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ABSTRACT
We propose GraphMineSuite (GMS): the �rst benchmarking suite
for graph mining that facilitates evaluating and constructing high-
performance graph mining algorithms. First, GMS comes with a
benchmark speci�cation based on extensive literature review, pre-
scribing representative problems, algorithms, and datasets. Second,
GMS o�ers a carefully designed software platform for seamless
testing of di�erent �ne-grained elements of graph mining algo-
rithms, such as graph representations or algorithm subroutines.
The platform includes parallel implementations of more than 40
considered baselines, and it facilitates developing complex and fast
mining algorithms. High modularity is possible by harnessing set
algebra operations such as set intersection and di�erence, which
enables breaking complex graph mining algorithms into simple
building blocks that can be separately experimented with. GMS
is supported with a broad concurrency analysis for portability in
performance insights, and a novel performance metric to assess the
throughput of graph mining algorithms, enabling more insightful
evaluation. As use cases, we harness GMS to rapidly redesign and
accelerate state-of-the-art baselines of core graph mining problems:
degeneracy reordering (by >2⇥), maximal clique listing (by >9⇥),
k-clique listing (by up to 1.1⇥), and subgraph isomorphism (by
2.5⇥), also obtaining better theoretical performance bounds.
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1 INTRODUCTION AND MOTIVATION
Graph mining is used in social sciences, bioinformatics, chem-
istry, medicine, cybersecurity, and many others [31, 39, 60, 66]. Yet,
graphs can reach one trillion edges (the Facebook graph (2015) [38])
or even 12 trillion edges (the Sogou webgraph (2018) [81]), requir-
ing unprecedented amounts of compute power to solve even simple
graph problems such as BFS [81]. Harder problems, such as mining
k-cliques (time complexity is a high-degree polynomial) or maximal
cliques (NP-hard in the worst case), face even larger challenges.

At the same time, massive parallelism has become prevalent in
modern compute devices [12], bringing a promise of fast parallel
graph mining algorithms. Yet, several issues hinder achieving this.
First, a large number of graph mining algorithms and their vari-
ants make it hard to identify the most relevant baselines as either
promising candidates for further improvement, or as appropriate
comparison targets. Similarly, a plethora of available networks hin-
der selecting relevant input datasets for evaluation. Second, even
when experimenting with a single speci�c algorithm, one often
faces numerous design choices, for example which graph represen-
tation to use, whether to apply graph compression, how to represent
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An example GMS use case: accelerating the Bron-Kerbosch algorithm for maximal clique listing
Selecting relevant baselines & input graphs (enabled by the GMS benchmark specification).

Baselines: Das et al., Eppstein et al., Input: graphs with various skews in triangle counts per vertex.

Experimenting with different algorithmic parts (facilitated by the GMS benchmarking platform),
such as graph representations, vertex reorderings, loop scheduling, and other optimizations. The
key optimizations in the BK algorithm enhanced in GMS are approximate degeneracy reordering

of vertices, and an optimization where results of various operations on sets of vertices are cached.
Benchmarking is further simplified by providing reference implementations of graph mining algorithms.

Insightful evaluation (facilitated by the GMS metrics, such as algorithmic throughput). The variants
of BK provided in GMS are able to mine up to 9x more cliques per second than the competition.

Delivering theoretical performance bounds (facilitated by the GMS concurrency analysis). The BK
in GMS offers the best work bound among poly-logarithmic depth maximal clique listing algorithms
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Figure 1: Performance advantages of the parallel Bron-Kerbosch (BK) algo-
rithm implemented in GMS over a state-of-the-art implementation by Das
et al. [42] and a recent algorithm by Eppstein et al. [51] (GMS-DGR) using a
novel performance metric “algorithmic throughput” that shows a number of
maximal cliques found per second. Details of experimental setup: Section 8.
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auxiliary data structures, etc.. Such choicesmay signi�cantly impact
performance, often in a non-obvious way, and they may require a
large coding e�ort when trying di�erent options [41].

To address these issues, we introduce GraphMineSuite (GMS),
a benchmarking suite for high-performance graphmining algorithms.
GMS provides an exhaustive benchmark speci�cation S . Moreover,
GMS o�ers a novel performance metric M and a broad theoretical
concurrency analysis C for deeper performance insights beyond
simple empirical run-times. To maximize GMS’ usability, we arm
it with an accompanying software platform P with reference
implementations of algorithms I . We motivate the GMS platform
in Figure 1, which illustrates example performance advantages
(even more than 9⇥) of the GMS code over a state-of-the-art variant
of the Bron-Kerbosch (BK) algorithm. This shows the key bene�t of
the platform: it facilitates developing, redesigning, and enhancing
algorithms considered in the benchmark, and thus it enabled us to
rapidly obtain large speedups over fast existing BK baselines.

To construct GMS, we �rst identify representative graph min-
ing problems, algorithms, and datasets. We conduct an extensive
literature review [5, 8, 31, 55, 66, 74, 75, 80, 83, 98–100, 112, 123],
and obtain a benchmark speci�cation S that can be used as a
reference point when selecting relevant comparison targets.

Second, GMS comes with a benchmarking platform P : a
highly modular infrastructure for easy experimenting with dif-
ferent design choices in a given graph mining algorithm. A key
idea for high modularity is exploiting set algebra. Here, we observe
that data structures and subroutines in many mining algorithms are
“set-centric”: they can be expressed with sets and set operations,
and the user can seamlessly use di�erent implementations of the
same speci�c “set-centric” part. This enables the user to seamlessly
use new graph representations, data layouts, architectural features
such as vectorization, and even use numerous graph compression
schemes. We deliver ready-to-go parallel implementations of the
above-mentioned elements, including more than 40 parallel refer-
ence implementations I of graph mining algorithms, as well as
representations, data layouts, and compression schemes.

For more insightful performance analyses, we propose a novel
performance metric M that assesses “algorithmic e�ciency”, i.e.,
“how e�ciently a given algorithm mines selected graph motifs”.

To ensure performance insights that are portable across di�erent
machines and independent of various implementation details, GMS
also provides the �rst extensive concurrency analysis C of a
wide selection of graph mining algorithms. We use work-depth,
an established theoretical framework from parallel computing [18,
20], to show which algorithms come with more potential for high
performance on today’s massively parallel systems.

To show the potential of GMS, we enhance state-of-the-art
algorithms that target some of the most researched graph min-
ing problems. This includes maximal clique listing [42], k-clique
listing [41], degeneracy reordering (core decomposition) [86], and
subgraph isomorphism [27, 28]. By being able to rapidly experiment
with di�erent design choices, we get speedups of >9⇥, up to 1.1⇥,
>2⇥, and 2.5⇥, respectively. We also improve theoretical bounds:
for example, for maximal clique listing, we obtain O(dm3(2+� )d/3)
work andO(log2 n+d logn) depth (d,m,n are the graph degeneracy,
#edges, and #vertices, respectively). This is the best work bound
among poly-logarithmic depth maximal clique listing algorithms,
improving upon recent schemes [42, 51, 52].

Reference /
Infrastructure

Pa�ern Matching Learning Vr Remarks
mC kC dS sI fS vS lP cl cD

[B] Cyclone [113] � � � � � � � � � �⇤ ⇤Only degree centrality.
[B] GBBS/Ligra [46, 106] � � � � � � � � � �⇤ ⇤Support for degeneracy
[B] GraphBIG [94] � �⇤ � � � � � � � � ⇤Only k = 3
[B] GAPBS [13] � �⇤ � � � � � � � � ⇤Only k = 3
[B] LDBC [23] � � � � � � � �⇤ � � ⇤Only one clustering coe�icient
[B] WGB [9] � � � � � � � �⇤ � � ⇤Only one clustering scheme
[B] PBBS [19] � � � � � � � � � �
[B] Graph500 [93] � � � � � � � � � �
[B] CRONO [6] � � � � � � � � ��⇤ ⇤Triangle counting.
[B] GARDENIA [126] � � � � � � � � � �⇤ ⇤Triangle counting

[F] A framework [47] �⇤�⇤�⇤�⇤�⇤ � � � � � ⇤No good performance bounds

[B] GMS [This paper] � � � � � �� � � � Details in Table 3 and Section 4

Table 1: Related work analysis, part 1: a comparison of GMS to graph-related
benchmarks (“[B]”) and graphmining frameworks such as Fractal [47] (“[F]”),
focusing on supported graph mining problems. We exclude benchmarks
with no focus on mining algorithms (Lonestar [25], Rodinia [33], HPCS [11],
work by Han et al [56], Parboil [110], BigDataBench [122], BDGS [91], and
LinkBench [10]). mC: maximal clique listing, kC: k-clique listing, dS: dens-
est subgraph, sI: subgraph isomorphism, fS: frequent subgraph mining, vS:
vertex similarity, lP: link prediction, cl: clustering, cD: community detection,
Opt: optimization, Vr: vertex rankings, �: Supported. �: Partial support. �:
no support.

GMS vs. Graph-Related Benchmarks We motivate GMS as
the �rst benchmark for graph mining. There exist graph pro-
cessing benchmarks, but they do not focus on graph mining; we
illustrate this in Table 1 (“[B]”). They focus on graph database work-
loads, extreme-scale graph traversals, and di�erent “low-complexity”
(i.e., with run-times being low-degree polynomials in numbers of
vertices or edges) parallel graph algorithms such as PageRank, tri-
angle counting, and others, researched intensely in the parallel
programming community. Despite some similarities (e.g., GBBS
provides implementations of k-clique listing), none of these bench-
marks targets general graph mining, and they do not o�er novel
performance metrics or detailed control over graph representations,
data layouts, and others. We broadly analyze this in Table 2, where
we compare GMS to other benchmarks in terms of the modularity of
their software infrastructures, o�ered metrics, control over storage
schemes, support for graph compression, provided theoretical anal-
yses, and whether they improve state-of-the-art algorithms. Finally,
GMS is the only benchmark that is used to directly enhance core
state-of-the-art graph mining algorithms, achieving both better
bounds and speedups in empirical evaluation.

