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ABSTRACT
In recent years, we have witnessed significant efforts to improve
the performance of Online Analytical Processing (OLAP) on graph-
ics processing units (GPUs). Most existing studies have focused
on improving memory efficiency since memory stalls can play an
essential role in query processing performance on GPUs. Motivated
by the recent rise of just-in-time (JIT) compilation in query process-
ing, we investigate whether and how we can further improve query
processing performance on GPU. Specifically, we study the execu-
tion of state-of-the-art JIT compile-based query processing systems.
We find that thanks to advanced techniques such as database com-
pression and JIT compilation, memory stalls are no longer the most
significant bottleneck. Instead, current JIT compile-based query pro-
cessing encounters severe under-utilization of GPU hardware due to
divergent execution and degraded parallelism arising from resource
contention. To address these issues, we propose a JIT compile-based
query engine named Pyper to improve GPU utilization during query
execution. Specifically, Pyper has two new operators, Shuffle and
Segment, for query plan transformation, which can be plugged into
a physical query plan in order to reduce divergent execution and
resolve resource contention, respectively. To determine the inser-
tion points for these two operators, we present an analytical model
that helps insert Shuffle and Segment operators into a query plan
in a cost-based manner. Our experiments show that 1) the analyti-
cal analysis of divergent execution and resource contention helps
to improve the accuracy of the cost model, 2) Pyper significantly
outperforms other GPU query engines on TPC-H and SSB queries.
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1 INTRODUCTION
In recent years, we have witnessed a significant effort in improving
the performance of Online Analytical Processing (OLAP) systems
on graphics processing units (GPUs) [17, 21, 22, 32, 35, 38]. More
recently, JIT compilation-based systems (hereafter referred to as
compiled systems) [5–7, 11] have evolved as the state-of-the-art
query execution systems on GPUs. JIT compilation has the major
advantage to reduce unnecessary materialization of intermediate
data at operator/kernel boundaries within query pipelines and to
reduce the instruction count within GPU kernels. On the other hand,
many efforts have focused on improving the memory efficiency
since memory stalls play an important role in query processing
performance on GPUs [13, 15–18, 36]. Given all these optimizations,
it is time to revisit the query execution on GPUs and identify the
opportunities to improve query processing performance on GPUs.

Taking a closer look at existing compiled systems [5–7, 11], we
find that theywork by first breaking down the query plan associated
with each query into pipelines and then generating a single kernel
for each pipeline of relational operators.We refer to this compilation
strategy as a monolithic approach, since it generates a monolithic
kernel for each pipeline. While this monolithic approach eliminates
the amount of intermediate data materialization, we have identified
two major performance issues.

First, the generated kernels in the monolithic approach often have
a large number of nested branch instructions per kernel. Hence, the
thread warps executing the kernels generated by the monolithic
approach can have a high degree of divergence, resulting in poor
utilization of a large number of GPU cores.

Second, the high resource requirements of the generated kernels
lead to low parallelism on GPU. Overall, the monolithic approach
generates kernels containing multiple relational operators, which
require even more registers and shared memory resources. That
means themonolithic approach exaggerates the problem of resource
contention on the GPUs since threads can only be scheduled for
execution on GPUs if there are enough free hardware resources
available. Therefore, the monolithic approach also leads to degraded
parallelism on GPUs and cannot fully utilize the large number of
parallel cores on the GPU.

To demonstrate the impact of the two execution efficiency issues,
we present the execution time break down of the code generated
from the monolithic approach for TPC-H [1] (queries without sub-
query) and SSB [3] in Figure 1. We divide the execution time
into three components: 1) estimated overhead of divergence, 2) esti-
mated overhead of resource contention, and 3) others. The overhead
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Figure 1: Execution time breakdown of TPC-H and SSB
queries demonstrating the impact of divergent execution
and resource contention among threads.

of divergence and resource contention were estimated based on
the achieved execution efficiency of the warps and GPU hardware
occupancy rate, both of which can be obtained using profiling tools
from GPU vendors. The results of the breakdown clearly demon-
strate that divergent execution and resource contention among
the threads have a significant impact on the overall performance
of both TPC-H and SSB queries. Overall these inefficiencies can
contribute to more than 50% of the total execution time. Therefore,
divergence and resource contention have now become the most
significant bottleneck for query processing on GPUs.

In this paper, we propose Pyper, a JIT compilation-based query
processing system to resolve GPUs’ divergence and resource con-
tention issues. Pyper introduces two new operators for query plan
transformation, Shuffle and Segment, to improve GPU hardware
utilization during query execution. Specifically, Shuffle is applied
to a pipeline to reduce the execution divergence. Segment is used
to split a pipeline that has overwhelming resource usage into sev-
eral pipelines with lower resource usage but much higher thread
parallelism. The benefits of the two operators come with overheads.
Thus, we develop a cost model to guide the optimal use of Shuffle
and Segment operators. The challenge is that we need to estimate
the impact of divergence and resource contention, which have been
overlooked in the previous studies [14, 15].

The major contributions of this paper are as follows.

• We study the efficiency of current JIT compilation-based
query processing approaches and identify their severe under-
utilization of GPU hardware due to divergent execution and
degraded parallelism arising from resource contention.

• We propose Pyper to address the execution efficiency issues
of existing JIT compilation-based systems, by introducing
two new operators (Shuffle and Segment) and an analytical
model to determine the usage of the two operators in a cost-
efficient manner.

• We conduct in-depth experiments demonstrating the benefit
of using the Shuffle and Segment operators as well as the
accuracy of our analytical model. Our experiments show
that Pyper is able to improve the performance of TPC-H
and SSB queries on average by 1.60x and 1.52x, compared

to Hawk [5]. Pyper further achieves 5.01x and 2.55x perfor-
mance improvement over Omnisci [2] for TPC-H and SSB
queries respectively.

The rest of this paper is organized as follows. In Section 2.1, we
present the GPU hardware’s background and the related work on
JIT query compilation. We then present the architecture design of
Pyper in Section 3. We present the details of the analytical model
and query optimizer in Sections 4 and 5, respectively. We present
the experiments in Section 6 and conclude in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 GPU Hardware & CUDA
A single GPU consists of multiple streaming multiprocessors (SMs),
each of which consists of multiple CUDA cores. All CUDA cores in
an SM share resources like the registers and shared memory. Due
to this sharing, the workload scheduler in GPU only schedules new
threads for execution on an SM, if there are enough registers and
shared memory resources available. GPUs also have an L2 cache
and a global memory that are shared among all the SMs. Each
thread block is given exclusive access to shared memory, i.e., data
in shared memory cannot be shared across different thread blocks.

Warp-at-a-time executionmodel: In the CUDAprogramming
model, a program executed by the GPU is known as a kernel. A
kernel is executed as a grid of thread blocks, which can further
be divided into warps (groups of 32 threads). Each thread block
is assigned to a single SM, and the CUDA cores inside each SM
executes the threads in a SIMD fashion, at the granularity of a
single warp. Hence, during any given execution cycle, an entire
warp of threads can only execute a single instruction. That means,
during each instruction issue cycle, only threads that can execute
the same instruction will be activated, and the resources allocated
to the other threads would be wasted. Thus, branch divergence can
be a serious performance issue on GPU executions.

Resource constraints per thread: For the efficiency of GPU
executions, registers, and shared memory are the key resources
that constrain the number of parallel thread executions. Warps can
only be scheduled for execution on GPUs if there are enough free
hardware resources available.

2.2 JIT Query Compilation
JIT compilation-based systems (hereafter referred to as compiled sys-
tems) [5–7, 11] have been developed to further reduce unnecessary
materialization of intermediate data at operator/kernel boundaries
within query pipelines and to reduce the instruction count within
GPU kernels. In the following, we review the related work of JIT-
based query engines on GPUs (more related work can be found at
our technical report [29]).

