑏 = (𝑛, |𝜏 |). Once these probabilities have been defined, we use
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Figure 2: Illustrative example of the STC region merging

the EM to sample from W𝑛 and we store 𝑧 (𝑎, 𝑏) in 𝑍 . We repeat
this for increasing values of 𝑎 and 𝑏 (see Figure 3).

Using overlapping 𝑛-grams gives better accuracy than using non-
overlapping 𝑛-grams or merely perturbing points independently. It
lets us repeatedly ‘query’ a point multiple times, meaning that we
gather more information about it while continuing to guarantee
LDP. Overlapping 𝑛-grams simultaneously allows us to query a
larger portion of the entire trajectory, which enables us to base
each perturbation upon a wider range of semantic information.
For example, 𝜏 (3) is determined based on information from 𝜏 (1, 3),
𝜏 (2, 4), and 𝜏 (3, 5), assuming 𝑛 = 3. Hence, 𝜏 (3) is ‘queried’ 𝑛 times,
neighboring points 𝑛−1 times, etc., in addition to using information
from 2𝑛 − 1 points to influence the perturbation of 𝜏 (3).

End Effects.When 𝑛 ≥ 2, the start and end regions in a trajectory
are not covered 𝑛 times. For example, when |𝜏 | = 4 and 𝑛 = 2, the
main perturbation step covers the first and last regions once only
(with 𝑧 (1, 2) and 𝑧 (3, 4), respectively). To ensure that all timesteps
have the same number of perturbed regions, we conduct extra per-
turbations with smaller 𝑛-grams. This supplementary perturbation
is performed in the same manner as (6), but with differentW𝑛 sets
and different bounds for 𝑎 and 𝑏. In our example, we would obtain
𝑧 (1, 1) and 𝑧 (4, 4) using W1 (as illustrated in Figure 3).

Theoretical Utility. As the solution has multiple post-processing
stages, a theoretical utility guarantee for the entire mechanism
remains elusive. However, we can analyze the utility of the 𝑛-gram
perturbation step.

Theorem 5.2. The utility of the 𝑛-gram perturbation stage is:

Pr
[︂
𝑑𝑤 (𝜏 (𝑎, 𝑏),𝑤) ≤ −

2Δ𝑑𝑤
𝜖′ (ln |W𝑛 | + 𝜁 )

]︂
≤ 𝑒−𝜁 (7)

Proof. The quality function is the distance function 𝑑𝑤 , and its
maximum value is obtained iff 𝑧 (𝑎, 𝑏) = 𝜏 (𝑎, 𝑏). Hence, 𝑂𝑃𝑇𝑑𝑤 = 0
and |W𝑛

𝑂𝑃𝑇
| = 1. Substituting this into (3) yields (7). □

Hence, the utility is dependent on the size of the feasible 𝑛-gram
set, which itself is influenced by 𝑛, the granularity of hierarchical
decomposition, and the strictness of the reachability constraint.
Utility is also affected by trajectory length, as 𝜖 ′ is a function of |𝜏 |.

5.5 Region-Level Trajectory Reconstruction

Given a collection of perturbed 𝑛-grams, we define an optimization
problem that reconstructs a trajectory between points in 𝜏 and the
perturbed 𝑛-grams in 𝑍 . This is post-processing of the LDP output,
and does not consume any privacy budget. We define two error
terms (illustrated in Figure 4) that measure the similarity of regions

t	=	1 2 3 4

𝑧(1,2)

𝑧(2,3)

𝑧(3,4)
Main Perturbation

𝑧(1,1) 𝑧(4,4)
Supplementary 
Perturbation

Real Trajectory

Figure 3: Main and supplementary perturbation mecha-

nisms; different colors indicate different STC regions

to the perturbed data. By perturbing each point in 𝜏 𝑛 times (by
using overlapping 𝑛-grams), we magnify this effect.

The first error term is the ‘region error’ 𝑒 (𝑟 𝑗 , 𝑖), which is the
distance between 𝑟 𝑗 and the perturbed 𝑛-grams in location 𝑖 in 𝑍 .
It is defined as:

𝑒 (𝑟 𝑗 , 𝑖) =
∑︁
𝑑 (𝑟 𝑗 , 𝑦𝑖 ) (8)

where 𝑦𝑖 is the region from 𝑧 (𝑎, 𝑏) ∈ 𝑍 iff 𝑎 ≤ 𝑖 ≤ 𝑏, where 𝑎, 𝑏,
and 𝑖 are trajectory indices. The second error term is the ‘bigram
error’, 𝑒 (𝑖,𝑤), which is the sum of the two relevant region error
terms. More formally, it is defined as:

𝑒 (𝑖,𝑤) = 𝑒 (𝑤 (1), 𝑖) + 𝑒 (𝑤 (2), 𝑖 + 1) (9)

where𝑤 is a region-level bigram inW2, with𝑤 (1) and𝑤 (2) being
the first and second regions in𝑤 , respectively.

