
Revisiting the Design of LSM-tree Based OLTP Storage Engine
with Persistent Memory

Baoyue Yan1, Xuntao Cheng2, Bo Jiang1,∗, Shibin Chen2, Canfang Shang2, Jianying Wang2,
Gui Huang2, Xinjun Yang2, Wei Cao2, Feifei Li2

1Beihang University and 2AZFT
{beyuer.yan,chengxuntao,gongbell,chenshibin,shangcanfang,jianyingse}@gmail.com

{kenryhuang,yangjimmy,cyg.cao,ricosfeifei}@gmail.com

ABSTRACT
The recent byte-addressable and large-capacity commercialized
persistent memory (PM) is promising to drive database as a service
(DBaaS) into unchartered territories. This paper investigates how to
leverage PMs to revisit the conventional LSM-tree based OLTP stor-
age engines designed for DRAM-SSD hierarchy for DBaaS instances.
Specifically, we (1) propose a light-weight PM allocator named Hal-
loc customized for LSM-tree, (2) build a high-performance Semi-
persistent Memtable utilizing the persistent in-memory writes of
PM, (3) design a concurrent commit algorithm named Reorder Ring
to aschieve log-free transaction processing for OLTP workloads
and (4) present a Global Index as the new globally sorted persis-
tent level with non-blocking in-memory compaction. The design
of Reorder Ring and Semi-persistent Memtable achieves fast writes
without synchronized logging overheads and achieves near instant
recovery time. Moreover, the design of Semi-persistent Memtable
and Global Index with in-memory compaction enables the byte-
addressable persistent levels in PM, which significantly reduces the
read and write amplification as well as the background compaction
overheads. The overall evaluation shows that the performance of
our proposal over PM-SSD hierarchy outperforms the baseline by
up to 3.8x in YCSB benchmark and by 2x in TPC-C benchmark.

PVLDB Reference Format:
Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang,
Jianying Wang, Gui Huang, Xinjun Yang, Wei Cao, Feifei Li. Revisiting the
Design of LSM-tree Based OLTP Storage Engine with Persistent Memory.
PVLDB, 14(10): 1872-1885, 2021.
doi:10.14778/3467861.3467875

1 INTRODUCTION
Recent commercialized persistent memory (PM) products have sig-
nificant potentials in driving database as a service (DBaaS) into un-
charted territories. Compared with the mainstream volatile DRAMs
(usually 8GB to 32GB) used in DBaaS instances, PMs can be much
larger (hundreds of GBs or larger) and persistent at an economi-
cally viable cost with the same byte-addressability[2]. Currently,
many DBaaS systems for OLTP workloads rely on synchronized
logging for durable transactions. The precious DRAM capacity
∗Bo Jiang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467875

WAL

sst

mem

imm imm

sst

sst sst sst

sst sst sst sst

subtable: table/index

Flush
Compaction

Switch

L0

L1

L2

D
RA
M

SS
D

Trans.

sp-m

sp-im sp-im

sst sst sst

sst sst sst sst

subtable: table/index

Compaction

Switch

L0

L1

L2

PM
SS
D

global index
In-mem compaction

Trans.

RO
R
fo
r l
og
-f
re
e

Figure 1: The state-of-the-art LSM-tree based OLTP storage
engine (the left one) v.s. our proposal (the right one).

forces the database to flush dirty pages frequently at the cost of a
stable performance, or give up processing analytical queries with
large memory footprints. With the PMs, we are now able to revisit
how the DBaaS, especially the underlying storage engines, see and
utilize the main memory. For example, Intel 3D XPoint memory
[1] is a byte-addressable, large-capacity, and persistent main mem-
ory compared with DRAMs. In this paper, we exploit it to achieve
persistent in-memory writes with a competitive level of overall
performance to pave the way for more possibilities in the future.

As a starting point, we base our work on popular LSM-tree [42]
based key-value storage engines. Such engines have been widely
used in DBaaS for various workloads [26, 39]. For now, these en-
gines are deployed on the conventional DRAM-SSD storage hierar-
chy. Although the LSM-tree data structure itself achieves fast writes
through append-only inserts, the synchronized logging, which is
necessary for ACID-compliant transactions, drags slow disk I/Os
into the write pipeline and constraints the final write throughput.
Similarly, periodically merging the in-memory deltas with the base
on SSDs in LSM-tree is necessary and expensive in terms of CPUs
and I/Os consumed. These issues have been increasingly trouble-
some in the public cloud, where databases are usually deployed on
multi-tenant virtualized machines and customers pay for transac-
tion/query processing, not for expensive background operations.