GMS vs. Pattern Matching Frameworks Many graph min-
ing frameworks have recently been proposed, for example Pere-
grine [64] and others [34, 35, 47, 62, 68, 87, 88, 115, 127, 128, 131].
GMS does not compete with such frameworks. First, as Table 1
shows, such frameworks do not target broad graph mining. Second,
key o�ered functionalities also di�er. These frameworks focus on
programming models and abstractions, and on the underlying run-
time systems. Contrarily, GMS focuses on benchmarking and tuning
speci�c parallel algorithms, with provable performance properties,
to accelerate the most competitive existing baselines.

2 NOTATION AND BASIC CONCEPTS
We model an undirected graph G as a tuple (V ,E); V is a set of
vertices and E ✓ V ⇥V is a set of edges; |V | = n and |E | =m. The
maximum degree of a graph is �. The neighbors and the degree of
a given vertex � are denoted with N (�) and �(�), respectively.
3 OVERVIEW OF GMS
We start with an overview; see Figure 2.
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Key questions: 

 

Part 1: Design Part 2: Implementation & tuning  Part 3: Analysis Part 4: Evaluation

Goal: construct a high-
-performance algorithm
solving a selected graph

mining problem

What are relevant
mining algorithms

and datasets?

How to assess the 
scalability of a new

algorithmic idea?

How to quickly benchmark
new parallel graph mining
algorithms, preprocessing

schemes, data layouts,
various optimizations?

What are insightful
performance metrics

for graph mining?

How to analyze the
performance, storage

requirements, and
other aspects of
a new algorithm?

What are state-of-the-art
comparison baselines?

How to effectively
use different parallel

architectures?

Key questions: Key questions: Key questions: 

How to effectively
evaluate algorithms?

Benchmark specification
Details:

Section 4

Details: Section 5
Reference implementations

 

Details:
Sections 3 & 5

Benchmarking platform

Details: Section 6

Concurrency analysis

Graph problems & algorithms
➜ Pattern matching (e.g., clique listing)
➜ Learning (e.g., link prediction, clustering)
➜ Optimization (e.g., coloring, minimum cuts)
➜ Reordering (e.g., degeneracy reordering)
 

Datasets

Implementations
➜ Algorithms,
➜ Optimizations, 
➜ Preprocessing
    routines,
➜ Load balancing,
➜ Graph representations,
➜ Data layouts,
➜ Graph compression,
➜ Parallelizations

➜ Sparse & dense, ➜ many & few cliques,
➜ High & low skew of degree distribution,
➜ Many & few dense (non-clique) subgraphs, 
➜ different origins (purchases, roads, ...)

Details:
Sections 5 & 7

Performance metrics

Aspects

➜ Performance (work, depth),
➜ Storage, ➜ Tradeoffs.

➜ Run-time, ➜ Scalability,
➜ L3 misses (machine efficiency).

Traditional
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Different symbols indicate
which elements of GMS are
responsible for a given part
of the construction process
of a graph mining algorithm

Input
graph

Implemented in Used by

Platform pipeline stages (toolchain execution)
with details on extensibility and modularity

Load graph
into memory

Build graph representation
(CSR by default)

P
oi

nt
er

s

Neighborhoods
of vertices

Apply preprocessing

The user can plug in different preprocessing
schemes. We provide a ready library of

reordering schemes, such as degeneracy
or degree reordering (example above).

Run graph
algorithm1

Define graph accesses

When developing
a graph representation,
the user also develops

the corresponding
graph accesses:

2

3 4 Define algorithm building blocks5

The user can plug in
a graph algorithm. We

offer >40 reference
implementations.

/* Example: Triangle 
Counting. "tc" is the
count of triangles */

: a dark background and a cube indicate that a particular part of the design
can be substituted by the developer with their own implementation

Gather
data

Visualize

How does GMS
facilitate extensibility

at a given stage?

Modular design of 
classes & files associated
with graph representations

1 Well-defined interface
(based on set algebra) of

routines for graph accesses

2 Enabling running different
preprocessing routines

with a single function call

3 Modular design of 
classes & files associated

with graph algorithms

4 Clear structure of code facilitating
manipulation with fine parts such as 

scheduling policy of single loops

5

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing).

Set algebra based
modularity for various

parts of algorithms

5+

check d(v)

iterate over N(v)
check if ∃ (u,v)

Example:
initial CSR graph
representation

Example:
reordered CSR

(degree order: by
neighborhood size)

 
tc = 0; init_sets( ) 
#pragma omp parallel for schedule (...)
for v in V:
   for w in N(v):  
      tc += |N(v)      N(w)|
tc /= 3; cleanup( )

5+

The user can plug in variants
of fine algorithm blocks such
as scheduling policies. GMS
facilitates it with appropriate

modular implementations 

Most simplicity is
enabled by using

fine building blocks
based on set algebra

High-Performance

Graph Mining

  GraphMine
Suite

Challenges & questions

Solutions & answers

➜ Parallel, ➜ Modular,
➜ Scalable, ➜ Fast, ➜ ...

Features

Features
➜ Simple to use,
➜ Extensible, 
➜ Modular,
➜ Public.

Key idea for high modularity:
use set algebra. Sets and set
operations become "modules"

that can be implemented in
different ways, and still they

can be seamlessly combined.

Key idea in a novel metric:
count the number of graph 
patterns mined per second

(algorithmic efficiency).

A representation is
modular

Graph
accesses

Figure 2: The overview of GMS and how it facilitates constructing, tuning, and benchmarking graph mining algorithms. The upper red part shows a process of
constructing a graphmining algorithm, and the associated research questions. The middle blue part shows the corresponding di�erent elements of the GMS suite
( S – M ). The bottom blue part illustrates the details of the GMS design benchmarking, with the stages of the GMS pipeline (execution toolchain) for running a
given graph mining algorithm ( 1 – 5 , 5+ ).

The GMS benchmark speci�cation S (details in Section 4)
motivates representative graph mining problems and state-of-the-
art algorithms solving these problems, relevant datasets, perfor-
mance metrics M , and a taxonomy that structures this information.
The speci�cation, in its entirety or in a selected subpart, enables
choosing relevant comparison baselines and important datasets
that stress di�erent classes of algorithms.

The speci�cation is implemented in the benchmarking plat-
form P (details in Section 5). The platform facilitates developing
and evaluating high-performance graph mining algorithms. The
former is enabled by incorporating set algebra as the key driver for
modularity and high performance. For the latter, the platform forms
a processing pipeline with well-separated parts (see the bottom of
Figure 2): loading the graph from I/O, constructing a graph repre-
sentation ( 1 – 2 ), optional preprocessing ( 3 ) running selected
graph algorithms ( 4 – 5 , 5+ ), and gathering data.

The reference implementation of algorithms I (details in
Section 6) o�ers publicly available, fast, and scalable baselines that
e�ectively use massive parallelism in today’s architectures. As

data movement is dominating runtimes in irregular graph compu-
tations, we also provide a large number of storage schemes: graph
representations, data layout schemes, and graph compression.

The concurrency analysis C (details in Section 7) o�ers a
theoretical framework to analyze performance, storage, and the as-
sociated tradeo�s. We use work and depth [18, 20] that respectively
describe the total work done by all executing processors, and the
length of the associated longest execution path.

4 BENCHMARK SPECIFICATION
The GMS speci�cation has four parts: graph mining problems,
algorithms, datasets, andmetrics1.

4.1 Graph Problems and Algorithms
We identify four major classes of graph mining problems and the
corresponding algorithms: patternmatching, learning, reorder-
ing, and (partially) optimization. For each given class of problems,
we aimed to cover a wide range of problems and algorithms that

1We encourage participation in the GMS e�ort. If the reader would like to include some problem or
algorithm in the speci�cation and the platform, the authors would welcome the input.
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di�er in their design and performance characteristics, for exam-
ple P and NP problems, heuristics and exact schemes, algorithms
with time complexities described by low-degree and high-degree
polynomials, etc.. The speci�cation is summarized in Table 3.

4.1.1 Graph Pa�ern Matching. One large class is graph pat-
tern matching [66], which focuses on �nding speci�c subgraphs
(also calledmotifs or graphlets) that are often (but not always) dense.
Most algorithms solving such problems consist of the searching
part (�nding candidate subgraphs) and the matching part (deciding
whether a given candidate subgraph satis�es the search criteria).
The search criteria (the details of the searched subgraphs) in�u-
ence the time complexity of both searching and matching. First,
we pick listing all cliques in a graph, as this problem has a long
and rich history in the graph mining domain, and numerous ap-
plications. We consider bothmaximal cliques (an NP-hard prob-
lem) and k-cliques (a problem with time complexity in O(nk )),
and the established associated algorithms, most importantly Bron-
Kerbosch [24], Chiba-Nishizeki [37], and their various enhance-
ments [29, 41, 51, 85, 117]. Next, we cover a more general problem
of listing dense subgraphs [63, 74] such as k-cores, k-star-cliques,
and others. GMS also includes the Frequent Subgraph Mining (FSM)
problem [66], in which one �nds all subgraphs (not just dense)
that occur more often than a speci�ed threshold. Finally, we include
the established NP-complete subgraph isomorphism (SI) prob-
lem, because of its prominence in both the theory and practice of
pattern matching, and because of a large number of variants that
often have di�erent performance characteristics [27, 40, 58, 89, 119];
SI is also used as a subroutine in the matching part of FSM.