LLVMbased database systems like Voodoo [31], HetExchange [6],
HAPE [7], OmniSci (formerly known as MapD) and OpenCL based
HorseQC [11] and Hawk [5] were proposed to generate optimized
executable code for heterogeneous systems containing both CPUs
and GPUs. Both Voodoo [31] and Hawk [5] attempt to generate code
to execute on a variety of parallel architectures. HetExchange [6] de-
veloped abstraction for device-oblivious operators and exploited the
heterogeneous parallelism ofmodern servers withmultiple CPUs/G-
PUs. HorseQC [11] extends the operator-at-a-time approach by
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fusing multiple operators together for better bandwidth utilization.
An industrial startup OmniSci [27] developed its code generation
following Hyper [25, 26].

More recently, DogQC [12] proposed techniques to address di-
vergence in query execution on GPUs. We highlight our technical
contributions over DogQC. First, compared with DogQC, Pyper has
a cost model to help determine the optimal insertions of the Shuffle
and Segment operators. This is important because the unnecessary
insertion of these operators can lead to severe performance degra-
dation. Second, Pyper adopts more efficient implementations for
the Shuffle and Segment operators. The Shuffle implementation
in DogQC is only capable of re-distributing the workload within
a single warp even though the re-distribution is done via shared
memory. This is insufficient because a single straggler warp within
a thread block can prevent the entire block from releasing the re-
sources allocated to it, leading to unnecessary inefficiencies. By
re-distributing the workload over an entire thread block, Pyper can
better address this inefficiency. Further, the use of buffered writes
also helps improve the efficiency of the Segment operator in Pyper
when compared to DogQC.

There have been previous studies beyond query processing, on
workload divergence and resource contention. Some examples in-
clude financial modelling [37], sparse matrix computations [4, 9]
and graph processing [19, 33]. In contrast, this paper focuses on
query processing with JIT code generation where the execution
pipeline is not specific to certain applications, rather being gen-
erated at run-time according to input queries. Further, our work
develops a cost model to guide the optimizations of query pipelines.

2.3 Motivations
While those approaches have reduced the overhead of materi-
alizing intermediate data in the pipeline execution, such mono-
lithic designs do not fully consider the GPU architecture features
like 1) their warp-at-a-time execution model and 2) their severely
resource-constrained hardware design. Hence, the code generated
by these implementations often encounters severe under-utilization
of GPU hardware due to divergent execution and resource con-
tention among threads, as discussed in Section 1.

Example. In Figure 2, we use TPC-H query 10 with minor modi-
fications (for simplicity of presentation) to demonstrate the working
of the existing compiled systems. As shown in the figure, existing
systems segment the query plan into different pipelines at pre-
defined blocking/non-pipelineable operators (e.g., prefix sum, hash
build, and aggregate) and then generate a single kernel for each
one of these pipelines. Note, we will be using a pipeline similar
to 𝑃1 as a running example throughout the rest of this study to
demonstrate the inefficiencies of existing systems and the benefits
of the techniques proposed in this study.

The divergence is mainly caused by the multiple nested loops in
the kernel, e.g., 𝑃1 in Figure 2. Not every tuple will go through all
the loops, and thus GPU threads executing 𝑃1 may have different
code paths. A group of 32 GPU threads is a warp, and the GPU
cores sharing the same instruction issue unit can only execute the
threads within the same warp during each instruction issue cycle
(in a SIMD fashion). When the threads within a warp diverge or
follow different code paths (e.g., due to branching), their execution

select c_custkey, sum(l_extendedprice * (1 - l_discount)) 
from customer, orders, lineitem, nation 
where c_custkey = o_custkey

and l_orderkey = o_orderkey
and o_orderdate >= date '1993-10-01’
and o_orderdate < date '1994-01-01’ 
and l_returnflag = ‘R’ 
and c_nationkey = n_nationkey

group by c_custkey;

𝑃1(…);
for every tuple c in Customer
for every match of c.custkey in hash table of Orders.custkey
for every match of c.nationkey in hash table of Nation.nationkey
materialize t in hash table of Orders.orderkey

𝑃4(…);
for every tuple o in Orders
materialize t in hash table of Orders.custkey

𝑃3(…);
for every tuple n in Nation
materialize t in hash table of Nation.nationkey

𝑃2(…);
for every tuple l in Lineitem
if l.returnflag == ‘R’
for every match of l.orderkey in hash table Orders.orderkey
group by custkey and materialize the output

σ

Lineitem

⋈

⋈

⋈Nation

Customer Orders

𝑃2 𝑃3

𝑃1 𝑃4

Agg.

(a) SQL (b) Pipelines

(c) Pseudocode in JIT generated kernels
Figure 2: Modified TPC-H Q10 query, execution plan and
pseudo code of the generated procedures in the monolithic
approach

gets serialized. In the worst case, the execution time can be the sum
of the execution times of all executed code paths.

As for high resource consumption of the monolithic approach,
the kernel generated corresponding to 𝑃1 in Figure 2 needs to store
hash tables or hash buckets headers corresponding to three different
join operators in its shared memory and hence require significantly
more shared memory resource when compared to fine-grained
kernels containing a single join operator.

For simplicity purposes, we will use the pipeline 𝑃1 as the exam-
ple used for the rest of the paper to demonstrate our techniques.

3 DESIGN OF PYPER
To solve the performance issues of divergent execution and resource
contention in the monolithic approach, we propose Pyper, a JIT
compilation-based query processing system designed for GPUs.
In the following, we first give a system overview of Pyper and
then present the detailed design and implementation of Shuffle and
Segment operators.

3.1 Overview
Figure 3 provides an overview of the architecture design of Pyper.
As shown in the figure, Pyper is developed by augmenting a physi-
cal query plan generated from existing compiled systems [7, 20].
Specifically, we have the following featured components.

• Two plan transformation operators, Shuffle (Section 3.2) and
Segment (Section 3.3). They can be inserted into a physi-
cal query plan, to help reduce the divergent execution and
resource contention among threads. We designed these oper-
ators such that they can be inserted into any query pipeline,
withoutmodifying the implementations of the other physical,
relational operators. Moreover, we develop efficient designs
in order to reduce their runtime overheads.

• An analytical model (Section 4), which is capable of estimat-
ing the execution cost of a pipeline of relation operators. Our
model has non-trivial extensions over the existing GPU ana-
lytical model [30] by developing a cost analysis of divergent
executions and resource contention.

• An augmentation optimizer (Section 5), which uses the an-
alytical model and a branch and bound based optimization

204



Optimized Query Plan

Analytical Model Augmentation Optimizer

Query Plan

Query 
Optimizer

Code 
Generator

Shuffle Segment Physical Operators

GPU Backend

Executable Binary

GPU HardwareRuntime

Figure 3: System Architecture of Pyper

algorithm to identify the optimal insertion points of Shuffle
and Segment operators into the physical query plan.

Putting it together, Pyper works as follows. In this study, we use
the pipeline physical query plan generated by the previous study
named GPL [30]. Pyper further optimizes each of the pipelines by
considering the insertions of Shuffle and Segment. This is guided by
the augmentation optimizer, which takes the estimations of the an-
alytical model into consideration. The outcome is an augmented (or
optimized) query plan. Then, the code generator generates the code
corresponding to each pipeline in the augmented query plan. Finally,
the generated code is compiled into hardware-dependent machine
code using GPU backend (e.g., libnvvm or nvcc from NVIDIA).

3.2 Shuffle Operator
The Shuffle operator is an operator that can be inserted between two
relational operators (producer and consumer). It buffers the tuples
from divergent warps from the producer operator and consolidates
the input tuples to the consumer operator in the pipeline so that
the execution of the consumer operator has the reduced divergence
among the threads within the same warp. Thus, this paper focuses
on the warp divergence brought by the divergent execution path of
multiple operators in a pipeline. The divergence within an operator
(mainly branch divergence) is not the main focus of this paper.
Specifically, we focus on the divergence when different threads
are assigned different amounts of work. For example, the number
of tuples selected for processing in the next operator after a filter
predicate can vary across threads, resulting in divergence among the
threads of executing the operators after the filter. The same applies
to a series of hash probe operations where different threads could
end up generating different numbers of output tuples depending
on the join selectivity.