We now define the minimization problem as:

min
∑︁ |𝜏 |−1
𝑖=1 𝑥𝑤𝑖 𝑒 (𝑖,𝑤) (10)

s.t. 𝑥𝑤𝑖 · 𝑞(𝑤𝑖 ,𝑤𝑖+1) = 𝑥𝑤𝑖+1 · 𝑞(𝑤𝑖 ,𝑤𝑖+1) ∀ 1 ≤ 𝑖 < |𝜏 | (11)

𝑞(𝑤𝑖 ,𝑤𝑖+1) =

{︄
1 if𝑤𝑖 (2) = 𝑤𝑖+1 (1)

0 otherwise
(12)

∑︁ |𝜏 |−1
𝑖=1 𝑥𝑤𝑖 = |𝜏 | − 1 (13)∑︁

𝑤∈W2 𝑥𝑤𝑖 = 1 ∀ 1 ≤ 𝑖 < |𝜏 | (14)

where, 𝑥𝑤𝑖 is a binary variable encoding whether𝑤 is selected for
index 𝑖 . The objective (10) is to minimize the total bigram error
across the trajectory. (11) and (12) are continuity constraints that
ensure consecutive bigrams share a common region. (13) ensures
that the number of bigrams selected is correct, and (14) ensures
only one bigram is associated with each point in the trajectory.

Efficiency Discussion. Assuming that the space, time, and category
granularities are well-chosen such that |W2 | ≪ |R|2, the scale
of the optimization problem will generally be within the scope of
most linear programming solvers (see Section 5.8). Nevertheless, we
introduce a step to further limit the set of possible bigrams that can
appear in the reconstructed trajectory. Once 𝑛-gram perturbation
is complete, we obtain the minimum bounding rectangle (MBR)
defined by all 𝑟𝑠𝑡𝑐 ∈ 𝑍 . From this, we define P𝑚𝑏𝑟 ⊆ P, which
contains all the POIs in this MBR, and R𝑚𝑏𝑟 , which is the set of
STC regions that contain at least one POI in P𝑚𝑏𝑟 . From this, we
defineW2

𝑚𝑏𝑟
as the set of feasible bigrams formed from R𝑚𝑏𝑟 , and

we use this set in the reconstruction. Performing this step does not
prevent the optimal reconstructed trajectory from being found, as
the reconstruction seeks to minimize the error with respect to the
perturbed 𝑛-grams in 𝑍 , all of which are included in R𝑚𝑏𝑟 .
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Figure 4: Illustrative example of error terms: error equals

sum of red dashed line distances

5.6 POI-Level Trajectory Reconstruction

The final step is to express the output trajectories in the same for-
mat as the input trajectories. Whereas converting a trajectory from
POIs to STC regions is relatively straightforward, the converse
operation is non-trivial as there can be many possible POI-level
trajectories corresponding to a certain sequence of STC regions.
Furthermore, the reachability requirement means that some trajec-
tories are infeasible, and should not be published.

We expect most POI-level trajectories to be feasible as W𝑛 is
defined based on the reachability criterion. Hence, we generate
an individual trajectory at random and check that it satisfies the
reachability constraint. If it does, we output it; if not, we generate
another trajectory. We continue this until we generate a feasible tra-
jectory, reach a threshold (𝛾 ), or exhaust all possible combinations.
Experimentally, the threshold of 𝛾 = 50,000 was rarely reached.

When this trajectory sampling fails, it implies that the perturbed
region sequence does not correspond to a feasible trajectory. If so,
we randomly select a POI and time sequence and ‘smooth’ the times
such that they become feasible. For example, consider the region-
level trajectory: {(Restaurant, 9-10pm, Downtown), (Bar, 9-10pm,
Downtown), (Bar, 9-10pm, Suburb)}. Reachability may mean that
the suburban bar is only reachable from the downtown bar in 55
minutes, meaning that it is impossible to visit all three venues in an
hour. Accordingly, we smooth the timesteps such that either 𝜏 (1)
occurs between 8 and 9pm, or 𝜏 (3) occurs between 10 and 11pm.

5.7 Privacy Analysis

We now analyze the privacy of the 𝑛-gram-based solution through
a sketch proof, and discuss some possible adversarial attacks.

Theorem 5.3. The perturbation of trajectory 𝜏 satisfies 𝜖-LDP.

Proof. Each 𝑛-gram 𝜏 (𝑎, 𝑏) ś where 𝑎 = (1, |𝜏 | − 𝑛 + 1) and
𝑏 = (𝑛, |𝜏 |) ś is perturbed with privacy budget 𝜖 ′ using (6), and
the EM. This means each perturbation satisfies 𝜖 ′-DP, and there
are |𝜏 | − 𝑛 + 1 of these perturbations. Because of end effects, there
are an additional 2(𝑛 − 1) perturbations, each of which also satisfy
𝜖 ′-DP. Using sequential composition, the resultant output satisfies
( |𝜏 |+𝑛−1)𝜖 ′-DP. As 𝜖 ′ = 𝜖

( |𝜏 |+𝑛−1)
, the overall mechanism therefore

satisfies 𝜖-DP. As the size of adjacent datasets is 1, 𝜖-DP results are
equivalent to 𝜖-LDP results. □