Reference /
Infrastructure

New Alg Gen. APIs Metrics Storage Compres. Th.
9 na sp N G S P rt me fg mf af agbgaabaad of fg en re 9 nb

[B] Cyclone [113] � � � � � � � � � � � � � � � � � � � � � � �

[B]
GBBS [46]
+ Ligra [106] � � � ��� � � � � � � ������ � � � ��

[B] GraphBIG [94] � � � �� � � � � � � � � � � � � � � � � � �
[B] GAPBS [13] � � � � � � � � � � � � � � � � � � � � � � �
[B] LDBC [23] � � � � � � � �⇤�⇤�⇤�⇤�⇤ � � � � � � � � � � �
[B] WGB [9] � � � � � � � � � � � � � � � � � � � � � � �
[B] PBBS [19] � � � � � � � � � � � � � � � � � � � � � � �
[B] Graph500 [93] �� � � � � � � � � � � � � � � � � � � � � �
[B] CRONO [6] � � � � � � � � � � � � � � � � � � � � � � �
[B] GARDENIA [126] � � � � � � � � � � � � � � � � � � � � � � �

[B] GMS �� � ���� � � � � � �����������

Table 2: Related work analysis, part 2: GMS vs. graph benchmarks (“[B]”) and
graph pattern matching frameworks (“[F]”), focusing on supported function-
alities important for developing fast and simple graph mining algorithms.
New alg? (9): Are there any new/enhanced algorithms o�ered? na: do the new
algorithmshave provable performance properties? sp: are there any speedups
over tuned existing baselines? Modularity: The numbers ( 1 – 5 , 5+ ) indicate
aspects ofmodularity, details in Sections 3–4. In general: Gen. APIs: Dedicated
generic APIs for a seamless integration of an arbitrary graph mining algo-
rithm with: N (an arbitrary vertex neighborhood), G (an arbitrary graph rep-
resentation), S (arbitrary processing stages, such as preprocessing routines),
P (PAPI infrastructure). Metrics: Supported performance metrics. rt: (plain)
run-times. me: (plain) memory consumption. fg: support for �ne-grained
analysis (e.g., providing run-time fraction due to preprocessing). mf: metrics
for machine e�ciency (details in § 4.3). af: metrics for algorithmic e�ciency
(details in § 4.3). Storage: Supported graph representations and auxiliary data
structures. ag: graph representations based on (sparse) integer arrays (e.g.,
CSR). bg: graph representations based on (sparse or dense) bitvectors [1, 57].
aa: auxiliary structures based on (sparse) integer arrays. ba: auxiliary struc-
tures based on (sparse or dense) bitvectors. Compression: Supported forms
of compression.ad: compression of adjacency data. of: compression of o�sets
into the adjacency data. fg: compression of �ne-grained elements (e.g., sin-
gle vertex IDs). en: various forms of the encoding of the adjacency data (e.g.,
Varint [17]). re: support for relabeling adjacency data (e.g., degree minimiz-
ing [17]). Th.: Theoretical analysis. 9: Any theoretical analysis is provided.
Nb: Are there any new bounds? �: Support. �: Partial support. �⇤ / �⇤: A
given metric is supported via an external pro�ler. �: No support.

4.1.2 Graph Learning. We also consider various problems that
can be loosely categorized as graph learning. These problems are
mostly related to clustering, and they include vertex similar-
ity [75, 101, 101] (verifying how similar two vertices are), link pre-
diction [7, 80, 83, 114, 121] (predicting whether two non-adjacent
vertices can become connected in the future, often based on ver-
tex similarity scores), and Clustering and Community Detec-
tion [21, 65, 97] (�nding various densely connected groups of ver-
tices, also often incorporating vertex similarity as a subroutine).

4.1.3 Vertex Reordering. We also consider reordering of ver-
tices. Intuitively, the order in which vertices are processed in some
algorithm may impact the performance of this algorithm. For exam-
ple, when counting triangles, ordering vertices by degrees (prior to
counting) minimizes the number of times one triangle is (unneces-
sarily) counted more than once. In GMS, we �rst consider the above-
mentioned degree ordering. We also provide two algorithms for
the degeneracy ordering [54] (exact and approximate), which
was shown to improve the performance of maximal clique listing
or graph coloring [15, 29, 51, 117].

4.1.4 Optimization. While GMS focuses less on optimization
problems, we also include a representative problem of graph color-
ing, detailed in technical report.

4.1.5 TaxonomyandDiscussion. Graph patternmatching, clus-
tering, and optimization are related in that the problems from these
classes focus on �nding certain subgraphs. In the two former classes,
such subgraphs are usually “local” groups of vertices, most often
dense (e.g., cliques, clusters) [2–4, 14, 61, 96, 116], but sometimes
can also be sparse (e.g., in FSM or SI). In optimization, a subgraph
to be found can be “global”, scattered over the whole graph (e.g.,
vertices with the same color). Moreover, clustering and community
detection (central problems in graph learning) are similar to dense
subgraph discovery (a central problem in graph pattern matching).
Yet, the latter use the notion of absolute density: a dense subgraph S
is some relaxation of a clique (i.e., one does not consider what is
“outside S”). Contrarily, the former use a concept of relative density:
one compares di�erent subgraphs to decide which one is dense [5].

4.2 Graph Datasets
We aim at a dataset selection that is computationally challenging
for all considered problems and algorithms, cf. Table 3. We list both
large and small graphs, to indicate datasets that can stress both
low-complexity graph mining algorithms (e.g., centrality schemes
or clustering) and high-complexity P, NP-complete, and NP-hard
ones such as subgraph isomorphism.

So far, existing performance analyses on parallel graph algo-
rithms focused on graphs with varying sparsitiesm/n (sparse and
dense), skews in degree distribution (high and low skew), diameters
(high and low), and amounts of locality that can be intuitively ex-
plained as the number of inter-cluster edges (many and few) [13].
In GMS, we recommend to use such graphs as well, as the above
properties in�uence the runtimes of all described algorithms.

In Table 3, graphs with high degree distribution skews are indi-
cated with large (relatively to n) maximum degrees �, which poses
challenges for load balancing and others.

However, one of the insights that we gained with GMS is that the
higher-order structure, important for the performance of graph
mining, can be little related to the above properties. For example,
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Graph problem Corresponding algorithms E.? P.? Why included, what represents? (selected remarks)

Graph
Pa�ern
Matching

•Maximal Clique Listing [48] Bron-Kerbosch [24] + optimizations (e.g., pivoting) [29, 51, 117] � 5+ � Widely used, NP-complete, example of backtracking

• k -Clique Listing [41] Edge-Parallel and Vertex-Parallel general algorithms [41],
di�erent variants of Triangle Counting [104, 107] � 5+ � P (high-degree polynomial), example of backtracking

• Dense Subgraph Discovery [5] Listing k -clique-stars [63] and k -cores [54] (exact & approximate) � 5+ � Di�erent relaxations of clique mining
• Subgraph isomorphism [48] VF2 [40], TurboISO [58], Glasgow [89], VF3 [26, 28], VF3-Light [27] � � Induced vs. non-induced, and backtracking vs. indexing schemes
• Frequent Subgraph Mining [5] BFS and DFS exploration strategies, di�erent isomorphism kernels � � Useful when one is interested in many di�erent motifs

Graph
Learning

• Vertex similarity [75]
Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential A�achment, Total Neighbors [101] � 5+ �

A building block of many more comples schemes,
di�erent methods have di�erent performance properties

• Link Prediction [114]
Variants based on vertex similarity (see above) [7, 80, 83, 114],
a scheme for assessing link prediction accuracy [121] � 5+ � A very common problem in social network analysis

• Clustering [103]
Jarvis-Patrick clustering [65] based on di�erent
vertex similarity measures (see above) [7, 80, 83, 114] � 5+ �

A very common problem in general data mining; the selected
scheme is an example of overlapping and single-level clustering

• Community detection Label Propagation and Louvain Method [108] � � Examples of convergence-based on non-overlapping clustering

Vertex
Ordering

• Degree reordering A straightforward integer parallel sort � � A simple scheme that was shown to bring speedups
• Triangle count ranking Computing triangle counts per vertex � 5+ � Ranking vertices based on their clustering coe�icient
• Degenerecy reordering Exact and approximate [54] [70] � 5+ � O�en used to accelerate Bron-Kerbosch and others

Table 3: Graph problems/algorithms considered in GMS. “E.? (Extensibility)” indicates how extensible given implementations are in the GMS benchmarking
platform: “�” indicates full extensibility, including the possibility to provide new building blocks based on set algebra ( 1 – 5 , 5+ ). “�”: an algorithm that does
not straightforwardly (or extensively) use set algebra. “P.? (Preprocessing) indicates if a given algorithm can be seamlessly used as a preprocessing routine; in the
current GMS version, this feature is reserved for vertex reordering.

in § 8.6, we describe two graphs with almost identical sizes, sparsi-
ties, and diameters, but very di�erent performance characteristics
for 4-clique mining. As we detail in § 8.6, this is because the origin
of these graphs determines whether a graph has many cliques or
dense (but mostly non-clique) clusters. Thus, we also explicitly
recommend to use graphs of di�erent origins. We provide details of
this particular case in § 8.6 (cf. Livemocha and Flickr).