How does Shuffle reduce divergent executions? To demon-
strate the benefit of using the Shuffle operator, we present an ex-
ample execution of the warps executing the pipeline 𝑃1 (shown on
the left of Figure 4) from the previous example query. We assume a
warp size of 4 and the uniform selectivity of 50% per operator for
this example for simplicity. We now look at the execution of the
pipeline with and without inserting Shuffle operators.

Without Shuffle: Due to 50% selectivity of ⊲⊳𝑎=𝑏 and ⊲⊳𝑐=𝑑 , only
50% and 25% threads in each warp will be allocated work in hash
probes of ⊲⊳𝑐=𝑑 and ⊲⊳𝑓 =𝑔 respectively. Such workload imbalance
leads to the poor overall utilization of the GPU hardware since only
a small subset of threads in each warp are allocated work.

⋈f=g

⋈c=d

⋈a=b

⋈f=g

⋈c=d

⋈a=b

Shuffle

Shuffle

(a) Without shuffle  (b) With shuffle  

Thread        Warp

Figure 4: Warp executions with and without Shuffle.

With Shuffle: Inserting a Shuffle operator between each pair of
relational operators in 𝑃1 forces the workload to be concentrated
over fewer warps executing at 100% efficiency, as shown in Figure
4. This helps make more efficient use of the GPU hardware since
warps without any work can be quickly swapped out, allowing
other warps to execute.

Lightweight Shuffle on theGPU.Now, re-balancing thework-
load in a lightweight manner is a non-trivial task. Consider a
producer-consumer operator pair in the pipeline (denoting 𝑂𝑝 and
𝑂𝑐 as the producer and consumer operators, respectively). The
Shuffle operator is inserted into this pipeline so that the output
from𝑂𝑝 (which is sparsely distributed across the threads) is consol-
idated into a smaller number of warps, thus reducing the divergent
execution in𝑂𝑐 . A potential implementation of the Shuffle operator
is to simply gather the outputs from𝑂𝑝 . While this implementation
helps eliminate divergent execution, it has severe efficiency issues.
This is because the implementation is blocking and thus causes
unnecessary intermediate result materialization of all the tuples
between 𝑂𝑝 and 𝑂𝑐 .

To overcome these inefficiencies, we develop a lightweight ap-
proach that takes advantage of GPU hardware features to imple-
ment Shuffle. We have the following design rationales. First, our
implementation completely avoids blocking across thread blocks,
thus avoiding costly synchronizations using GPU global memory.
Second, warps that do not encounter high levels of divergence are
prevented from participating in the re-assignment of the workload,
thus minimizing the synchronization within a thread block and
global memory accesses. Third, we make use of GPU specific low
overhead intrinsics to implement the Shuffle operator. Listing 1 il-
lustrates the implementation of the Shuffle operator, which consists
of the following two stages: voting and shuffling.

Voting Stage: During the voting stage, each thread votes using
the __ballot instruction to reach a consensus on whether there is
workload divergence within the warp (Lines 6 – 9). The GPU voting
intrinsics are very efficient, each executing within a single cycle.
__ballot(vote) in Listing 1 generates a 32-bit integer where the 𝑖𝑡ℎ bit
is set to 1 if the 𝑖𝑡ℎ thread has a valid input tuple assigned to it (i.e.,
𝑣𝑜𝑡𝑒 = 1). The __popc instruction is another intrinsic to compute
the number of bits in this value that has been set to 1. In summary,
__popc(__ballot(vote)) computes the number of threads that been
assigned tuples for processing in each warp (𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑊 ). Finally,
Lines 10 and 11 keeps track of the number of threads that are
assigned with tuples within an entire block using a variable in
shared memory (𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝐵).

Shuffling Stage: During the shuffling stage (Lines 13 – 26), the
workload is redistributed based on the consensus reached in the
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voting stage. We can perform workload shuffling at different levels,
which come with different benefits and overheads. Particularly, the
shuffling across the entire kernel (named grid-level) achieves the
most divergence reduction but has a high overhead. In contrast,
the shuffling within a thread block (named block-level) achieves
reasonable divergence reduction among the warps within a thread
block but has relatively low overhead. We use grid-level shuffling
(Lines 14 – 17) or block-level shuffling (Lines 19 – 26), based on the
level of divergence encountered by the threads.

• Grid-level shuffling requires moving tuples across multiple
thread blocks and is costly due to the use of GPU global memory.
The threshold for Grid-level shuffling (GridT ) depends on the GPU
hardware as well the downstream operator. This is because the Grid-
level shuffling is beneficial only when the additional cost of global
memory use is more than compensated by the reduced divergence
in the downstream operators. Hence, during system initialization,
Pyper profiles the GPU hardware and determines the benefit of
Grid-level shuffling for the supported relational operators. Finally,
to avoid deadlocks and blocking execution across thread blocks,
each thread block executing theGridShuffle function checks a global
buffer (global_shuffle_mem) and either 1) picks up tuples from the
buffer and redistributes them across its threads or 2) writes the
tuples held by its threads into the buffer if there are not insufficient
tuples already in the buffer for redistribution. The last set of thread
blocks that will be scheduled for execution only picks up tuples
from the buffer to ensure correctness.

• Block-level shuffling is more frequently used by Pyper and
helps address more moderate levels of divergence (which is of-
ten encountered in common analytical workloads). Based on our
experiments, we consider a warp as requiring block-level shuf-
fling if a warp (32 threads) achieves less than 75% occupancy on
the GPU hardware (i.e., BlockT = 24). Overall, if more than 2
warps are requiring block-level shuffling within a thread block
(i.e., numWarp > 2 as shown in Line 22), then the Shuffle operator
invokes the BlockShuffle. BlockShuffle is implemented as an efficient
filter process described in the previous study [10]. Note, we use
variables in shared memory and registers to invoke and perform
the block-level shuffling, making it highly efficient. The output of
BlockShuffle is the number of valid input tuples for this thread
block. After BlockShuffle, all valid tuples are stored consecutively,
thus avoiding any divergence in the next/downstream operator.

Even though we have a very efficient implementation for Shuf-
fle, this operation still leads to an increase in the kernel resource
requirements. Hence, the insertion of a Shuffle will be used only
when it is beneficial for the performance. To further, minimize the
overhead, the code corresponding to grid-level shuffling (Lines 10 –
17) is only generated as part of the Shuffle operator when extremely
low levels of execution efficiencies are encountered. We leave these
decisions to the cost model and augmentation optimizer.

3.3 Segment Operator
The Segment operator is to split a pipeline into two smaller pipelines.
It can be inserted into a long resource-constrained pipeline, split
into two smaller pipelines with lower resource requirements. The
monolithic approach aggressively fuses relational operators in the
same pipeline and compiles it into a single kernel on the GPU. Such

Listing 1: Simplified code for Shuffle operator
1 Input tuple; // input generated by the previous operator
2 __shared__ Input shuffle_mem[ ]; // buffer for shuffling
3 __shared__ int numWarp = 0;
4 __shared__ int actThreadsB = 0;
5
6 /* Voting Stage */
7 int vote = 0
8 if (tuple != nil) vote = 1
9 int actThreadsW = __popc(__ballot(vote)));
10 if (tidInWarp == 0) //tidInWarp: threadID in warp.
11 atomicAdd(actThreadsB, actThreadsW)
12
13 /* Shuffling Stage */
14 if (actThreadsB <= GridT) {
15 //tidInBlock: threadID in block.
16 shuffle_mem[tidInBlock] = tuple;
17 tuple = GridShuffle(shuffle_mem, global_shuffle_mem)
18 }
19 else if (actThreadsW <= BlockT && tidInWarp==0) {
20 atomicAdd(numWarp, 1);
21 }
22 if (numWarp > 2) {
23 shuffle_mem[tidInBlock] = tuple;
24 numValid = BlockShuffle(shuffle_mem);
25 if (tidInBlock < numValid)
26 tuple = shuffle_mem[tidInBlock];
27 }

a kernel usually has high resource requirements, resulting in low
occupancy rate of GPU and degraded parallelism, which makes it
difficult for modern GPU hardware to hide memory latency. We find
that the Segment operator is desirable to split monolithic kernels
and improve the GPU’s utilization.