As we use publicly available external knowledge, we assume
that an adversary has access to all the same knowledge. However,
external knowledge is only used to enhance utility, whereas privacy
is provided through the application of the EM (which could be done
with no external knowledge). Hence, an adversary cannot use this

information to learn meaningful information with high probability.
As our solution is predicated on a ‘one user, one trajectory’ basis,
inference attacks based on repeated journeys from the same user
are prevented by definition. We can use sequential composition to
extend our solution to the multiple release setting; assuming each
of 𝑘 trajectories is assigned a privacy budget of 𝜖 , the resultant
release provides (𝑘𝜖)-LDP to each user. Finally, unlike in other
works that consider continuous data sharing [e.g. 2, 8, 21, 32], our
setting sees the user share all data at the end of their trajectory.
Hence, as we provide user-level 𝜖-LDP, the LDP privacy guarantee
protects against spatial and temporal correlation attacks.

5.8 Computational Cost

We now discuss the computational costs of the proposed 𝑛-gram-
based approach, which highlight how it is highly practical. Also, as
each perturbation can be done locally on a user’s device, the entire
data collection operation is inherently distributed and scalable.

Choice of 𝑛. PrecomputingW𝑛 requires O(|P|𝑛) space, which be-
comes infeasible for large cities and 𝑛 ≥ 3. If 𝑛 ≥ 3 and |P | is
large, feasible 𝑛-grams can be computed ‘on-the-fly’, although this
attracts a significant runtime cost. While these effects are partially
mitigated by using STC regions, we recommend choosing 𝑛 = 2

(bigrams) as 𝑛 ≥ 3 will be unrealistic in most practical settings.

Time Complexities. Converting a trajectory from the POI-level to
STC region level has time complexity O(|𝜏 |) and the perturbation
phase has time complexity O(𝑛 |𝜏 |). Converting trajectories from
the STC region level back to the POI level (assuming time smoothing
does not need to be performed) has a worst-case time complexity
of O(𝛾 ( |𝜏 | + |𝜏 − 1|)). This is because |𝜏 | POIs need to be selected,
and then reachability checks need to be performed on each link
(of which there are |𝜏 | − 1 in total). In the worst-case, this process
is repeated 𝛾 times, hence O(𝛾 ( |𝜏 | + |𝜏 − 1|)). We find that time
smoothing is needed for around 2% of trajectories on average, and
so we devote little focus to its runtime effects here.

Optimal Reconstruction Complexity. Section 5.5 presents the optimal
reconstruction phase, which uses integer linear programming. Here,
we briefly discuss the scale of the problem in terms of the number of
variables and constraints. Let 𝜙 = |R𝑚𝑏𝑟 |. The number of feasible
bigrams will be 𝜙2 in the worst case, although the reachability
constraint reduces this in practice. From the definition of 𝑥𝑤𝑖 , we
see that there are 𝜙 ( |𝜏 | − 1) variables (i.e., one 𝑥𝑤𝑖 per bigram, per
trajectory point). The continuity constraints ś (11) and (12) ś impart
𝜙 ( |𝜏 | − 1) constraints, and the capacity constraints ś (13) and (14)
ś impart |𝜏 | − 1 constraints. Hence, the optimization problem has
(𝜙 |𝜏 | + |𝜏 | − 𝜙 − 1) constraints in total. Closed-form expressions
for the expected runtime of optimization problems depend on the
exact solver chosen, and are typically fast in practice [see 12, 43].

5.9 Alternative Approaches

We compare our solution to other approaches, summarized here.

Using Physical Distance Only. The most basic distance-based pertur-
bation mechanism (called PhysDist) would ignore external knowl-
dge and only use the physical distance between POIs/regions.

POI-level n-Gram Perturbation. Our mechanism can be applied just
on the POI-level.NGramNoH perturbs the time and POI dimensions
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separately in order to control the size ofW𝑛 . This requires splitting
the privacy budget more (i.e., 𝜖 ′ = 𝜖

2 |𝜏 |+𝑛−1
).

Independent POI Perturbation. The simplest approach is to perturb
each POI independently of all others. We consider two variations
of this approach: one where the reachability constraint is con-
sidered during perturbation (IndReach), and one where it is not
(IndNoReach). To ensure that feasible trajectories are output when
using IndNoReach, we use post-processing to shift the perturbed
timesteps to ensure a ‘realistic’ output. While such methods make
less intensive use of the privacy budget, they fail to account for the
intrinsic relationship between consecutive points. However, when
temporal gaps between POIs are large, the reachability constraint
becomes less influential, making these methods more attractive.

Other LDP Relaxations. As discussed in Section 2, a number of
distance-based perturbation mechanisms that were inspired by
the principles of (L)DP exist. However, although these approaches
possess their own theoretical guarantees, they do not satisfy 𝜖-LDP,
which makes them incomparable with our mechanism.

5.10 Distance Function

We now outline the semantic distance functions used throughout
our work. Note that our mechanism is not reliant on any specific
distance/quality function ś any other distance function can be used,
without needing to change the mechanism.