In addition, we explicitly consider the count of trianglesT , as (1)
it indicates clustering properties (and thus implies the amount of
locality), and it gives hints on di�erent higher-order characteristics
(e.g., the more triangles per vertex, the higher a chance for having
k-cliques for k > 3). Here, we also recommend using graphs that
have large di�erences in counts of triangles per vertex (i.e., large T -
skew). Speci�cally, a large di�erence between the average number
of triangles per vertex T /n and the maximum T /n indicates that a
graph may pose additional load balancing problems for algorithms
that list cliques of possibly unbounded sizes, for example Bron-
Kerbosch. We also consider such graphs, see Table 3.

Finally, GMS enables using synthetic graphswith the randomuni-
form (the Erdős-Rényi model [53]) and power-law (the Kronecker
model [77]) degree distributions. This is enabled by integrating
the GMS platform with existing graph generators [13]. Using such
synthetic graphs enables analyzing performance e�ects while sys-
tematically changing a speci�c single graph property such as n,m,
orm/n, which is not possible with real-world datasets.

We stress that we refrain from prescribing concrete datasets
as benchmarking input (1) for �exibility, (2) because the datasets
themselves evolve and (3) the compute and memory capacities
of architectures grow continually, making it impractical to stick
to a �xed-sized dataset. Instead, in GMS, we analyze and discuss
publicly available datasets in Section 8, making suggestions on their
applicability for stressing performance of di�erent algorithms.

4.3 Metrics
In GMS, we �rst use simple running times of algorithms (or their
speci�c parts, for a �ne grained analysis). Unless stated otherwise,
we use all available CPU cores, to maximize utilization of the un-
derlying system. We also consider scalability analyses, illustrating
how the runtime changes with the increasing amount of parallelism
(#threads). Comparison between the measured scaling behavior and

the ideal speedup helps to identify potential scalability bottlenecks.
Finally, we consider memory consumption.

We also assess themachine-e�ciency, i.e., how well a machine
is utilized in terms of its memory bandwidth. For this, we consider
CPU core utilization, expressed with counts of stalled CPU cycles.
One can measure this number easily with, for example, the es-
tablished PAPI infrastructure [92] that enables gathering detailed
performance data from hardware counters. As we will discuss in
detail in Section 5, we seamlessly integrate GMS with PAPI, en-
abling gathering detailed data such as stalled CPU cycles but also
more than that, for example cache misses and hits (L1, L2, L3, data
vs. instruction, TLB), memory reads/writes, and many others.

Finally, we propose a newmetric formeasuring the “algorithmic
e�ciency” (“algorithmic throughput”). Speci�cally, we mea-
sure the number of mined graph patterns in a time unit. Intuitively,
this metric indicates how e�cient a given algorithm is in �nding
respective graph elements. An example such metric used in the past
is processed edges per second (PEPS), used in the context of graph
traversals and PageRank [81]. Here, we extend it to graph mining
and to arbitrary graph patterns. In graph pattern matching, this
metric is the number of the respective graph subgraphs found per
second (e.g., maximal cliques per second). In graph learning, it is
a count of vertex pairs with similarity derived per second (vertex
similarity, link prediction), or the number of clusters/communities
found per second (clustering, community detection). The algorith-
mic e�ciency facilitates deriving performance insights associated
with the structure of the processed graphs. By comparing relative
throughput di�erences between di�erent algorithms for di�erent in-
put graphs, one can conclude whether these di�erences consistently
depend on pattern (e.g., clique) density.

5 GMS PLATFORM & SET ALGEBRA
We now detail the GMS platform and how it enables modularity,
extensibility, and high performance. There are six main ways in
which one can experiment with a graph mining algorithm using the
GMS platform, indicated in Figure 2 with 1 – 5+ and a block .

First, the user can provide a new graph representation 1 and the
associated routines for accessing the graph structure 2 . By default,
GMS uses Compressed Sparse Row (CSR). Adding a new graph rep-
resentation is facilitated by a modular design of the representation

1926



code, and a concise interface (checking the degree d(�), loading
neighbors N (�), iterating over vertices V or edges E, and verifying
if an edge (u,�) exists) between a representation and the rest of
GMS. The GMS platform also supports compressed graph represen-
tations. While many compression schemes focus on minimizing the
amount of used storage [22] and require expensive decompression,
some graph compression techniques entail mild decompression
overheads, and they can even lead to overall speedups due to lower
pressure on the memory subsystem [17]. Here, we o�er ready-to-go
implementations of such schemes, including bit packing, vertex
relabeling, Log(Graph) [17], and others.

Second, the user can seamlessly add preprocessing routines 3
such as the reordering of vertices. Here, the main motivation is that
by applying a relevant vertex reordering (relabeling), one can reduce
the amount of work to be done in the actual following graph mining
algorithm. For example, the degeneracy order can signi�cantly
reduce the work done when listing maximal cliques [54]. The user
runs a selected preprocessing scheme with a single function call
that takes as its argument a graph to be processed.

Third, one can plug in a whole new graph algorithm 4 . GMS
also facilitates modifying �ne parts of an algorithm 5 , such as a
scheduling policy of a loop. For this, we ensure a modular structure
of the respective implementations, and annotate code.

Finally, we use the fact that many graph algorithms, for example
Bron-Kerbosch [24] and others [1, 27–29, 41, 42, 51, 51, 57, 117, 121],
are formulatedwith set algebra and use a small group ofwell-de�ned
operations such as set intersection \. In GMS, we enable the user
to provide their own implementation of such operations and of the
data layout of the associated sets. This facilitates controlling the
layout of a single auxiliary data structure or an implementation
of a particular subroutine (indicated with 5+ ). Thus, one is able
to break complex graph mining algorithms into simple building
blocks, and work on these building blocks independently. We al-
ready implemented a wide selection of routines for \, [, \, | · |, and
2; we also o�er di�erent set layouts based on integer arrays, bit
vectors, and compressed variants of these two.

Set algebra building blocks in GMS are sets, set operations, set
elements, and set algebra based graph representations. The �rst
three are grouped together in the Set interface. The last one is a
separate class that appropriately combines the instances of a given
Set implementation. We now detail each of these parts.

5.1 Set Interface
The Set interface, illustrated in Listing 1, encapsulates the represen-
tation of an arbitrary set and its elements, and the corresponding
set algorithms. By default, set elements are vertex IDs (modeled
as integers) but other elements (i.e., integer tuples to model edges)
can also be used. Then, there are three types of methods in Set.

First, there are methods implementing set basic set algebra op-
erations, i.e., “union” for [, “intersect” for \, and “di�” for \. To
enable performance tuning, they come in variants. “_inplace” in-
dicates that the calling object is being modi�ed, as opposed to the
default method variant that returns a new set (avoiding excessive
data copying). “_count” indicates that the result is the size of the
resulting set, e.g., |A\B | instead of A\B (avoiding creating unnec-
essary structures). Then, add and remove enable devising optimized
variants of [ and \ in which only one set element is inserted or
removed from a set; these methods always modify the calling set.

1 class Set {
2 public:
3 //In methods below , we denote �*this� pointer with A
4 //(1) Set algebra methods:
5 Set diff(const Set &B) const; // Return a new set C = A \ B
6 Set diff(SetElement b) const; // Return a new set C = A \ {b }
7 void diff_inplace(const Set &B); // Update A = A \ B
8 void diff_inplace(SetElement b); // Update A = A \ {b }
9 Set intersect(const Set &B) const; // Return a new set C = A \ B
10 size_t intersect_count(const Set &B) const; // Return |A \ B |
11 void intersect_inplace(const Set &B); // Update A = A \ B
12 Set union(const Set &B) const; // Return a new set C = A [ B
13 Set union(SetElement b) const; // Return a new set C = A [ {b }
14 Set union_count(const Set &B) const; // Return |A [ B |
15 void union_inplace(const Set &B); // Update A = A [ B
16 void union_inplace(SetElement b); // Update A = A [ {b }
17 bool contains(SetElement b) const; // Return b 2 A ? true:false
18 void add(SetElement b); // Update A = A [ {b }
19 void remove(SetElement b); // Update A = A \ {b }
20 size_t cardinality () const; // Return set�s cardinality
21 //(2) Constructors (selected):
22 Set(const SetElement *start , size_t count); //From an array
23 Set(); Set(Set &&); // Default and Move constructors
24 Set(SetElement); // Constructor of a single -element set
25 static Set Range(int bound ); // Create set {0, 1, ..., bound � 1}
26 //(3) Other methods:
27 begin () const; // Return iterators to set�s start
28 end() const; // Return iterators to set�s end
29 Set clone () const; // Return a copy of the set
30 void toArray(int32_t *array) const; // Convert set to array
31 operator ==; operator !=; //Set equality/inequality comparison
32
33 private:
34 using SetElement = GMS:: NodeId; //(4) Define a set element
35 }

Algorithm 1: The set algebra interface provided by GMS.

GMS o�ers other methods for performance tuning. This includes
constructors (e.g., a move constructor, a constructor of a single-
element set, or constructors from an array, a vector, or an initializer
list), and general methods such as clone, which is used because – by
default – the copy constructor is disabled for sets to avoid accidental
data copying. GMS also o�ers conversion of a set to an integer array
to facilitate using established parallelization techniques.