In this paper, we consider twomajor constrained resources on the
GPU: registers and sharedmemory.Modern GPUs have limited sizes
of shared memory and register files that need to be shared across a
large number of threads. For example, the NVIDIA V100 GPU used
in our experiments is configured with 64KB shared memory and
256 KB registers per SM, which needs to be shared among 64 active
warps to ensure complete occupancy of each SM.

Consider 𝑃1 in Figure 2, where the pipeline consists of two hash
probe and one hash build operator. Assuming each operator needs
to keep the hash table in the GPU shared memory, the thread block
executing the kernel corresponding to the pipeline would require
33 KB of shared memory per thread block, as shown in Figure 5a.
If this query plan runs NVIDIA V100 GPU, the pipeline can only
achieve a maximum theoretical occupancy rate of 50%.

Howdoes Segment improve the parallelism? To understand
how the use of the Segment operator helps address the above in-
efficiency, we present Figure 5b, in which a Segment operator is
inserted into the pipeline 𝑃1 between two of its hash probe opera-
tors. The insertion of the Segment operator at this point splits 𝑃1
into two smaller pipeline fragments: 𝑃 ′1 containing hash probe of
⊲⊳𝑎=𝑏 and 𝑃 ′′1 containing hash probes of ⊲⊳𝑐=𝑑 and ⊲⊳𝑓 =𝑔 . Such a
split means that the resulting pipeline fragments 𝑃 ′1 and 𝑃 ′′1 only
require 16 KB and 17 KB of shared memory respectively, which
enable 𝑃 ′1 and 𝑃

′′
1 to achieve a theoretical occupancy rate of 100%

individually. Hence, by inserting the Segment operator into the
pipeline, we can generate kernels that achieve significantly better
occupancy rate and in turn, better utilization of GPU hardware. In
the following, we present a lightweight design for Segment.

Lightweight design for Segment. Overall, the Segment opera-
tor is implemented as a blocking operator with a write (Segment(W))
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𝑃1

⋈f=g 12
⋈c=d 5
⋈a=b 16

Shared Memory 33

⋈f=g

⋈c=d

⋈a=b𝑃1

(a) Before segmentation
Pipeline Operator Shared Memory (KB)

𝑃1
″

⋈f=g 12
⋈c=d 5

Segment (R) 0
Shared Memory 17

𝑃1
′

Segment (W) 0
⋈a=b 16

Shared Memory 16

𝑃1
″

⋈f=g

⋈c=d

Segment (R)

⋈a=b𝑃1
′

Segment (W)

(b) After segmentation
Figure 5: Impact of Segment operators on query plan and
resource requirements

and a read (Segment(R)) stage, as shown in the example of Figure
5b. When generating code for the pipeline fragments of a pipeline
split using the Segment operator, the code for the write stage is
generated in the kernel corresponding to the upstream pipeline
fragment, and the code for the read stage is generated in the kernel
corresponding to downstream pipeline fragment.

The write stage of the Segment operator includes the instructions
to collect all the tuples generated by the downstream operator
and writes this data into the GPU global memory; while The read
stage includes the instructions to reads the data written by the
write stage from the global memory and passes this data to the
upstream operator in the query plan. We optimize write with write
buffer [28], which writes the output in batches rather than per
tuple. For read, we take advantage of coalesced memory accesses
to improve bandwidth utilization.

The usage of the Segment operator has runtime overhead due to
the materialization of the data into GPU global memory between
the write and read stages of the Segment operator. Hence, the
Segment operator should only be used when it can improve the
overall performance. This will be determined by the cost model in
the next section.

The idea of the segment operator in Pyper is similar to previ-
ous studies [8, 23, 34], with the following major differences. First,
the segment operator in Pyper is inserted to minimize resource
contention in the generated code, whereas previous studies have
different purposes, such as vectorization opportunities [8, 23]. Sec-
ond, our segment implementation is designed specifically for GPUs
and is more efficient for GPU hardware due to its use of local buffer-
ing and coalesced writes. Third, comparison to previous studies,
this study has an efficient cost model to determine the optimal
insertion point (with the awareness of the resource contention of
the generated code) of the Segment operator.

4 ANALYTICAL MODEL
There have been several studies on building cost models to estimate
the execution time of a query plan on the GPU [14, 15]. However,
those studies fail to effectively account for the impact of diver-
gent execution and resource contention. As we demonstrated in

Table 1: Notations in the cost model
Name Description Sources
𝑃 A pipeline in the query plan Query

Plan|𝑃 | The number of operators in the 𝑃
𝑂𝑖 𝑖𝑡ℎ operator in 𝑃

𝑃 The execution cost of 𝑃

Model
Output

𝑂𝑖 The execution cost of𝑂𝑖

𝛾𝑖
Number of scheduled threads that have
been allocated input in𝑂𝑖

𝐶𝑖 (𝛾𝑖 ) Computation cost per tuple of𝑂𝑖

𝑀𝑖 (𝛾𝑖 ) Memory access cost per tuple of𝑂𝑖

𝑇𝑖 Avg. active threads per warp of𝑂𝑖

Program &
Selectivity
Analysis

|𝐸𝑖 | Number of warp execution of𝑂𝑖

𝑇𝑖 𝑗
Number of threads that are allocated work
in the 𝑗𝑡ℎ warp execution of𝑂𝑖

𝑊𝑖

Number of warps of𝑂𝑖 that can execute
simultaneously on the GPU

𝑊 𝑠𝑚
𝑖

Number of warps of𝑂𝑖 that can execute
simultaneously per SM

|𝐵𝑤
𝑖
| Warps per thread block in𝑂𝑖

𝑆𝑖 Shared mem. per thread block in𝑂𝑖

𝑅𝑖 Registers per thread block in𝑂𝑖

|𝑀𝑠
𝑖
| Number of shared mem. accesses in𝑂𝑖

|𝑀𝑔

𝑖
| Number of global mem. accesses in𝑂𝑖

𝐻𝑖 L2 cache hit rate in𝑂𝑖

𝑀𝑠
𝑖 𝑗
(𝛾𝑖 ) Cost of 𝑗𝑡ℎ shared mem. access in𝑂𝑖

Profiling𝑀𝑑𝑑𝑟
𝑖 𝑗

(𝛾𝑖 ) Cost of 𝑗𝑡ℎ global memory access in𝑂𝑖

𝑀𝑙2
𝑖 𝑗
(𝛾𝑖 ) Cost of 𝑗𝑡ℎ L2 cache access in𝑂𝑖

𝑊𝑚𝑎𝑥 Max. simultaneous warps per SM
Platform
Input

𝐵𝑚𝑎𝑥 Max. simultaneous blocks per SM
𝑅 Registers available per SM
𝑆 Shared mem. available per SM

#𝑆𝑀 Number of 𝑆𝑀𝑠 in the GPU

Section 1, the overhead of divergent execution and resource con-
tention can contribute to over 50% of the total execution time in
the monolithic approach. Thus, this paper extends the previous
model to handle divergent execution and resource contention in
JIT compilation-based query plans.

It is a non-trivial task to build a cost model that accounts for
divergent execution and resource contention. This is because the
impact of these factors depends on a variety of factors like char-
acteristics of the GPU hardware, relational operators in the query
plan and the input data. To resolve these complexities in building
an analytical model, we have the following rationales.