Physical Distance. We use 𝑑𝑠 (𝑝𝑎, 𝑝𝑏 , 𝑡) to denote the physical dis-
tance from 𝑝𝑎 to 𝑝𝑏 at time 𝑡 , which can be derived using any
distance measure (e.g., Euclidean, Haversine, road network). To
get the distances between STC regions, we obtain the distance be-
tween the centroids of the POIs in the two regions. We similarly
use 𝑑𝑠 (𝑟𝑎, 𝑟𝑏 ) to denote the physical distance between 𝑟𝑎 and 𝑟𝑏 .

Time Distance. The time distance between regions is defined as
the absolute time difference between two STC regions. That is,
𝑑𝑡 (𝑟𝑎, 𝑟𝑏 ) = |𝑡𝑎 − 𝑡𝑏 |. We limit time distances to ensure that no time
distance is greater than 12 hours. Where STC regions are merged
in the time dimension, we use the time difference between the
centroids of the merged time intervals. For example, if two regions
cover 2-4pm and 5-7pm, 𝑑𝑡 = |3 − 6| = 3 hours.

Category Distance. Category distance, 𝑑𝑐 , is quantified using a multi-
level hierarchy. (We use three, although any number of levels can
be used.) Figure 5 illustrates how 𝑑𝑐 varies across hierarchical lev-
els, relative to the leftmost level 3 (white) node. We define cat-
egory distance to be symmetric (i.e., 𝑑𝑐 (Shoe Shop, Shopping) =

𝑑𝑐 (Shopping, Shoe Shop). If two POIs or regions do not share a level
1 category, we deem them to be unrelated and 𝑑𝑐 = 10 (indicated
by the dotted line and purple node in Figure 5).

Combining Distances. Distance functions are combined as follows:

𝑑 (𝑟𝑎, 𝑟𝑏 ) =
(︁
𝑑𝑠 (𝑟𝑎, 𝑟𝑏 )

2 + 𝑑𝑡 (𝑟𝑎, 𝑟𝑏 )
2 + 𝑑𝑐 (𝑟𝑎, 𝑟𝑏 )

2
)︁1/2

(15)

To determine the ‘distance’ between two 𝑛-grams, we use element-
wise summation. For example, the distance between two bigrams ś
𝑤𝑖 = {𝑖1, 𝑖2} and𝑤 𝑗 = { 𝑗1, 𝑗2} ś is calculated as 𝑑 (𝑖1, 𝑗1) + 𝑑 (𝑖2, 𝑗2).
More generally, if𝑤1 and𝑤2 are two 𝑛-grams:

𝑑𝑤 (𝑤1,𝑤2) =
∑︁𝑛
𝑎=1 𝑑 (𝑖𝑎, 𝑗𝑎) (16)
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Figure 5: 𝒅𝒄 values, relative to left-most level 3 node

6 EXPERIMENTAL SET-UP

Our experiments seek to: a) analyze our mechanism and gather
insights from its behavior; b) compare our approach to compa-
rable alternatives; and c) demonstrate the practical utility of our
mechanism in the context of application-inspired queries.

6.1 Data

We use a range of real, synthetic, and semi-synthetic trajectory
datasets. There is a chronic lack of high quality, publicly available
POI sequence data. Hence, we augment existing real datasets to
make them suitable for a comprehensive evaluation.

6.1.1 Real Data. We combine Foursquare check-in [45] and his-
toric taxi trip [42] data, both from New York City. The set of POIs is
taken from all POIs that appear in the raw Foursquare dataset, from
which we take the |P | most popular as our set P. We concatenate
the pick-up and drop-off locations of each taxi driver’s daily trips
in order to protect their business-sensitive movements. We match
the co-ordinate data with the nearest POI. If no POIs within 100m
are found, we discard the point. We clean the data by removing
repeat points with the same venue ID or exact latitude-longitude
location. Where points occur less than 𝑔𝑡 minutes apart, we remove
all but one point at random. For category information, we use the
publicly available Foursquare category hierarchy [16] to assign a
single category to each POI. We manually specify opening hours
for each broad category (e.g., ‘Food’, ‘Arts and Entertainment’), and
set all POIs of that (parent) category to have those hours. However,
the mechanism is designed to allow POI-specific opening hours.

6.1.2 Semi-Synthetic Data. We use Safegraph’s Patterns and Places
data [41] to semi-synthetically generate trajectories. We randomly
determine |𝜏 | using a uniform distribution with bounds (3,8), and
the start time using a uniform distribution with bounds (6am, 10pm).
The starting POI is selected at random from the popularity distribu-
tions of the day/time in question. We sample from the distribution
of dwell times at each POI to determine the time spent in one lo-
cation, and we sample the time spent traveling to the next POI
uniformly from (0, 60) minutes. The next POI is sampled at random,
based on the popularity distribution at the expected arrival time
(based on the POIs that are ‘reachable’). This process continues
until a trajectory is generated. Safegraph uses the NAICS hierarchy
[7], and we use this system for the category hierarchy. Opening
hours information for POIs is sparse, and so we manually assign
general opening hours to categories, as in the Taxi-Foursquare data.