Specifically, LSM-tree based OLTP engines on DRAM-SSDs have
the following issues. Firstly, appending and accumulating changes
in memtables (indexed in-memory buffers, shown as “mem” or
“imm” in Figure 1) increases the workload for crash recoveries
and disk space usages for logs, although accessing memtables for
transactions/queries has low latencies[25]. In extreme cases (e.g.,
replaying huge WALs in a small instance), it may take hours for a
database instance to recover in the cloud, which affects the overall
system availability. Secondly, the tiering compactions [6, 38] for
the first level (𝐿0) delivers a fast flush [26] while trading off query
latencies, because there can be data blocks (flushed frommemtables)

1872

https://doi.org/10.14778/3467861.3467875
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467875

with overlapping key ranges in the 𝐿0. Compaction operations have
to be frequently called to merge such blocks, which may even stall
transaction/query processing in the worst case[18, 19, 54]. Thirdly,
memtables compete with other in-memory data structures such as
caches and indexes for memory spaces. It requires careful tuning
of these structures for performance guarantees, which in turns
prevents cloud customers from using the database with ease.

With PMs, we are now able to address these issues in this work.
We firstly make the memtable persistent in PM (denoted as “sp-
m” in Figure 1), thereby extra logs and flushes into the SSD for
memtables are no longer needed. Then we move and redesign the
originally disk-resident 𝐿0 of LSM-tree into the byte-addressable
PM (denoted as “global index” in Figure 1), and replace the original
I/O-expensive compactions for 𝐿0 with in-memory ones. Compared
with the state of art solutions, this design reduces the CPUs and I/Os
consumed by background compactions. Thirdly, although the large
capacity of the PM can be utilized to reduce memory contentions
among memtables, caches and indexes, we find that existing PMs
support only 8-byte atomicity write and require expensive flushes
and fences to guarantee persistence [35, 53], causing no-trivial chal-
lenges on the memory allocation, the design of persistent indexes
and the guarantee of atomic multi-words writes in ACID-compliant
transactions for OLTP workloads. To address these challenge, we
make the following contributions:

• We design a light-weight and efficient memory alloca-
tor of PM,Halloc, for LSM-tree based OLTP storage engine.
Halloc employs the log-free pool-based memory allocation,
and supports both persistent and volatile memory alloca-
tions.
• We design a Semi-persistent Memtable structure, sepa-
rating index nodes from the data nodes and storing them
in volatile and persistent memory spaces, respectively. The
persistent data nodes employ fast sequential writes. And the
recovery of the small-size index nodes are very fast.
• We propose a log-free transaction commit algorithm,
Reorder Ring (ROR), to achieve log-free persistent transac-
tion processing in PMs. ROR guarantees log-freemulti-words
atomic persistence in PM and enables a pipelined commit
protocol to improve the scalability in multi-core platforms.
• We introduce a globally sorted level in PM, Global In-
dex, as the new 𝐿0 for LSM-tree to maintain a large persis-
tent level with non-blocking in-memory compaction. The
memtables are merged into the Global Index with in-memory
compaction by the pointer operations, thus no data copies
occur for records in PM.

The overall evaluation shows that our design over PM-SSD stor-
age achieves up to 3.8x performance improvement compared with
the baseline over DRAM-SSD storage for write-intensive workload
on YCSB[17] benchmark and 2x performance improvement in TPC-
C benchmark. More importantly, our proposal achieves competitive
performance with slower PM compared with DRAM while keeping
near instant recovery time. To the best of our knowledge, our solu-
tion is the first attempt to shift the design from DRAM to PM for
LSM-tree based OLTP storage engines with a specifically designed
PM allocator, and is also the first one to entirely eliminate logs off
the system critical writing path both for PM and disk.

The rest of the paper is organized as follows. Section 2 discusses
background and challenges in details. Section 3 describes the design
of Halloc, ROR, Semi-persistent Memtable and Global Index. Section
4 presents the evaluation of our work comparedwith existing design
proposals as well as performance analysis. Section 5 summarizes
the related work and section 6 concludes the paper.

2 BACKGROUND AND CHALLENGES
In the section, we discuss the common design of the LSM-tree based
KV stores, the features of persistent memory and the challenges of
the design shift considering persistent memory in OLTP workloads.