5.2 Implementations of Sets & Set Algorithms
On one hand, a setA can be represented as a contiguous sparse array
with integers modeling vertex IDs (“sparse” indicates that only non-
zero elements are explicitly stored), of sizeW · |A|, whereW is the
memory word size [bits]. This representation is commonly used
to store vertex neighborhoods. However, one can also represent
A with a dense bitvector of size n [bits], where the i-th set bit
means that a vertex i 2 A (“dense” indicates that all zero bits are
explicitly stored). While being usually larger than a sparse array, a
dense bitvector is more space-e�cient when A is very large, which
happens when some vertex connects to the majority of all vertices.
Now, depending on A’s and B’s representations, A \ B can itself
be implemented with di�erent set algorithms. For example, if A
and B are sorted sparse arrays with similar sizes (|A| ⇡ |B |), one
prefers the “merge” scheme where one simply iterates through A

and B, identifying common elements (taking O(|A| + |B |) time).
If one set (e.g., B) is represented as a bitvector, one may prefer a
scheme where one iterates over the elements of a sparse array A

and checks if each element is in B, which takes O(1) time, giving
the total of O(|A|) time for the whole intersection.

Moreover, a bitvector enables insertion or deletion of vertices
into a set in O(1) time, which is useful in algorithms that rely on
dynamic sets, for example Bron-Kerbosch [29, 42, 51, 117]. There are
more set representations with other performance characteristics,
such as sparse [1, 57] or compressed [16] bitvectors, or hashtables,
enabling further performance/storage tradeo�s.
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Importantly, using di�erent set representations or set algorithms
does not impact the formulations of graph algorithms. GMS exploits
this fact to facilitate development and experimentation.

By default, GMS o�ers three implementations of Set interface:
• RoaringSetA set is implemented with a bitmap compressed using
recent “roaring bitmaps” [32, 76]. A roaring bitmap o�ers diverse
compression forms within the same bitvector. They o�er mild
compression rates but do not incur expensive decompression. As
we later show, these structures result in high performance of graph
mining algorithms running on top of them.

• SortedSet GMS also o�ers sets stored as sorted vectors. This
re�ects the established CSR graph representation design, where
each neighborhood is a sorted contiguous array of integers.

• HashSet Finally, GMS o�ers an implementation of Set with a
hashtable. By default, we use the Robin Hood library [30].

5.3 Set-Centric Graph Representations
Sets are building blocks for a graph representation: one set imple-
ments one neighborhood. To enable using arbitrary set designs,
GMS harnesses templates, typed by the used set de�nition, see
Listing 2. GMS provides ready-to-go representations based on the
RoaringSet, SortedSet, and HashSet set representations.
1 template <class TSet >
2 class SetGraph {
3 public:
4 using Set = TSet; int64_t num_nodes () const;
5 const Set& out_neigh(NodeId node) const;
6 int64_t out_degree(NodeId node) const;
7 /* Some functions omitted */ };

Algorithm 2: A generic graph representation.

6 HIGH-PERFORMANCE & SIMPLICITY
We now detail how using the GMS benchmarking platform leads to
simple (i.e., programmable) and high-performance implementations
of many graph mining algorithms.

We now use the GMS benchmarking platform to enhance ex-
isting graph mining algorithms. We provide consistent speedups
(detailed in Section 8). Some new schemes also come with theoreti-
cal advancements (detailed in Section 7). The following descriptions
focus on (1) how we ensure the modularity of GMS algorithms
(for programmability), and (2) what GMS design choices ensure
speedups. Selected modular parts are marked with the blue color
and the type of modularity ( 1 – 5+ ). Marked set operations are
implemented using the Set interface, see Listing 1.

Use Case 1: Degeneracy Order & k-Cores A degeneracy of
a graph G is the smallest d such that every subgraph in G has a
vertex of degree at most d . Thus, degeneracy can serve as a way
to measure the graph sparsity that is “closed under taking a graph
subgraph” (and thus more robust than, for example, the average
degree). A degeneracy ordering (DGR) is an “ordering of vertices
ofG such that each vertex has d or fewer neighbors that come later
in this ordering” [51]. DGR can be obtained by repeatedly removing
a vertex of minimum degree in a graph. The derived DGR can be
directly used to compute the k-core of G (a maximal connected
subgraph of G whose all vertices have degree at least k). This is
done by iterating over vertices in the DGR order, and removing
vertices with out-degree less than k .

DGR, when used as a preprocessing routine, has been shown
to accelerate di�erent algorithms such as Bron-Kerbosch [51]. In
the GMS benchmarking platform, we provide an implementation

of DGR that is modular and can be seamlessly used with other
graph algorithms as preprocessing ( 3 ). Moreover, we alleviate
the fact that the default DGR is not easily parallelizable and takes
O(n) iterations even in a parallel setting. For this, GMS delivers a
modular implementation of a recent (2+�)-approximate degeneracy
order [15] (ADG), which has O(logn) iterations for any � > 0.
Deriving ADG is in Algorithm 3. It is similar to computing the DGR,
which iteratively removes vertices of the smallest degree. The main
di�erence is that one removes in parallel a batch of vertices with
degrees smaller than (1+ �)c�U (cf. set R and Line 7). The parameter
� � 0 controls the accuracy of the approximation; c�U is the average
degree in the induced subgraph G(U ,E[U ]), U is a “working set”
that tracks changes to V . ADG relies on set cardinality and set
di�erence, enabling the GMS set algebra modularity (5+ ).

1 //Input: A graph G 1 . Output: Approx. degeneracy order (ADG) �.
2 i = 1 // Iteration counter
3 U = V //U is the induced subgraph used in each iteration i
4 while U , ; do:

5 c�U =
⇣ Õ

�2U |NU (�) | 2
⌘

/ |U | //Get the average degree in U
6 //R contains vertices assigned priority in this iteration:

7 R = {� 2 U : |NU (�) | 2  (1 + � )c�U }
8 for � 2 R in parallel 2 5 do: �(�) = i // assign the ADG order

9 U = U \ R 5+ // Remove assigned vertices
10 i = i+1

Algorithm 3: Deriving the approximate degeneracy order (ADG) in GMS.
More than one number indicates that a given snippet is associated with
more than one modularity type.

Use Case 2: Maximal Clique Listing Maximal clique listing,
in which one enumerates all maximal cliques (i.e., fully-connected
subgraphs not contained in a larger such subgraph) in a graph,
is one of core graph mining problems [29, 37, 42, 43, 49, 67, 71,
72, 79, 82, 84, 95, 105, 109, 111, 118, 124, 125, 130]. The recursive
backtracking algorithm by Bron and Kerbosch (BK) [24] together
with a series of enhancements [42, 51, 52, 117] (see Algorithm 4) is
an established and, in practice, the most e�cient way of solving this
problem. Intuitively, in BK, one iteratively considers each vertex �
in a given graph, and searches for all maximal cliques that contain
� . The search process is conducted recursively, by starting with a
single-vertex clique {�}, and augmenting it with�’s neighbors, one
at a time, until a maximal clique is found.

Importantly, the order in which all the vertices are selected for
processing (at the outermost level of recursion) may heavily impact
the amount of work in the following iterations [42, 51, 52]. Thus, in
GMS, we use di�erent vertex orderings, integrated using the GMS
preprocessing modularity ( 3 ). One of our core enhancements is
to use the ADG order (see above). As we will show, this brings
theoretical (Section 7) and empirical (Section 8) advancements.

A key part are vertex sets P , X , and R. They together navigate
the way in which the recursive search is conducted. P (“Potential”)
contains candidate vertices that will be considered for belonging to
the clique currently being expanded.X (“eXcluded”) are the vertices
that are de�nitely not to be included in the current clique (X is
maintained to avoid outputting the same clique more than once). R
is a currently considered clique (may be non-maximal). In GMS, we
extensively experimented with di�erent set representations for P ,
X , and R, which was facilitated by the set algebra based modularity
(5+ ). Our goal was to use representations that enable fast “bulk”
set operations such as intersecting large sets (e.g., X \ N (�) in
Line 23) but also e�cient �ne-grained modi�cations of such sets
(e.g., X = X [ {�} in Line 28). For this, we use roaring bitmaps. As
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we will show (Section 8), using such bitvectors as representations
of P , X , and R brings overall speedups of even more than 9⇥.

Now, at the outermost recursion level, for each vertex �i , we
have R = {�i } (Line 13). This means that the considered clique
starts with �i . Then, we have P = N (�i ) \ {�i+1, ...,�n } and X =
N (�i ) \ {�1, ...,�i�1}. This removes unnecessary vertices from P

and X . As we proceed in a �xed order of vertices in the main
loop, when starting a recursive search for {�i }, we will de�nitely
not include vertices {�1, ...,�i�1} in P , and thus we can limit P to
N (�i ) \ {�i+1, ...,�n } (a similar argument applies to R). Note that
these intersections may be implemented as simple splitting of the
neighbors N (�i ) into two sets, based on the vertex order. This is
another example of the decoupling of general simple set algebraic
formulations in GMS and the underlying implementations (5+ ).

In each recursive call of BK-Pivot, each vertex from P is added
to R to create a new clique candidate Rnew explored in the follow-
ing recursive call. In this recursive call, P and X are respectively
restricted to P\N (�) andX \N (�) (any other vertices besides N (�)
would not belong to the clique Rnew anyway). After the recursive
call returns, � is moved from P (as it was already considered) to
X (to avoid redundant work in the future). The key condition for
checking if R is a maximal clique is P [X == ;. If this is true, then
no more vertices can be added to R (including the ones from X that
were already considered in the past) and thus R is maximal.