6.1.3 Campus Data. We generate trajectories based on the Univer-
sity of British Columbia campus [40]. The 262 campus buildings act
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as POIs, and nine POI categories exist, such as ‘academic building’,
‘student residence’, etc. We determine trajectory length and start
time in the same way as for the Safegraph data. For each subsequent
timestep in the trajectory, we sample from a uniform distribution
with bounds (𝑔𝑡 , 120) minutes. The category of the first POI is cho-
sen at random, and the exact POI is chosen at random from all
POIs in the selected category. For each subsequent POI, the POI
is chosen from the set of reachable POIs based on the preceding
POI, the time gap, and the time of day. We artificially induce three
popular events into the synthetic trajectories by picking a point in
the trajectory, and controlling the time, POI, and category of the
trajectory point. The remainder of the trajectory is generated as
per the previously outlined method. The three popular events are:
500 people at Residence A at 8-10pm; 1000 people at Stadium A at
2-4pm; and 2000 people in some academic buildings at 9-11am.

6.1.4 External Knowledge Specification. Although we specify ex-
ternal knowledge manually, more scalable, operator-independent
methods are possible. For example, APIs of major location-based
services (e.g., Google Maps) can be used to query thousands of POIs
efficiently and cheaply. In the case of Google Maps, information
such as location, opening hours, category, price levels, etc. can be
obtained directly through their API. This information can be stored
in the POI-level database, with which the mechanism interacts.

6.1.5 Pre-Processing Costs. The pre-processing necessary for our
experiments is split into three parts: (a) POI processing, hierarchical
decomposition, and region specification; (b) trajectory composition;
and (c) trajectory filtering. Part (a) is a one-time operation that
creates the necessary data structures. The impact of specifying
external knowledge is negligible as the data structures (e.g., R,
W𝑛) need to be created regardless. Figure 7 shows the runtime
costs for pre-processing step (a) for the two large-scale datasets. The
runtime is heavily dependent on the size of P, but less influenced by
the reachability constraint. It is independent of other variables, such
as trajectory length and privacy budget. Although it is a one-time
operation, localized updates can be performed to reflect changes
in the real world (e.g., changes in POI opening times, new roads
affecting reachable POIs). Despite the large runtime, we argue that
it is an acceptable cost, especially as it is a one-time process. Parts
(b) and (c) are only necessary as we are simulating the perturbation
of thousands of trajectories. In a practical setting, parts (b) and (c)
are negligible as the trajectory data is created by each user and, by
definition, a real trajectory should satisfy reachability and other
feasibility constraints. If there are infeasible aspects in a trajectory,
smoothing operations can be performed in sub-second time.

6.2 Experimental Settings

We set 𝑔𝑡 = 10 minutes, 𝑛 = 2 for all 𝑛-gram-based methods, and
|P | = 2,000. We set 𝜖 = 5, in line with other real-world deployments
of LDP by Apple [17] and Microsoft [18]. We assume all travel is
at 4km/hr (campus data) and 8km/hr (Taxi-Foursquare and Safe-
graph data). These speeds correspond to approximate walking and
public transport speeds in cities, once waiting times, etc. have been
included. We consider the effects of varying these parameters in
Section 7.2. We use Haversine distance throughout. We filter T to
remove trajectories that do not satisfy the reachability constraint

or where POIs are ‘visited’ when they are closed. In general, the
size of T (once filtered) is in the range of 5,000-10,000.

When creating STC regions, we divide the physical space using
a 𝑔𝑠 × 𝑔𝑠 uniform grid. The finest granularity we consider is 𝑔𝑠 = 4,
and we use coarser granularities (𝑔𝑠 = {1, 2}) when performing
spatial merging. We use the first three levels of the Foursquare and
NAICS category hierarchies (for the Taxi-Foursquare and Safegraph
data, respectively), and use the category distance function outlined
in Section 5.10. Using these levels ensures that𝑑𝑐 = 10 for POIs with
completely different categories. STC regions have a default time
granularity of one hour. By default, we perform spatial merging
first, followed by time merging, and category merging, and 𝜅 = 10.

We do not find any suitable alternatives in the literatureÐall
existing work is based in the centralized DP domain, or uses re-
laxed definitions of LDP. Instead, we compare to the alternative
approaches outlined in Section 5.9.

6.3 Utility Measures

We assess the accuracy of our perturbed trajectories through a
range of measures. First, we examine the distance between the real
and perturbed trajectories. We normalize the distance values by |𝜏 |

and use the term ‘normalized error’ (NE) henceforth. For this, we
use the same distance definitions as outlined in Section 5.10.