First, instead of building an analytical model from scratch, we
use the previous model [30] in estimating the cost of a pipeline
execution, and then extend this model to estimate the impact of
divergent execution and resource contention. To account for diver-
gent execution, we need to model the number of active threads per
warp in each operator, and then estimate the divergent execution
for the entire pipeline. The major impact of resource contention
is the degree of thread parallelism, which is a key factor for the
performance in the execution unit and memory sub-system of the
GPU.

Second, we treat the cost analysis for Shuffle and Segment op-
erators the same as other relational operators. Hence, any query
plan augmented by the insertions of Shuffle and Segment can be
analyzed in uniformly.
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4.1 Pipeline Execution Cost
The previous study GPL [30] proposed a model to compute the
execution cost of a pipeline of relational operators (𝑃 ). The model
in GPL computes the cost of processing a single tuple by a pipeline
of operators (𝑃 = {𝑂1,𝑂2, ...., 𝑂 |𝑃 |−1,𝑂 |𝑃 |}) using Equation 1. Note,
𝑂𝑖 can be Shuffle, Segment or relational operators. Here,𝐶𝑖 and𝑀𝑖

represent the computation and memory access cost of operator 𝑂𝑖

for processing each tuple, respectively. 𝜆𝑖 represents the estimated
number of input tuples for 𝑂𝑖 from the query optimizer.

𝑃 =

|𝑃 |∑
𝑖=1

(𝐶𝑖 +𝑀𝑖 ) × 𝜆𝑖 (1)

GPL’s model does not properly account for the divergent execu-
tion and resource contention in JIT compilation-based query plan.
The total number of active threads issuing and executing instruc-
tions in parallel on the GPU (denoted as 𝛾𝑖 ) can vary significantly
based on the factors in divergence and resource usage. 𝛾𝑖 has a sig-
nificant impact on query processing performance. Thus, we need to
extend the estimation of 𝐶𝑖 and𝑀𝑖 to account for the impact of 𝛾𝑖 .
Specifically, we model the computation and memory access costs as
functions of 𝛾𝑖 (denoted as 𝐶𝑖 (𝛾𝑖 ) and𝑀𝑖 (𝛾𝑖 ), respectively). Thus,
the estimated cost of 𝑃 in our cost model is given in Equation 2.

𝑃 =

|𝑃 |∑
𝑖=1

(𝐶𝑖 (𝛾𝑖 ) +𝑀𝑖 (𝛾𝑖 )) × 𝜆𝑖 (2)

In the following, we detail how we estimate 𝛾𝑖 , 𝐶𝑖 (𝛾𝑖 ) and𝑀𝑖 (𝛾𝑖 ).

4.2 Estimation of 𝛾𝑖
Due to the warp-at-a-time execution model of GPUs, we estimate
𝛾𝑖 to be the number of active warps multiplied by the average
number of active threads per warp. That is, 𝛾𝑖 can be computed
using Equation 3, where𝑇𝑖 represents the average number of active
threads per warp (in𝑂𝑖 ) and𝑊𝑖 denotes the number of active warps
of 𝑂𝑖 that can execute simultaneously on the GPU.

𝛾𝑖 = 𝑇𝑖 ×𝑊𝑖 (3)

Calculation of 𝑇𝑖 . 𝑇𝑖 is an effective measure of divergence
among the threads executing 𝑂𝑖 . Specifically, lower 𝑇𝑖 represents a
higher degree of divergence among the threads.𝑇𝑖 depends on selec-
tivity of 𝑂𝑖−1 in the pipeline. The idea is, if a tuple is eliminated by
𝑂𝑖−1, the thread in𝑂𝑖 and thereafter in the pipeline could have less
work to handle. This effect has to account for all ancestor operators
in the pipeline. Assuming the selectivity of 𝑂𝑖 to be 𝑒𝑖 . In this case,
the ratio of the active threads per warp is

∏𝑖−1
𝑗=1 𝑒 𝑗 . We estimate 𝑇𝑖

as the number of threads in a warp multiplied by
∏𝑖−1

𝑗=1 𝑒 𝑗 .
Calculation of𝑊𝑖 . Since GPU SMhardware design and resource

distribution across the thread blocks of a kernel are uniform, the
number of warps that can execute simultaneously on a given GPU
hardware (𝑊𝑖 ) can be computed as the product of𝑊 𝑠𝑚

𝑖
and the

number of SM in GPU hardware (#𝑆𝑀), as shown in Equation 4.

𝑊𝑖 = #𝑆𝑀 ×𝑊 𝑠𝑚
𝑖 . (4)

For an operator 𝑂𝑖 , the maximum number of warps per SM that
can execute simultaneously on the GPU hardware (𝑊 𝑠𝑚

𝑖
) depends

on 1) the limit per SM set by the hardware and 2) the resource
requirements of the kernel executing the operator.

• Hardware Limit. Due to the limited amount of resources avail-
able for managing thread contexts at the warp and thread block
levels, NVIDIA CUDA sets hard limits on the number of warps and
the number of thread blocks that can execute simultaneously on
each SM of the GPU (denoted as𝑊𝑚𝑎𝑥 and 𝐵𝑚𝑎𝑥 , respectively).
Therefore,𝑊 𝑠𝑚

𝑖
will be limited by Equation 5 where |𝐵𝑤

𝑖
| is the

number of warps per thread block in 𝑂𝑖 .

𝑊 𝑠𝑚
𝑖 ≤ 𝑚𝑖𝑛(𝑊𝑚𝑎𝑥 , 𝐵𝑚𝑎𝑥 × |𝐵𝑤𝑖 |) (5)

• Resource Limit. Now, each thread block executing 𝑂𝑖 requires
certain amount of register and shared memory resources (denoted
as 𝑅𝑖 and 𝑆𝑖 , respectively) and can only be scheduled for execution
when sufficient free resources of all resource types are available in
hardware. Hence, the number of thread blocks that can be scheduled
for simultaneous execution on an SM is limited by the register (𝑅)
and shared memory resources (𝑆) available at the hardware level in
each SM. Hence, the value of𝑊 𝑠𝑚

𝑖
is further limited by Equation 6.

𝑊 𝑠𝑚
𝑖 ≤ 𝑚𝑖𝑛(⌊ 𝑅

𝑅𝑖
⌋, ⌊ 𝑆

𝑆𝑖
⌋) × |𝐵𝑤𝑖 | (6)

To summarize, the number of warps of 𝑂𝑖 that can execute si-
multaneously on each SM (𝑊 𝑠𝑚

𝑖
) is the largest integer satisfying

Equations 5 and 6.

4.3 Estimation of Computation Cost (𝐶𝑖 (𝛾𝑖))
Modern GPU hardware is designed to allow threads to issue and
execute instructions in parallel. Hence, the computation cost of
a relational operator (𝐶𝑖 (𝛾𝑖 )) can be estimated as the execution
cost of all the instructions that need to be executed in 𝑂𝑖 (denoted
as 𝐶𝑖 ) divided by the number of parallel active threads issuing
instructions (𝛾𝑖 ), as shown by Equation 7. 𝐶𝑖 can be computed by
offline profiling of hardware and operator code as done in GPL [30].
Overall, Equation 7 clearly shows that the lower the workload
divergence and resource contention among threads (i.e., higher 𝛾𝑖 ),
the lower the computation cost of the generated kernel is.

𝐶𝑖 (𝛾𝑖 ) =
𝐶𝑖

𝛾𝑖
(7)

4.4 Estimation of Memory Cost (𝑀𝑖 (𝛾𝑖))
The cost of memory access on GPU can vary depending on the
following factors: 1) the type of physical memory being accessed
(shared or global memory), 2) the memory access pattern (sequen-
tial, random, stride) and 3) the number of threads issuing the mem-
ory access request in parallel. Taking into consideration the type of
physical memory being accessed, memory access cost (𝑀𝑖 (𝛾𝑖 )) per
tuple can be computed as the sum of the memory access cost to the
shared memory, L2 cache and global memory required to process a
single input tuple (Equation 8). For an operator 𝑂𝑖 , |𝑀𝑠

𝑖
| and |𝑀𝑔

𝑖
|

represent the number of accesses to the shared memory and global
memory (which could also be cached in the L2 cache), respectively.