The BK variant in GMS also includes an additional important
optimization called pivoting [117]. Here, for any vertex u 2 P [ X ,
only u and its non neighbors (i.e., P \ N (u)) need to be tested as
candidates to be added to P . This is because any potential maximal
clique must contain either u or one of its non-neighbors. Otherwise,
a potential clique could be enlarged by adding u to it. Thus, when
selecting u (Line 20), one may use any scheme that minimizes |P \
N (u)| [117]. The advantage of pivoting is that it further prunes the
search space and thus limits the number of recursive calls.

For further performance improvements, we also use roaring
bitmaps to implement graph neighborhoods, exploiting the GMS
modularity of representations and set algebra ( 1 , 2 , 5+ ). Finally,
we also provide other optimizations based on set algebra that further
reduce work; they are described in the extended technical report.

Use Case 3: k-Clique Listing GMS enabled us to enhance a
state-of-the-art k-clique listing algorithm [41]. Our GMS formula-
tion is shown in Algorithm 5. We reformulated the original scheme
(without changing its time complexity) to expose the implicitly used
set operations (e.g., Line 18), to make the overall algorithm more
modular. In general, the algorithm uses recursive backtracking. One
starts with iterating over edges (2-cliques), in Lines 11–12. In each
backtracking search step, the algorithm augments the considered
cliques by one vertex � and restricts the search to neighbors of �
that come after � in the used vertex order.

Two schemes marked with 3 indicate two preprocessing rou-
tines that appropriately reorder vertices and – for the obtained
order – assign directions to the edges of the input graphG . Both are
well-known optimizations that reduce the search space size [41].
For such a modi�ed G, we denote out-neighbors of any vertex u
with N

+(u). Then, operations marked with 5+ refer to accesses to
the graph structure and di�erent set operations that can be replaced
with any implementation, as long as it preserves the semantics of
set membership, set cardinality, and set intersection.

The modular design and using set algebra enables us to easily
experiment with di�erent implementations of Ci , N+(u) \Ci , and

1 /* Input: A graph G 1 . Output: all maximal cliques. */
2
3 //Preprocessing: reorder vertices with DGR or ADG.

4 (�1, �2, ..., �n ) = preprocess(V , /* selected vertex order */) 3
5
6 //Main part: conduct the actual clique enumeration.
7 for �i 2 (�1, �2, ..., �n ) do: // Iterate over V in a specified order
8 //For each vertex �i , find maximal cliques containing �i .
9 //First , remove unnecessary vertices from P (candidates
10 //to be included in a clique) and X (vertices definitely
11 //not being in a clique) by intersecting N (�i ) with vertices
12 //that follow and precede �i in the applied order.

13 P = N (�i )\ {�i+1, ..., �n } 5+ ; X = N (�i )\ {�1, ..., �i�1 } 5+ ; R = {�i }
14
15 //Run the Bron -Kerbosch routine recursively for P and X .
16 BK-Pivot(P , {�i }, X )
17
18 BK-Pivot(P, R, X ) // Definition of the recursive BK scheme

19 if P [ X == 0 5+ : Output R as a maximal clique

20 u = pivot(P [ X ) 5+ // Choose a �pivot� vertex u 2 P [ X

21 for � 2 P \ N (u) 5+ : // Use the pivot to prune search space

22 //New candidates for the recursive search

23 Pnew = P \ N (�) 5+ ; Xnew = X \ N (�) 5+ ; Rnew = R [ {� } 5+

24 // Search recursively for a maximal clique that contains �
25 BK-Pivot(Pnew , Rnew , Xnew )
26 //After the recursive call , update P and X to reflect
27 //the fact that � was already considered

28 P = P \ {� } 5+ ; X = X [ {� } 5+

Algorithm 4: Enumeration of maximal cliques, a Bron-Kerbosch variant
by Eppstein et al. [52] with GMS enhancements.

1 /*Input: A graph G 1 , k 2 N Output: Count of k -cliques ck 2 N. */

2
3 //Preprocessing: reorder vertices with DGR or ADG.
4 //Here , we also record the actual ordering and denote it as �
5 (�1, �2, ..., �n ;�) = preprocess(V , /* selected vertex order */) 3
6
7 // Construct a directed version of G using �. This is an
8 // additional optimization to reduce the search space:

9 G = dir(G) 3 //An edge goes from � to u iff �(�) < �(u)
10 ck = 0 //We start with zero counted cliques.

11 for u 2 V in parallel do: 2 //Count u�s neighboring k -cliques
12 C2 = N +(u); ck += count(2, G , C2)
13
14 function count(i , G , Ci ):
15 if (i == k ): return |Ck | 5+ //Count k -cliques
16 else:
17 ci = 0

18 for � 2 Ci 5+ do: // search within neighborhood of v

19 Ci+1 = N +(�) \Ci 5+ // Ci counts i -cliques.
20 ci += count(i+1, G , Ci+1)
21 return ci

Algorithm 5: k-Clique Counting; see Listing 3 for the explanation of
symbols.

others. For example, we successfully and rapidly redesigned the
reordering scheme, reducing the number of pointer chasing and the
total amounts of communicated data. We investigated the generated
assembly code of the respective part; it has 22 x86 mov instructions,
compared to 31 before the design enhancement2. Moreover, we
improved the memory consumption of the algorithm. The space
allocated per subgraphCi (e.g., 5+ ) is now upper bounded by |Ci |2
(counted in vertices) instead of the default �2. When parallelizing
over edges, this signi�cantly reduces the required memory (for
large maximum degrees �, even up to >90%).

7 CONCURRENCY ANALYSIS
In this part of GMS, we show how to assess a priori the properties of
parallel graph mining algorithms, reducing time spent on algorithm
design and development and providing performance insights that are

2We used “compiler explorer” (https://godbolt.org/) for assembly analysis
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k -Clique Listing
Node Parallel [41]

k -Clique Listing
Edge Parallel [41]

H k -Clique Listing
with ADG (§ 6)

ADG
(Section 6)

Max. Cliques
Eppstein et al. [51]

Max. Cliques
Das et al. [42]

H Max. Cliques
with ADG (§ 7.3)

Subgr. Isomorphism
Node Parallel [26, 40]

Link Prediction† ,
JP Clustering

Work O
✓
mk

⇣
d
2

⌘k�2◆
O

✓
mk

⇣
d
2

⌘k�2◆
O

⇣
mk

�
d + �

2
�k�2⌘ O (m) O

⇣
dm3d/3

⌘
O

⇣
3n/3

⌘
O

⇣
dm3(2+� )d/3

⌘
O

⇣
n�k�1

⌘
O (m�)

Depth O
✓
n + k

⇣
d
2

⌘k�1◆
O

✓
n + k

⇣
d
2

⌘k�2
+ d2

◆
O

⇣
k
�
d + �

2
�k�2

+ log2 n + d2
⌘
O

⇣
log2 n

⌘
O

⇣
dm3d/3

⌘
O (d logn) O

⇣
log2 n + d logn

⌘
O

⇣
�k�1

⌘
O (�)

Space O (nd2 + K ) O
⇣
md2 + K

⌘
O

⇣
md2 + K

⌘
O (m) O (m + nd + K ) O (m + pd� + K ) O (m + pd� + K ) O (m + nk + K ) O (m�)

Table 4: Work, depth, and space for some graph mining algorithms in GMS. d is the graph degeneracy, K is the output size, � is the maximum degree, p is the
number of processors, k is the number of vertices in the graph that we are mining for, n is the number of vertices in the graph that we are mining, andm is the
number of edges in that graph. † Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and
Common Neighbors vertex similarity measures. HAlgorithms derived in this work.

portable across machines that di�er in certain ways (e.g., in the sizes
of their caches) and independent of various implementation details.

7.1 Methodology, Models, Tools
We use the established work-depth analysis for bounding run-times
of parallel algorithms. Here, the total number of instructions per-
formed by an algorithm (over all number of processors for a given
input size) is the work of the algorithm. The longest chain of se-
quential dependencies (for a given input size) is the depth of an
algorithm [18, 20]. This approach is used in most recent formal anal-
yses of parallel algorithms in the shared-memory setting [45, 59].
Overall, we consider four aspects of a parallel algorithm: (1) the
overhead compared to a sequential counterpart, quanti�ed with
work, (2) the scalability, which is illustrated by depth, (3) the space
usage, and – when applicable – (4) the approximation ratio.

7.2 Discussion On Trade-O�s
For many problems, there is a tradeo� between work, depth,
space, and sometimes approximation ratio [41, 69, 90]. Which
algorithm is the best choice hence depends on the available number
of processors and the available main memory. For today’s shared
memory machines, typically the number of processors/cores is
relatively small (e.g., 18 on our machines) and main memory is not
much bigger than the graphs we would like to process (e.g., 64GiB
or 768GiB on our machines, see Section 8). Thus, reducing work
(and maintaining close to linear space in the input plus output) is a
high priority to obtain good performance in practice [45].

An algorithm with a work that is much larger than the best
sequential algorithm will require many processors to be faster than
the latter. An algorithm with large depth will stop scaling for a
small number of processors. An estimate of the runtime of an algo-
rithm with workW and depth D on p processors isW /p + D. This
estimate is optimistic as it neglects the cost for scheduling threads
and caching issues (e.g., false sharing). Yet, it has proven a useful
model in developing e�cient graph algorithms in practice [45].

The space used by a parallel algorithm limits the largest problem
that can be solved on a �xed machine. This is crucial for graph
mining problems with exponential time complexities where we
want the space to be close to the input size plus the output size.

We illustrate a work / depth / space tradeo� with k-clique list-
ing [41] (§ 6). All following designs are pareto-optimal in terms of
the work / depth / space tradeo� and they are useful in di�erent
circumstances (for di�erent machines). First, consider a naive al-
gorithm variant. Starting from every vertex, one spawns parallel
recursive searches to complete the current clique. The advantage
of this approach is that is has low depth O(k), but the work and
space is �(n�k�1), which can be prohibitive.