6.3.1 Preservation RangeQueries. We also examine a set of ‘preser-
vation range queries’ (PRQs). That is, for each point in each tra-
jectory, we check to see whether the perturbed POI is within 𝛿

units of the true POI. For example, a location PRQ might examine
whether 𝑝̂𝑖 is within 50 meters of 𝑝𝑖 . We conduct PRQs in all three
dimensions, and define the utility metric 𝑃𝑅𝜒 as:

𝑃𝑅𝜒 =
1

|T |

∑︁
𝜏 ∈T

(︂
1

|𝜏 |

∑︁ |𝜏 |
𝑖=1 𝜋 (𝑝𝑖 , 𝑝̂ 𝑗 , 𝛿𝜒 )

)︂
× 100% (17)

where 𝜋 (𝑝𝑖 , 𝑝̂ 𝑗 , 𝛿) equals 1 if 𝑑𝜒 (𝑝𝑖 , 𝑝̂ 𝑗 ) ≤ 𝛿 , and zero otherwise.

For time PRQs, 𝑡𝑖 and 𝑡𝑖 replace 𝑝𝑖 and 𝑝̂𝑖 , respectively.

6.3.2 Hotspot Preservation. For each POI, spatial region, or cat-
egory, we define a spatio-temporal hotspot as the time interval
during which the number of unique visitors is above a threshold
𝜂. A hotspot is characterized by ℎ = {𝑡𝑠 , 𝑡𝑒 , 𝑝𝑖 , 𝑐}, where 𝑡𝑠 and 𝑡𝑒
are the start and end times, 𝑝𝑖 is the POI, and 𝑐 is the maximum
count reached in the interval. Note that multiple hotspots can be
associated with the same POI if popularity changes over time (e.g.,
a train station might have hotspots during the AM and PM peaks).

We consider three spatial granularities: POI-level, and spatial
regions defined by 4× 4 and 2× 2 grids, and 𝜂 = {20, 20, 50}, respec-
tively. We consider three category granularities (i.e., each hierarchi-
cal level), and 𝜂 = {50, 30, 20}, for levels {1, 2, 3} respectively. We
quantify hotspot preservation by calculating the ‘hotspot distance’

between the hotspots in the perturbed and real data. IfH and ˆ︁H
are the hotspot sets in the real and perturbed data respectively, the
average hotspot distance (AHD) between sets is:

𝐴𝐻𝐷 (H , ˆ︁H) = 1|︁|︁|︁ ˆ︁H
|︁|︁|︁
∑︁
ℎ̂∈ ˆ︁H minℎ∈H

(︁
|𝑡𝑠 − 𝑡𝑠 | + |𝑡𝑒 − 𝑡𝑒 |

)︁
(18)

Note that, for each perturbed hotspot, we calculate the hotspot
distance to each real hotspot (for the same space-category granu-
larity) and report the minimum value. This protects against cases
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Figure 7: Pre-processing runtime costs

Table 2: Mean NE between real and perturbed trajectory sets

Method
Taxi-Foursquare Safegraph Campus

𝑑𝑡 𝑑𝑐 𝑑𝑠 𝑑𝑡 𝑑𝑐 𝑑𝑠 𝑑𝑡 𝑑𝑐 𝑑𝑠

IndNoReach 1.44 3.81 1.99 1.47 2.87 2.14 2.06 1.35 0.87

IndReach 1.43 3.80 2.03 1.50 2.94 2.31 2.03 1.39 0.89

PhysDist 1.61 8.74 1.85 1.62 8.38 2.10 2.16 3.04 0.90

NGramNoH 1.63 4.25 2.07 1.62 3.37 2.33 2.14 1.46 0.88

NGram 1.18 1.82 2.24 0.93 1.31 2.12 1.21 0.81 0.83

in which there is not a one-to-one relationship between real and

perturbed hotspots. We exclude hotspots in ˆ︁H for which there is no
corresponding hotspot inH . We also record the absolute difference
between 𝑐 and 𝑐 for each hotspot pair. When averaged across all
hotspots, we obtain the average count difference, ACD.

7 RESULTS

We compare our hierarchical solution to baseline methods in terms
of NE and runtime. We also vary experimental and mechanism
parameters, before evaluating on application-inspired queries.

7.1 Baseline Comparison

7.1.1 Normalized Error. Table 2 shows the distances between the
real perturbed trajectories in all three dimensions. NGram is gen-
erally the best performing method across all datasets. Comparison
with NGramNoH demonstrates that a hierarchical approach pro-
vides accuracy benefits as well as efficiency benefits (as we will see).
The importance of including external knowledge, such as category
information, is emphasized when comparing performance with
PhysDist, which performs worse than all other methods. Perfor-
mance gains are primarily achieved in minimizing the category
distance between real and perturbed trajectories.

NGram has lower 𝑑𝑐 and 𝑑𝑡 values than all other methods, al-
though it performs less well (comparatively) when analyzing 𝑑𝑠 .
This indicates that, although the category and time dimensions of
the STC region merging seem well-suited, the spatial merging may
be too coarse. Less merging in the spatial dimension would help
to minimize accuracy losses here, although a moderate decrease
in efficiency would have to be tolerated. Space limitations prohibit
deeper analysis of different STC region merging approaches.