To have a more accurate estimation, we consider the cost per
memory instruction. This is possible because the instructions from
each operator are known in JIT-based compilation system. Thus,

208



𝑀𝑠
𝑖 𝑗
(𝛾𝑖 ),𝑀𝑙2

𝑖 𝑗
(𝛾𝑖 ) and𝑀𝑑𝑑𝑟

𝑖 𝑗
(𝛾𝑖 ) represent the cost of sharedmemory,

L2 cache and global memory accesses cost of the 𝑗𝑡ℎ memory access
in 𝑂𝑖 as a function of 𝛾𝑖 . 𝐻𝑖 is the average L2 cache hit rate in 𝑂𝑖

and is obtained following the same approach as GPL [30].

𝑀𝑖 (𝛾𝑖 ) =
|𝑀𝑠

𝑖
|∑

𝑗=1
𝑀𝑠
𝑖 𝑗 (𝛾𝑖 )+

|𝑀𝑔

𝑖
|∑

𝑗=1
(𝐻𝑖×𝑀𝑙2

𝑖 𝑗 (𝛾𝑖 )+(1−𝐻𝑖 )×𝑀𝑑𝑑𝑟
𝑖 𝑗 (𝛾𝑖 )) (8)

It is challenging and complicated to build analytical models for
these metrics. We use a calibration-based approach for the calcula-
tion. For each memory instruction, each thread issues the memory
access and those memory accesses form a certain access pattern
(such as sequential, random and strided). Thus, we need to consider
the factors that affect the cost of the memory access, including
the size of the memory access, the access pattern, and the num-
ber of active threads. In JIT-based compilation systems, since the
supported operators are known in advance, we perform an offline
profiling during the model initialization to derive their functions
with respect to the above-mentioned factors. Particularly, we per-
form profiling on the GPU memory hardware to measure the time
per memory access for varying number of active threads on a given
configuration of access pattern and memory access unit size. We
study different configurations by considering all combinations of
memory unit sizes (e.g., 2 bytes, 4 bytes and 8 bytes) and access
patterns commonly used in databases (such as sequential, random
and stride from 2 bytes, 4 bytes, ... to 32 bytes). Then, for each con-
figuration, we then perform a regression analysis for the function
which gives the memory cost by given the number of active threads
as input. In our study, the entire calibration takes around 30 minutes
when the system initializes (this calibration runs only once, and the
calibration results can be reused afterwards for the same hardware).
At runtime, we simply use these functions to quickly compute the
cost of each memory access for each memory instruction.

As an example, Figure 6 shows the calibration data along with
the fitted curve for sequential access to shared memory, L2 cache
and the global memory of the V100 GPU (𝛾𝑖 values from 40K to
160K). Their regression curves are also shown in the figure, with
RMSE lower than 8%. For clarity of the figure, we scale up𝑀𝑠

𝑖
(𝛾𝑖 )

by a factor of 10. The performance trends of all the three types
of memory (shared memory, cache and global memory) clearly
show that the performance need to take 𝛾𝑖 into consideration. In
experiments, the regression approach gives sufficient accuracy and
contributes the accuracy of our cost model.

5 AUGMENTATION OPTIMIZER
With the analytical model in hand, we are able to estimate the cost
of a query plan with arbitrary insertions of Shuffle and the Segment
operators. However, we can potentially insert Shuffle and Segment
operators after each operator into the pipeline. The solution space
can be large for complex queries. Also, different insertions can have
very different performance, as observed in our experiments. Thus,
we develop a GPU aware optimizer in Pyper to efficiently find the
augmented query plan with the lowest execution time.

Specifically, we make use of a Branch & Bound (B&B) based
technique [24] to solve this problem. In the remainder of this section,
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Figure 6: Variation of sequential memory access cost with 𝛾𝑖
for V100 GPU

we detail how the B&B based technique is used to determine the
optimal insertion point for the Shuffle and Segment operators.

Overview. The augmentation optimizer in Pyper applies the
B&B based optimization algorithm to each pipeline in the query
plan individually. For each pipeline, the algorithm starts with the
original pipeline in the form of 𝑃 = {𝑂1, ...,𝑂𝑛} as the root, where
𝑛 is the number of operators in the pipeline, and𝑂𝑖 is the producer
operator for 𝑂𝑖+1 (1 ≤ 𝑖 < 𝑛). Then, the augmentation optimizer
systematically enumerates a tree, based on a bounding function.
Each node in the tree represents an augmented query plan for the
input pipeline, which is generated through an insertion of: 1) a
single Shuffle operator, 2) a single Segment operator or 3) a pair of
Shuffle and Segment operators between any two relational opera-
tors in its parent node. When a pair of Shuffle and Segment operator
is inserted, the Shuffle operator is always inserted before the Seg-
ment operator as the write stage of the Segment operator ensures
that the data is written into consecutive memory locations (i.e., the
warps in the next operators will not encounter any divergence).
Thus, there are a total of 4𝑛−1 possible nodes in the solution space.

Bounding Function. To limit the size of the solution space and
to reduce the overhead of determining the optimal solution, the
B&B based algorithm in Pyper makes use of a bounding function
based on the cost of the kernels being generated by each node.
Specifically, the augmentation optimizer keeps track of node with
the current lowest execution cost. If any node generates a kernel
with a single relational operator and the kernel has an execution
cost greater than the current optimal node, then the node is marked
as sub-optimal and its child nodes are not explored. This is because
the overall execution cost of the pipeline represented by this node
and its child nodes will be higher than the current optimal solution.

Pruning Criteria. We use the following pruning criteria or
heuristics to reduce the number of nodes that needs to be explored.

• Due to the limited amount of resource available on the GPU,
NVIDIA CUDA sets hard limits on the resources that can be utilized
at the warp and thread block level (Equation 5). Hence, any node
that requires the generation of a kernel that violates these resource
constraints is marked as invalid and its child nodes are not explored.
The reason is, if these resource constraints are violated, there is
no choice but to segment the pipeline. Those solutions would be
explored in another part of the tree, and thus we mark this node as
invalid to avoid redundancy.
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Figure 7: An example for augmentation optimization

• Further, we do not attempt to insert the Shuffle or Segment
operators into nodes in which all the generated kernels can achieve
100% execution efficiency or theoretical occupancy rate. This is be-
cause the insertion of operators cannot further improve the execu-
tion efficiency or occupancy rate and just brings runtime overhead.

Example.We demonstrate a working example of our B&B based
optimization algorithm in Figure 7. The example shows a simple
pipeline consisting of three relational operators, �1, �2 and �3. In
initialization, the root node is represented by � = {�1,�2,�3}. As
branches, we generate 3 different child nodes by insertions of a
single Shuffle, a single Segment and a pair of Shuffle and Segment
(denoted Node 2, Node 3 and Node 4 in the figure, respectively) be-
tween operators�1 and�2. Their resource use is illustrated on the
right. As shown in the table corresponding to Node 2, the insertion
of the Shuffle operator leads to an increased resource requirements
and thus the violation of the resource constraints. Node 4 is marked
an sub-optimal along with all its nodes due to the high cost of
materialization when a pair of Shuffle and Segment operators are
inserted into the pipeline. Finally, the algorithm chooses Node 3 as
the optimal solution for further exploration if it has child nodes.

Runtime overhead. The B&B procedure is very efficient in
practice, thanks to the effective pruning and the efficient evaluation
of the cost model. In our experiments, the augmentation optimizer
is able to identify the optimal solution for each query with very
low overhead (smaller than 1% of the query execution time).