This approach can be enhanced by using the DGR order to guide
the search as described in § 6 (the “Node Parallel” variant). Here,
one invokes a parallel search starting from each vertex for cliques
that contain this vertex as the �rst vertex in the order. This reduces
the space to almost linear �(nd2), where d is the degeneracy of the
graph. The depth is increased to �(n +k(d/2)k�1). This design was
reported to have poor scalability in practice [41].

One can also invoke a parallel search for every edge (“Edge Par-
allel”) and try to �nd a clique that contains it (and follows the DGR
order). The depth decreases by a factor of d to�(n+k(d/2)k�2+d2),
but the space increases by a factor of mn to O(md

2). This approach
has a good work / depth / space tradeo� in practice [41].

7.3 Bounds for Graph Mining Algorithms
Table 4 presents work-depth and space bounds for considered graph
mining algorithms. Here, we obtain new better bounds for maximal
clique listing. The main idea is to combine existing corresponding
algorithms [41, 42, 52] (columns 2 and 6) with the ADG ordering.
The k-clique listing variant parametrized by degeneracy scales
better than Danisch et al. [41] (column 2) if n is much bigger than
kd

k�2. The new maximal clique listing improves upon the Eppstein
et al. [52] and Das et al. [42]: our depth is better than both while
work is better than that of [52] and adds only a small factor to work
in [52]. We provide detailed proofs in the technical report.

8 EVALUATION
We describe how GMS facilitates performance analysis of various
aspects of graph mining, and accelerates the state of the art.

8.1 Datasets, Methodology, Architectures
We �rst sketch the evaluation methodology. For measurements, we
omit the �rst 1% of performance data as warmup. We derive enough
data for the mean and 95% non-parametric con�dence intervals.
We use arithmetic means as summaries.

8.1.1 Datasets. We consider SNAP (S) [78], KONECT (K) [73],
DIMACS (D) [44], Network Repository (N) [102], and WebGraph
(W) [22] datasets. As explained in § 4.2, for �exibility, we do not �x
speci�c datasets. Instead, we illustrate a wide selection of public
datasets in Table 5, arguing which parameters make them useful or
challenging. Details of these parameters are in § 4.2.

8.1.2 Comparison Baselines. For each considered graph mining
problem, we compare di�erent GMS variants to the most optimized
state-of-the-art algorithms available. We compare to the original ex-
isting implementations. Details are stated in the following sections.
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Figure 3: Speedups of the parallel GMS BK over a recent implementation by Das et al. [42] (BK-DAS) and a recent algorithm by Eppstein et al. [51] (BK-GMS-DGR).
System: Daint.

8.1.3 Parallelism. Unless stated otherwise, we use full parallelism,
i.e., we run algorithms on the maximum number of cores available
on a given system.

Graph † n m m
n cdi cdo T T

n Why selected/special?

[so] (K) Orkut 3M 117M 38.1 33.3k 33.3k 628M 204.3 Common, relatively large
[so] (K) Flickr 2.3M 22.8M 9.9 21k 26.3k 838M 363.7 Large T but lowm/n.
[so] (K) Libimseti 221k 17.2M 78 33.3k 25k 69M 312.8 Largem/n
[so] (K) Youtube 3.2M 9.3M 2.9 91.7k 91.7k 12.2M 3.8 Very lowm/n and T
[so] (K) Flixster 2.5M 7.91M 3.1 1.4k 1.4k 7.89M 3.1 Very lowm/n and T
[so] (K) Livemocha 104k 2.19M 21.1 2.98k 2.98k 3.36M 32.3

Similar to Flickr, but
a lot fewer 4-cliques (4.36M)

[so] (N) Ep-trust 132k 841k 6 3.6k 3.6k 27.9M 212 Huge T -skew (bT = 108k)
[so] (N) FB comm. 35.1k 1.5M 41.5 8.2k 8.2k 36.4M 1k Large T -skew (bT = 159k)
[wb] (K) DBpedia 12.1M 288M 23.7 963k 963k 11.68B 961.8 Rather lowm/n but high T
[wb] (K) Wikipedia 18.2M 127M 6.9 632k 632k 328M 18.0 Common, very sparse
[wb] (K) Baidu 2.14M 17M 7.9 97.9k 2.5k 25.2M 11.8 Very sparse
[wb] (N) WikiEdit 94.3k 5.7M 60.4 107k 107k 835M 8.9k Large T -skew (bT = 15.7M)

[st] (N) Chebyshev4 68.1k 5.3M 77.8 68.1k 68.1k 445M 6.5k
Very large T and T /n
and T -skew (bT = 5.8M)

[st] (N) Gearbox 154k 4.5M 29.2 98 98 141M 915 Low bd but large T ;
low T -skew (bT = 1.7k)

[st] (N) Nemeth25 10k 751k 75.1 192 192 87M 9k Huge T but low bT = 12k
[st] (N) F2 71.5k 2.6M 36.5 344 344 110M 1.5k Medium T -skew (bT = 9.6k)
[sc] (N) Gupta3 16.8k 4.7M 280 14.7k 14.7k 696M 41.5k Huge T -skew (bT = 1.5M)
[sc] (N) ldoor 952k 20.8M 21.5 76 76 567M 595 Very low T -skew (bT = 1.1k)
[re] (N) MovieRec 70.2k 10M 142.4 35.3k 35.3k 983M 14k Huge T and bT = 4.9M
[re] (N) RecDate 169k 17.4M 102.5 33.4k 33.4k 286M 1.7k Enormous T -skew (bT = 1.6M)
[bi] (N) sc-ht (gene) 2.1k 63k 30 472 472 4.2M 2k Large T -skew (bT = 27.7k)
[bi] (N) AntColony6 164 10.3k 62.8 157 157 1.1M 6.6k Very low T -skew (bT = 9.7k)
[bi] (N) AntColony5 152 9.1k 59.8 150 150 897k 5.9k Very low T -skew (bT = 8.8k)
[co] (N) Jester2 50.7k 1.7M 33.5 50.8k 50.8k 127M 2.5k Enormous T -skew (bT = 2.3M)
[co] (K) Flickr
(photo relations) 106k 2.31M 21.9 5.4k 5.4k 108M 1019

Similar to Livemocha, but
many more 4-cliques (9.58B)

[ec] (N) mbeacxc 492 49.5k 100.5 679 679 9M 18.2k Large T , low bT = 77.7k
[ec] (N) orani678 2.5k 89.9k 35.5 1.7k 1.7k 8.7M 3.4k Large T , low bT = 80.8k
[ro] (D) USA roads 23.9M 28.8M 1.2 9 9 1.3M 0.1 Extremely lowm/n and T

Table 5: Some considered real-world graphs. Graph class/origin: [so]: social
network, [wb]: web graph, [st]: structural network, [sc]: scienti�c computing,
[re]: recommendation network, [bi]: biological network, [co]: communica-
tion network, [ec]: economics network, [ro]: road graph. Structural features:
m/n: graph sparsity, bdi : maximum in-degree, cdo : maximum out-degree, T :
number of triangles, T /n: average triangle count per vertex, T -skew: a skew
of triangle counts per vertex (i.e., the di�erence between the smallest and the
largest number of triangles per vertex). Here, bT is the maximum number of
triangles per vertex in a given graph. Dataset: (W), (S), (K), (D), (C), and (N)
refer to the publicly available datasets, explained in § 8.1. For more details,
see § 4.2.

8.1.4 Architectures. We used di�erent systems for a broad evalua-
tion and to analyze and ensure performance portability of our imple-
mentations. First, we use an in-house Einstein and Euler servers.
Einstein is a Dell PowerEdge R910 with an Intel Xeon X7550 CPUs
@ 2.00GHz with 18MB L3 cache, 1TiB RAM, and 32 cores per CPU
(grouped in four sockets). Euler has an HT-enabled Intel Xeon Gold
6150 CPUs @ 2.70GHz with 24.75MB L3 cache, 64 GiB RAM, and
36 cores per CPU (grouped in two sockets). We also use servers
from the CSCS supercomputing center, most importantly a compute
server with Intel Xeon Gold 6140 CPU@ 2.30GHz, 768 GiB RAM, 18
cores, and 24.75MB L3. Finally, we also used XC50 compute nodes
in the Piz Daint Cray supercomputer (one such node comes with
12-core Intel Xeon E5-2690 HT-enabled CPU 64 GiB RAM).

8.2 Faster Maximal Clique Listing
We start with our key result: GMS enabled us to outperform a state-
of-the-art fastest available algorithm for maximal clique listing by
Das et al. [42] (BK-DAS) by nearly an order of magnitude. The
results are in Figure 3. We compare BK-DAS with several variants
of BK developed in GMS as described in § 6. BK-GMS-DGR uses
the degeneracy order and is a variant of the Eppstein’s scheme [51],
enhanced in GMS. BK-GMS-DEG uses the simple degree ordering.
BK-GMS-ADG and BK-GMS-ADG-S are two variants of a new BK
algorithm proposed in this work, combining BK with the ADG
ordering; the latter also uses the subgraph caching optimization
( § 6). We also compare to the original Eppstein scheme, it was
always slower. GMS also enabled us to experiment with Intel Thread
Building Blocks vs. OpenMP for threading in both the outermost
loop and in inner loops (we exploit nested parallelism), we only
show the OpenMP variants as they always outperform TBB.