7.1.2 Runtime Analysis. Table 3 shows the average runtime of each
perturbation method, including a breakdown of time spent on each
stage of the mechanism. The ‘Other’ column incorporates over-
heads and mechanism stages unique to one perturbation method
(e.g., time smoothing in IndNoReach and IndReach, or the POI-
level reconstruction in NGramH). As expected, IndNoReach and
IndReach are exceptionally quick as they rely solely on indexing
operations. For the remaining mechanisms, the majority of the run-
time is reserved for solving the optimization problem during the
trajectory reconstruction phase. All other phases are performed in
sub-second times. This demonstrates that even quicker results are
feasible if time is spent selecting the best LP solver and tuning the
optimization parameters ś aspects of work that were beyond the

scope of this paper. Importantly, however, NGram complements its
accuracy superiority with efficiency prowess over NGramNoH and
PhysDist, being nearly two and four times faster on average, re-
spectively. The performance gain is primarily achieved from having
a smaller optimization problem as a result of STC region merging.

7.2 Parameter Variation

We now examine how performance is influenced by the trajec-
tory characteristics, and the mechanism or experiment parameters.
Figures 8 and 9 show the variation in NE and runtime, respectively.

7.2.1 Trajectory Length. Figures 8a and 8e show an increase in er-
ror as trajectory length increases. NGram consistently outperforms
other methods, which are broadly comparable in accuracy terms,
with the exception of PhysDist. This is because 𝜖 ′ decreases as |𝜏 |
increases, which decreases the likelihood that the true 𝑛-gram is
returned. Although the reconstruction stage seeks to minimize the
effects of this, the reconstruction error is defined with respect to the
perturbed 𝑛-grams (not the real 𝑛-grams), which limits the ability
for the mechanism to correct itself. An alternative privacy budget
distribution would be to assign a constant 𝜖 ′ value for each pertur-
bation, but this means trajectories experience a different amount
of privacy leakage (i.e., 𝜖 = (𝑛 + |𝜏 | − 1)𝜖 ′).

Figures 9a and 9e show how the runtime changes with trajec-
tory length. As expected, IndNoReach and IndReach show little
runtime variability. Of the optimization-based approaches, NGram
is consistently the fastest method, and its rate of increase as |𝜏 |
increases is lower than other approaches. Finally, as most trajecto-
ries were less than eight POIs in length, NGram produces output
trajectories in a reasonable time for the vast majority of trajectories.

7.2.2 Privacy Budget. Figures 8b and 8f show how NE is influenced
by 𝜖 . All methods produce expected error profilesÐas 𝜖 increases,
the error decreasesÐalthough this behavior is less notable for Phys-
Dist. When 𝜖 < 1, the drop-off in utility is less pronounced. This
behavior is likely to be indicative of the DP noise overwhelming
the characteristics of the true data (i.e., the output data offers little
value due to the added noise). Hence, we recommend setting 𝜖 ≥ 1

as a ‘starting point’ in applications of our solution.
Importantly, Figures 9b and 9f show that the runtime of NGram

is relatively immune to the privacy budget, which indicates that
the scale of the optimization problem is unaffected by the privacy
budget. Most remaining methods also exhibit this immunity, al-
though PhysDist does not, which further emphasizes the benefits
of including external information in trajectory perturbation.
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Table 3: Average runtime in seconds; breakdown by main mechanism stages; values of 0.000s indicate runtimes that are less

than 10-3s; sum of individual runtime stages may not equal ‘Total’ due to rounding

Method

Taxi-Foursquare Safegraph

Perturb
Reconst. Optimal

Other Total Perturb
Reconst. Optimal

Other Total
Prep. Reconst. Prep. Reconst.

IndNoReach 0.005 ś ś 0.714 0.720 0.006 ś ś 0.786 0.791

IndReach 0.005 ś ś 0.000 0.006 0.005 ś ś 0.000 0.006

PhysDist 0.449 0.497 67.618 0.000 68.564 0.431 0.473 60.561 0.000 61.464

NGramNoH 0.446 0.561 30.872 0.000 31.879 0.426 0.509 24.389 0.000 25.325

NGram 0.056 0.132 4.892 0.502 5.582 0.126 0.235 3.196 0.178 3.735
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Figure 8: Normalized error as experimental settings vary;

Figures 8a-8d use Taxi-Foursquare (T-F) data, Figures 8e-8h

use Safegraph (SG) data, and Figure 8i uses Campus data

7.2.3 Size of POI Set. Figures 8c and 8g show the effect that |P |

has on NE. We omit PhysDist and NGramNoH when |P | = 8,000,
owing to their high runtime. Interestingly, the error profiles are
relatively immune to the effects of changing |P |. This suggests that
the optimal reconstruction phase can effectively identify the best
trajectory from the perturbed 𝑛-grams. Figure 9c and 9g show a
moderate runtime increase forNGram, which still perturbs trajecto-
ries in a reasonable time, even for large POI sets. In all𝑛-gram-based
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Figure 9: Average runtime as experimental settings vary; Fig-

ures 9a-9d use Taxi-Foursquare (T-F) data, Figures 9e-9h use

Safegraph (SG) data, and Figure 9i uses Campus data

methods, at least 95% of runtime is spent during reconstruction, in-
dicating the area of focus if substantial time-savings are necessary.