6 EXPERIMENTS
6.1 Experimental Setup

Table 2: Hardware used for experiments.
V100 P100 Titan Xp

Core Count 80 x 64 56 x 64 48 x 64
Clock Rate (GHz) 1.53 1.328 1.4
Memory Size (GB) 32 16 12

Memory Bandwidth (GB/s) 900 549 547.7
Memory Type HBM2.0 HBM2.0 GDDR5

Shared Memory per SM 64KB 64 KB 64 KB
Register File per SM 256 KB 256 KB 256 KB

Hardware. To demonstrate the efficiency Pyper across different
hardware generations, we use V100, P100, and Titan Xp GPUs from
NVIDIA. All three GPUs are connected to the CPU via x16 PCIe
3.0 interface. The summary of the specification of all three GPUs
is provided in Table 2. V100 and P100 have HBM memory; Titan
Xp has GDDR5 memory. We mainly present the results on V100
that is a more recent GPU architecture and present the results on
different GPU architectures in Section 6.5.

Workload. For our experiments, we use the TPC-H [1] and Star
Schema Benchmark (SSB) [3] data sets with a scale factor of 50
(50 GB in size). SSB is a simplified version TPC-H benchmark and

has been widely used in previous studies on OLAP. We use the
entire set of SSB queries for evaluation. Since our system front-end
is based on GPL, we do not currently support the processing of
sub-queries and leave this for future work. Hence, we used all the
eight queries in TPC-H which do not contain sub-queries (Q1, Q3,
Q5, Q6, Q10, Q12, Q14 and Q19). The detailed SQL clauses can be
found in their benchmark websites [1, 3].

All our experiments are based on the entire data that was already
loaded on to the GPU global memory during initialization. With
the rise in GPU memory capacity and the increased number of
GPUs on a modern server(up to 16), we have witnessed hundreds of
gigabytes of GPUmemory on a single server, wheremany analytical
workloads can be processed completely on GPUs.

Experimental Outline. First, we show the impact of our es-
timation on divergence and resource contention, as well as the
effectiveness of augmentation optimizer. In order to demonstrate
that impact, we have integrated our cost model and augmentation
optimizer into a previous pipelined query processing engine on the
GPU named GPL [30].

Second, we evaluate the overall performance benefit of Pyper
with other implementations on the GPU. Here, we omit the com-
parison with the systems on the CPU such as Hyper [25], since
the previous studies [5] have shown that their GPU-based systems
are faster than Hyper. Specifically, we conduct a comprehensive
comparison using the following GPU-based systems: Ocelot [17],
GPL [30], Hawk [5], Omnisci [2] and DogQC [12]. Ocelot in a ker-
nel based execution system that materializes the intermediate data
between operators in the GPU global memory, whereas GPL is a
pipelined query processing system that makes use of GPU L2 cache
for moving the data between the operators. All other systems are
compiled systems. To the best of our knowledge, Hawk [5] is the
state-of-the-art opensource system that supports code generation
for GPUs. However, even Hawk only supports earlier generations
of GPUs and cannot run on the V100 GPU. Hence, we modified
Hawk [5] for evaluation (denoted as Hawk-M) so that it can run
on V100. Omnisci [2] is considered to be the state-of-the-art open-
sourced commercial compiled system for GPUs.

Third, in Section 6.4, we evaluate the individual techniques in
terms of efficiency and effectiveness of the Shuffle and Segment op-
erators in reducing the divergence and resource contention among
threads, respectively.

Fourth, in Section 6.5, we evaluate the generality of the Shuffle
and the Segment operators along with the proposed cost model
across different GPU hardware.

Additional experimental results can be found in our technical
report [29].

6.2 Model Evaluation
Key Findings: Our analytical model is highly accurate, with less
than 6.6% error on average for the tested queries. Without consider-
ation of divergent execution and resource contention in compiled
systems, existing models have a much higher error.
Estimation errors. To demonstrate our analytical model’s ac-

curacy, we compare the relative error associated with the estimation
of the query execution cost by Pyper and GPL for the tested queries

in Figure 8. We define the relative error as |�̂�−�̂� |
�̂�

, where �̂� and
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Figure 8: Relative error in the execution cost estimation by
Pyper and GPL for TPC-H and SSB queries on V100

𝑄𝑒 represent the total measured and estimated (by the analytical
model) execution time of query 𝑄 . Note, the relative error values
of Pyper presented in Figure 8 are from the query plan obtained
from our augmentation optimizer. We also show the geometric
mean of all the results as “Mean“ in the figure. We have studied the
relative error of other plans including those generated during the
augmentation optimization, and observed similar results to Figure
8. We present one representative result later in Figure 9, and omit
the results for other queries due to space limits.

The results in Figure 8 clearly show that Pyper is able to achieve
significantly higher accuracy compared to GPL, for most queries.
Taking a closer look, we can observe that Pyper can achieve much
lower relative errors than GPL in some queries, or have similar
relative errors to GPL in other queries. To understand this, we take
TPC-H Q1 and Q6 as two representative queries [1]. 1) TPC-H Q6
represents the cases where Pyper achieves much lower relative
errors than GPL. TPC-H Q6 is a query with a low-selectivity filter
where many tuples are filtered out and the operators encounter a
high degree of divergence. Pyper is able to address this divergent
execution, whereas GPL does not. 2) TPC-H Q1 represents the cases
where Pyper has similar relative errors to GPL. This is because
TPC-H Q1 is an aggregation query with higher selectivity (most
tuples are remained as results in the pipeline), i.e., the operators in
Q1 encounter minimal divergence during execution. As we show
later in Section 6.4, the improvement of the model accuracy can
come from our improved estimation on resource contention.

We analyze the source of the relative error of our model. One
source can be that the cost of shared memory and global memory
instructions can vary significantly based on the number of memory
bank conflicts and access patterns, making it difficult for Pyper to
accurately estimate this cost. The other potential source of errors
can be from multiple joins, where join intensive queries like Q5,
Q10 and Q4.1 compared to the other queries. This is because the
join queries lead to errors in estimating the cost of synchronization
in accessing the hash table in parallel.

Effectiveness of query augmentation optimizer.Wedemon-
strate the effectiveness of our query plan augmentation optimizer.
We present the measured and estimated execution time of all can-
didate solutions (30 in total after pruning) explored by the augmen-
tation optimizer for TPC-H Q6 in Figure 9. The execution time is
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Figure 9: Normalized measured and estimated execution
cost of different candidate solutions of Q6 on V100

normalized with respect to that of GPL. We observe similar results
for other queries and omit the results.

The results in Figure 9 clearly show the following observations.
First, there is significant performance difference between the dif-
ferent candidate solutions (the difference can be 2.75x for TPC-H
Q6). Hence, it is very important to accurately identify the optimal
insertion points of Shuffle and Segment operators into a query plan.
In fact, an inaccurate estimation of the execution time leading to the
selection of a non-optimal configuration could lead to severe degra-
dation in query performance. Second, the augmentation optimizer
in Pyper with the help of the analytical model is able to identify the
optimal solution for Q6 (highlighted by the rectangle of Pyper in
Figure 9), thus demonstrating its effectiveness. The augmentation
optimization is quite lightweight due to the B&B approach, with
the runtime overhead smaller than 1% of the query execution time.

6.3 Overall Comparison
Key Findings: For TPC-H queries, on average the code generated
by Pyper outperforms Ocelot, Omnisci, GPL, Hawk-M and DogQC
by 34.73x, 5.01x, 3.06x, 1.60x and 1.40x, respectively. Pyper on aver-
age achieves 6.59x, 2.55x, 2.35x, 1.52x performance improvement
over Ocelot, Omnisci, GPL and Hawk-M for SSB queries.
We compare the overall performance of Pyper against other sys-

tems using TPC-H and SSB queries in Figures 10 and 11, respectively.
Compiled systems are generally much faster than non-compiled
systems.

Omnisci is a commercial system with a more complete set of
functionalities than other systems in the test. It is still slower than
other tested systems, due to its low execution efficiency of the
GPU kernels. Further, Omnisci also fails to efficiently optimize
complex join queries like Q3, Q5 and Q10, as demonstrated by
the significantly worse performance of Omnisci for these queries.
Overall, Pyper outperform Omnisci by 5.01x and 2.55x for TPC-H
and SSB queries on average.