Figure 3 shows consistent speedups of GMS variants over BK-
DAS. We could quickly deliver these speedups by being able to
plug in di�erent set operations and optimizations in BK. Moreover,
many plots show the large preprocessing overhead when using
DGR. It sometimes helps to reduce the actual clique listing time
(compared to ADG), but in most cases, “ADG plus clique listing”
are faster than “DGR plus clique listing”: ADG is very fast and it
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reduces the BK runtime to the level comparable to that achieved by
DGR. This con�rms the theoretical predictions of the bene�ts of BK-
GMS-ADG over BK-GMS-DGR or BK-DAS. Finally, the comparably
high performance (for many graphs) of BK-GMS-ADG, BK-GMS-
ADG-S, and BK-GMS-DEG is due to the optimizations based on set
algebra, for example using fast and compressed roaring bitmaps to
implement neighborhoods and auxiliary sets P , X , and R (cf. § 6),
which enables fast set operations heavily used in BK. Overall, BK-
GMS is often faster than BK-DAS by >50%, in some cases even >9⇥.

We stress that the speedups of the implementations included in
the GMS benchmarking platform are consistent over many graphs
of di�erent structural characteristics (cf. Table 5) that entail deeply
varying load balancing properties. For example, some graphs are
very sparse, with virtually no cliques larger than triangles (e.g.,
the USA road network) while others are relatively sparse with
many triangles (and higher cliques), with low or moderate skews
in triangle counts per vertex (e.g., Gearbox or F2). Finally, some
graphs have large or even huge skews in triangle counts per vertex
(e.g., Gupta3 or RecDate), which gives signi�cant di�erences in the
depths of the backtracking trees and thus load imbalance.

We also derived the algorithmic e�ciency results, i.e., the
number of maximal cliques found per second; selected data is in
Figure 1. The results follow the run-times; the GMS schemes con-
sistently outperform BK-DAS (the plots are in the technical report).
These results show more distinctively that BK-GMS �nds maxi-
mal cliques consistently better than BK-DAS, even if input graphs
have vastly di�erent clustering properties. For example, BK-GMS-
ADG outperforms BK-DAS for Gupta3 (huge T -skew), F2 (medium
T -skew), and ldoor (low T -skew).

8.3 Faster k-Clique Listing
GMS also enabled us to accelerate a very recent k-clique listing al-
gorithm [41]. We were able to rapidly experiment with di�erent
variants, such as node parallel and edge parallel schemes, described
in § 6 and in Section 7. Our optimizations from § 6 (e.g., a memory-
e�cient layout of Ci ) ensure consistent speedups of up to 10% for
di�erent parameters (e.g., clique size k), input graphs, and reorder-
ing routines. Additionally, we show that using the ADG order brings
further speedups over DEG or DGR.

8.4 Faster Degeneracy Reordering and k-Cores
We also analyze in more detail the performance of di�erent re-
ordering routines (DEG, DGR, and ADG) and their impact on graph
mining algorithms in GMS (cf. § 6). We also show their impact on
the run-time of BK maximal clique listing by Eppstein et al. [51]
(BK-E). The results are in Figure 4. ADG, due to its bene�cial scala-
bility properties (cf. Section 7), outperforms the exact DGR. At the
same time, it similarly reduces the runtime of BK-E [51] (cf. left-
most and rightmost bars). The 2 + � approximation ratio has mild
in�uence on performance. Speci�cally, the lower � is, the more
(mild) speedup is observed. This is because larger � enables more
parallelism, but then less accurate degeneracy ordering may incur
more work when listing cliques. Moreover, ADG combined with
BK-E cumulatively outperforms the simple DEG reordering: the latter
is also fast, but its impact on the Bron-Kerbosch run-time is lower,
ultimately failing to provide comparable speedups. We were able to
rapidly experiment with di�erent reorderings as – thanks to GMS’s
modularity – we could seamlessly integrate them with BK-E [51].
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8.5 Faster Subgraph Isomorphism
GMS enabled us to accelerate a very recent parallel VF3-Light sub-
graph isomorphism baseline by 2.5⇥. The results are in Figure 5 (we
use the same dataset as in the original work [28]). We illustrate
the impact from di�erent optimizations outlined in § 6. We were
also able to use SIMD vectorization in the binary search part of the
algorithms, leading to additional 1.1⇥ speedup.

8.6 Additional Analyses
Subtleties of Higher-Order Structure One of the insights that
we gained with GMS is that graphs similar in terms of n,m, spar-
sitym/n, and degree distributions, may have very di�erent char-
acteristics in their higher-order structure. For example, a graph
of photo relations in Flickr and a Livemocha social network (see
Table 5 for details) are similar in the above properties, but the for-
mer has 9,578,965,096 4-cliques while the latter has only 4,359,646
4-cliques. This is because, while a in a social network 4-cliques
of friendships may be only relatively common, they should occur
very often in a network where photos are related if they share some
metadata (e.g., location). Thus, one should carefully select input
datasets to properly evaluate respective graph mining algorithms,
as seemingly similar graphs may have very di�erent higher-order
characteristics, which may vastly impact performance and conclu-
sions when developing a new algorithm.

Analysis of Synthetic Graphs We illustrate example results
for synthetic graphs, see Figure 6a (with BK-GMS-DGR). Using
power-law Kronecker graphs enable us to study the performance
impact from varying the graph sparsitym/n while �xing all other
parameters. For very sparse graphs, the cost of mining cliques is
much lower than that of vertex reordering during preprocessing.
However, asm/n increases, reordering begins to dominate. This
is because Kronecker graphs in general do not have large cliques,
which makes the mining process �nish relatively fast, while re-
ordering costs grow proportionally tom/n.

Machine E�ciency Analysis We show example analysis of
CPU utilization, using the PAPI interface provided in GMS, see
Figure 6b. The plots illustrate the �attening of speedups with the
increasing #threads, accompanied by the steady growth of stalled
CPU cycles (both total counts and ratios), illustrating that maximal
clique listing is memory bound [36, 50, 64, 129, 130].
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Memory Consumption AnalysisWe illustrate example mem-
ory consumption results in Figure 6c; we compare the size of three
GMS set-centric graph representations, showing both peak mem-
ory usage when constructing a representation (bars) and sizes of
ready representations (all in GB). Interestingly, while the latter are
similar (except for v-usa), peak memory usage is visibly highest for
RoaringSet. We also compare to the representation used by Das et
al. [42], it always comes with the highest peak storage costs.

Algorithmic Throughput Analysis The advantages of using
algorithmic throughput can be seen by comparing Figure 1 and 3.
While plain runtimes illustrate which algorithm is faster for which
graph, the algorithmic throughput also enables combining this out-
come with the input graph structure. For example, the GMS variants
of BK have relatively lower advantages over BK by Das et al. [42]
whenever the input graph has a higher density of maximal cliques.
This motivates using the GMS variants of BK especially for very
sparse graphs without large dense clusters. One can derive analo-
gous insights for any other patterns such a k-cliques.

GMS and Graph Processing Benchmarks There is very little
overlap with GMS and existing graph processing benchmarks, see
Section 1 and Table 1. The closest one is GBBS [45], which supports
the exact same variant of mining k-cliques. We compare GBBS to
GMS (details are in the technical report); we also consider the
edge-based very recent implementation by Danisch et al. [41]. GMS
o�ers consistent advantages for di�erent graphs and large clique
sizes.

GMS and Pattern Matching Frameworks There is also little
overlap between GMS and pattern matching frameworks, cf. Table 1.
While they support mining patterns, they focus on patterns of �xed
sizes (e.g., k-cliques). We compare GMS to two very recent frame-
works that, similarly to GMS, target shared-memory parallelism,
Peregrine [64] and RStream [120]. Peregrine can only list k-cliques.
It does not o�er a native scheme for maximal clique listing and
we implement it by iterating over k-cliques of di�erent sizes (we
consult the authors of Peregrine to �nd the best scheme). RStream
is only able to �nd k-cliques. Overall, GMS is much faster in all con-
sidered schemes (10-100⇥ over Peregrine and more than 100⇥ over
RStream). This is because these systems focus on programming
abstractions, which improves programmability but comes with
performance overheads. GMS enables maximizing performance of
tuned parallel algorithms targeting speci�c problems.

9 CONCLUSION
We introduce GraphMineSuite (GMS), the �rst benchmarking suite
for graph mining algorithms. GMS o�ers an extensive benchmark
speci�cation and taxonomy that distill more than 300 related works
and can aid in selecting appropriate comparison baselines. More-
over, GMS delivers a highly modular benchmarking platform, with
dozens of parallel implementations of key graph mining algorithms
and graph representations. Unlike frameworks for pattern match-
ing which focus on abstractions and programming models for ex-
pressing mining speci�c patterns, GMS simpli�es designing high-
performance algorithms for solving speci�c graph mining problems
from awide graphmining area. Extending GMS towards distributed-
memory systems or dynamic workloads are interesting future lines
of work. Third, GMS’ concurrency analysis illustrates theoretical
tradeo�s between time, work, storage, and accuracy, of several rep-
resentative problems in graph mining; it can be used as a guide
when rapidly analyzing the scalability of a planned graph mining
scheme. Finally, we show GMS’ potential by using it to enhance
state-of-the-art graph mining algorithms, leading to theoretical and
empirical advancements in maximal clique listing (speedups by
>9⇥ and better work-depth bounds over the fastest known Bron-
Kerbosch baseline), degeneracy reordering and core decomposition
(speedups by >2⇥), k-clique listing (speedups by up to 1.1⇥ and
better bounds), and subgraph isomorphism (speedups by 2.5⇥).
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