7.2.4 Reachability Constraint. We experiment with assumed travel
speeds of {4, 8, 12, 16}km/hr, and we also consider imposing no
reachability constraint (i.e., 𝜃 = ∞). Error increases as the reacha-
bility constraint becomes less strict or is removed entirely (Figures
8d and 8h). This is because more 𝑛-grams are feasible and so the
likelihood of the true 𝑛-gram being returned is reduced. NGram
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Figure 10: Variation in 𝑷𝑹𝝌 values as 𝜹𝝌 changes

consistently outperforms all other methods in accuracy terms and,
in terms of runtime, it is relatively immune to changes in assumed
travel speed, unlike other 𝑛-gram approaches (Figures 9d and 9h).
Importantly, NGram is up to 31% better than other methods when
the reachability constraint is applied, and it remains up to 22% better
than other methods when the reachability constraint is omitted.

7.2.5 𝑛-gram Length. We consider 𝑛-grams of length {1, 2, 3} for
the three 𝑛-gram-based methods, using the Campus data. The NE
and runtime results are shown in Figures 8i and 9i, respectively.
NGram consistently outperforms other methods for all values of
𝑛, and, for NGram, 𝑛 = 2 offers the best results. This is to be
expected given the trade-off between capturing more information
between neighboring points (achieved with high 𝑛) and the division
of 𝜖 and sensitivity of the distance function (where low 𝑛 is good).
As expected and discussed in Section 5.8, runtime costs start to
become undesirable when 𝑛 = 3, supporting our recommendation
that bigrams should be used in most real-world applications.

7.3 Application-Inspired Queries

Figure 10 shows the results for the PRQs for each dimension. For
space and time PRQs, all methods perform similarly, although
NGram slightly outperforms the other methods in general. There is
a more notable difference in performance for category PRQs, with
NGram clearly superior for all 𝛿𝑐 values. Interestingly, there is an
evident step at 𝛿𝑐 = 3.5, which suggests strong preservation of
category within levels 2 and 3, which demonstrates robustness in
our solution. The ability to preserve the general category of POIs
indicates the solution’s suitability for societal contact tracing as
relevant agencies can, say, advise people who have recently visited
sports stadia to monitor their health. Table 4 shows the AHD and
ACD values under default settings (AHD is in hours, ACD has no
units). NGram is much better than other methods in preserving
the temporal location of hotspots. Again, PhysDist performs worst
of all and the remaining methods are broadly comparable. Inter-
estingly, NGram performs less well when considering ACD values.
This suggests that, while hotspots are broadly preserved in time,
they are ‘flatter’ in the perturbed trajectory sets. In practice, pre-
serving the spatio-temporal location of hotspots will probably be
more important to policy makers and researchers than preserving
the hotspot strength (i.e., the maximum number of unique visitors).

Based on these results and those in Section 7.2.2, we recommend
𝜖 ≥ 1 for most practical applications.

Table 4: AHD and ACD values for default trajectory sets

Method
Taxi Safegraph Campus

AHD ACD AHD ACD AHD ACD

IndNoReach 1.58 8.21 2.52 13.07 2.36 15.72

IndReach 1.72 9.64 2.54 9.07 2.54 17.83
PhysDist 2.22 10.76 3.34 16.24 4.38 23.48

NGramNoH 1.71 9.36 2.81 11.25 3.29 18.23
NGram 1.49 13.53 2.01 16.30 2.03 18.74

8 FURTHERWORK

We have developed an efficient and scalable 𝑛-gram-based method
for perturbing trajectory data in accordance with LDP. However,
there are a number of areas in which our solution can be extended,
and these form the basis for future work for us and others. Although
the external knowledge we use is limited to the data that is widely
available, our framework can accommodate other data sources
without difficulty. For example, temporally-varying POI popularity
and POI-specific opening hours can be incorporated easily. Less-
structured data (e.g., inferred popularity from public comments)
could also be incorporated into the semantic distance function.
We anticipate that incorporating more, richer data sources would
further enhance utility, without negatively affecting efficiency. POI
attributes can also be extended to a personalized LDP setting (e.g.,
the privacy level of a hospital differs if one is a doctor or patient).

Whereas the focus of this paper has been on devising a general
approach for trajectory sharing, our solution can be adapted for
specific applications or to consider the setting where single location
points are shared continuously. Applications with specific utility
aims may necessitate tuning of parameters or distance functions
which is another direction of future work. Our problem framework
and solution can also be applied to any notion of trajectory in
space-time. To illustrate this, consider sharing shopping habits (e.g.,
credit card transactions). Here, P represents the set of purchasable
products, with attributes such as category, price, etc. We can exploit
intrinsic hierarchies such that R𝑐 represents the set of stores from
which products are purchased (which can be online or physical
stores). The reachability constraint remains to ensure that adjacent
stores in 𝜏 are reachable in the real world (as is currently done
to identify and prevent credit card fraud). Online stores would
always be ‘reachable’ given their non-physical presence. Other
concepts, such as utility-enhancing semantic distance functions
and the impossibility of some combinations (e.g., purchasing a car
from a florist), translate naturally. Hence, this framework can be
applied more generally.
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