As mentioned before, efficient use of the Shuffle and Segment op-
erators helps Pyper minimize the divergent execution and resource
contention among threads. This combined with the availability of
a cost model that avoids unnecessary insertions of the Shuffle and
Segment operators help Pyper to outperform Hawk-M by 1.60x and
1.55x on average for TPC-H and SSB queries respectively.
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Figure 10: Overall performance evaluation of Pyper for TPC-
H queries on the V100 GPU.
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Figure 11: Overall performance evaluation of Pyper for SSB
queries on the V100 GPU.

Even though DogQC segments its pipeline and makes use of
techniques to minimize workload divergence and resource con-
tention, Pyper still manages to outperform DogQC by up to 1.4x on
average (up to 3.9x on TPC-H queries), due to the following reasons.
First, DogQC lacks a cost model that can help determine the opti-
mal insertions of Shuffle and Segment operators (the importance
has been demonstrated by the results in Figure 9). Second, Pyper
adopts more efficient implementations for the Shuffle and Segment
operators. Note, we omit DogQC in Figure 11 since the open-source
version of DogQC does not currently support SSB queries.

TimeBreakdown. To get a deeper understanding of the reasons
behind the performance improvement of Pyper, we present the ex-
ecution time breakdown of Pyper along with Hawk-M in Figure 12.
The breakdown involves the overhead of divergent execution, the
overhead of resource contention, the cost of Shuffle and Segment
(including data shuffling resulting from Shuffle and the cost of addi-
tional data materialization arising from Segment). For the clarify of
figure, Qx(H) and Qx(P) represent the execution time breakdown of
code generated corresponding to query Qx by Hawk-M and Pyper,
respectively. We have the following observations.
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Figure 12: Time breakdown of Pyper and Hawk-M on V100
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Figure 13: Normalized (to Hawk-M) warp execution and oc-
cupancy rate for TPC-H and SSB queries on V100

First, due to the use of the Shuffle and Segment operators, Pyper
is able to generate code that almost eliminates the overhead due
to divergent execution and resource contention among threads.
Second, the use of the Shuffle and Segment operator adds very little
runtime overhead associated with data shuffling andmaterialization
(less than 12%). Thus, such small overhead is much smaller than
the performance improvement by resolving divergent execution
and resource contention among the threads.

6.4 Individual Operator Evaluation
Key Findings: The profiling results show that, with Shuffle and
Segment operators, Pyper achieves up to 2.20x higher warp execu-
tion efficiency and 2.30x higher occupancy rate than Hawk-M.
For a more thorough comparison of individual operators, we

present the execution time of Pyper (w/o Shuffle) and Pyper (w/o
Segment), which are the same as Pyper except without using Shuffle
and Segment, respectively. The results are shown in Figure 14. Both
Shuffle and Segment individually helps improve the performance
of query execution on GPUs. Further, the benefit of each operator
individually varies depending on the query.

In the following, for each operator, we present the detailed pro-
filing results to demonstrate that Shuffle and Segment operators are
able to eliminate most of the overhead from divergent execution
and resource contention.

We use the following metrics collected using the NVProfile tool
from NVIDIA: 1) warp execution efficiency which represents the
average number of active threads per warp and helps account for
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Figure 14: Performance benefit of Shuffle and Segment op-
erators for TPC-H queries on V100.

the level of divergence among the GPU threads and 2) achieved
occupancy which represents the maximum number of active warps
per SM and helps account of the resource contention among the
threads. Higher the warp execution efficiency and achieved occu-
pancy indicate lower levels of divergence and resource contention
among threads, respectively. We present the normalized warp ex-
ecution efficiency and occupancy values of Pyper with respect to
Hawk-M in Figure 13.

Impact of Shuffle Operator. As demonstrated by the normal-
ized warp execution efficiency values in Figure 13, the use of the
Shuffle operator helps improve the warp execution efficiency of
almost all queries used in our study. Overall, the warps executing
the code generated by Pyper achieves up to 2.20x higher warp exe-
cution efficiency compared to the Hawk-M implementation. Such
significant improvement in the warp execution efficiency of the
kernels means that threads executing the code generated by Pyper
can make more efficient use of the GPU hardware by allowing a
larger number of active threads in each warp.

Impact of Segment Operator. As shown in Figure 13, Pyper
is able to achieve up significantly higher occupancy rate when
compared to Hawk-M for queries Q1, Q5, Q10, Q2.3, Q3.2, Q4.1
and Q4.3. This is because one or more kernels generated by the
Hawk-M implementation for these queries encounter severe re-
source contention on GPUs due to its high resource requirement.
Pyper breaks down those large pipelines in these queries using the
segment operator, thus reducing the resource requirements of the
kernels and improving the parallelism.

We present the resource requirements of the most expensive
kernel generated by the Hawk-M implementation and Pyper for
queries Q1, Q5, Q10, Q2.3, Q3.2, Q4.1 and Q4.3 in Table 3. The shared
memory and register requirements of the queries in Table 3 clearly
show that the kernels generated by Pyper has significantly lower
resource requirements compared to Hawk-M. More importantly,
the resource requirements in Pyper are low enough to ensure up to
64 simultaneous active warps per SM on modern GPU hardware
(with 64 KB shared memory and 256 KB registers per SM). Hence,
the kernels generated by Pyper is able to achieve up to 2.3x better
occupancy rate on GPUs (Figure 13).

6.5 Evaluation on Different GPU Architectures
We have conducted experiments on two older generation of GPUs
including P100 and Titan Xp. The results of TPC-H queries are

Table 3: Resource use of Hawk-M and Pyper on V100

Query
Shared Mem. /
Warp (KB)

Register /
Warp (KB) Occupancy (%)

Hawk-M Pyper Hawk-M Pyper Hawk-M Pyper
Q1 0.1 0.1 4.5 3.8 55.2 93.1
Q5 1.3 1.0 4.4 3.1 58.1 93.2
Q10 1.3 0.9 3.3 3.1 56.8 90.0
Q2.3 1.1 0.6 3.8 3.5 60.2 92.5
Q3.2 1.5 1.0 4.3 3.7 49.0 88.3
Q4.1 1.1 0.8 4.0 3.8 47.3 89.1
Q4.3 1.3 1.0 4.5 3.2 40.1 93.0
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Figure 15: Performance evaluation on P100 and Titan Xp

shown in Figure 15. Overall, the results demonstrate the efficiency
of Pyper and the generality of both our operators and the cost
model for different generations of GPU hardware. The slightly
lower performance gain of Pyper is mainly due to the reduced
performance benefit of the Segment operator.

7 CONCLUSION
JIT compilation-based code generation of queries has evolved as
a powerful paradigm for query processing on GPU. In this study,
we find that, thanks to advanced techniques such as database com-
pression and JIT compilation, memory stalls are no longer the most
significant bottleneck. Instead, existing compiled systems encounter
severe overhead in divergent execution and resource contention
because they adopt a monolithic approach for generating the code
of query plan on the GPU. To improve the execution efficiency,
we present Pyper, a compiled system designed for GPUs. Pyper
introduces two new query plan transformation operators, Shuffle
and Segment, which can be inserted into any query pipeline of the
physical plan to reduce the divergent execution and resource con-
tention. Further, Pyper makes use of an analytical cost model and an
effective optimizer to determine the optimal use of the Shuffle and
Segment operators. Our experiments show that Pyper generates
code that on average is able to improve the performance of TPC-H
queries by 34.73x, 5.01x, 3.06x, 1.60x and 1.40x when compared to
Ocelot, Omnisci, GPL, Hawk and DogQC, respectively. Pyper on av-
erage achieves 6.59x, 2.55x, 2.35x, 1.52x performance improvement
over Ocelot, Omnisci, GPL and Hawk for SSB queries.
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