2.1 LSM-tree Based OLTP Engines
As shown in the left part of Figure 1, the typical LSM-tree based
OLTP storage engine employs multiple LSM-tree instances in a
database, each of which is used to store a table, or a partition
of a table, or an index (all referred as a subtable in this paper),
along with the WAL to achieve the ACID-compliant transactions.
Each LSM-tree instance buffers updates or inserts in fast DRAM by
append-only method and persists data sequentially as a sorted run
to disk with multi-level merge tree. The core principle for LSM-tree
is to apply updates out-of-place and use sequential disk accesses to
avoid random I/Os in disk. Since the inserted KV pairs are firstly
buffered in volatile memtable, theWAL (Write-Ahead Log[40]) shall
be written to persistent storage for durability guarantee. Current
LSM-tree implementations such as RocksDB[39] and X-Engine[26]
also employ the WAL as transaction logs to guarantee durability.
When system crashes, the WAL is replayed to bring the system
into a consistent state. Larger WAL size leads to longer recovery
time. As a result, the memtable must be frequently flushed to disk
to purge the WAL.

Data in disk normally consists of exponentially increased levels
(𝐿0, 𝐿1, . . . , 𝐿𝑛) with a fixed capacity ratio 𝑇 (𝑇 ≥ 2). Data levels in
disk are usually organized by partitioned SSTables (Sorted String
Table) and slowly trickled down the levels by background com-
pactions. Since levels normally contain disjoint sets of keys, a read
operation shall visit these levels in top-down manner. Compactions
are performed to purge stale values and apply the deletions in
disk levels, which are much heavier than flushes and may block
the flushes or cause data block piling in the low level. As a result,
modern LSM-tree based OLTP engines designed for DRAM-SSDs
normally employ tiering compactions for 𝐿0 to deliver fast flushes as
well as reduce compaction overheads. However, the design results
in unordered data blocks in 𝐿0 especially in case of the write-heavy
workloads, which brings higher read amplification[6, 24, 26, 54].

2.2 Persistent Memory
The byte-addressable persistent memory[1, 20, 41, 53] enables CPUs
to access data directly with load and store instructions while provid-
ing persistence. The new hardware provides lower power consump-
tion and cost as well as larger capacity than DRAM[7, 21, 29, 46, 48].
Unfortunately, it is non-trivial to make use of such devices be-
cause of the large differences in programing model between PM
and DRAM. As shown for intel DCPMM (a kind of commercial-
ized PM) in Figure 2, the majority of the data writing path from
CPU registers to DCPMM controller are volatile. Intel enables ADR

1873

(Asynchronous DRAM Refresh) feature to guarantee persistence
for CPU stores reaching the ADR domain. Furthermore, modern
CPUs employ complex out-of-order execution, so persistent in-
structions shall be explicitly and expensively ordered to guarantee
consistency[15, 28, 43]. Current intel ISA provides flush instruc-
tions (clflush, clflushopt, clwb) to flush data in cache to persistent
memory, along with the ntstore to bypass cache, and a fence instruc-
tion to ensure that previous stores are persisted with correct order.

CPU

Buffer

Cache

Controller

DCPMM

Cacheline 64B

256B

sto
re

nt
sto
re

XPLine

V
ol
at
ile

Pe
rs
ist
en
t

Figure 2: Data path.

For Intel DCPMM (Figure 2), the
atomic persistent store is in 8 bytes.
Therefore, instructions that store more
than 8 bytes may be torn in power out-
age. The communication between the
CPU and the DCPMM controller is in
cache line granularity(64-bytes), but
DCPMM media access granularity is
256 bytes. As a result, a small access re-
quest will be translated into the large
256-bytes access request, leading to
read/write amplification. Our experi-
ment also confirms that randomwrites

with size less than 256 bytes have similar performance in PM. Fortu-
nately, memory controller for DCPMM employ a small combining
buffer to alleviate the problem by merging adjacent writes, which
significantly benefits sequential memory writes[53]. DCPMM sup-
ports two operation modes: Memory mode for DRAM extensions
without persistence and App Direct mode functioned as DAX per-
sistent devices. In this paper we focus on the App Direct mode to
enable persistence.

2.3 Challenges
We now discuss the challenges in detail about the allocation of
PM memory, the design of persistent indexes and the guarantee
of atomic multi-words writes in ACID-compliant transactions for
LSM-tree based engines with PMs.

Expensive General Purpose PMAllocators. Current general
purpose PM allocators consider both random allocations and deal-
locations, which results in very fragmented memory allocation
scheme and expensive cacheline flushes and fences. Our exper-
iment with the same configuration in Section 4 shows that the
performance of popular PM allocators (PMDK[5] and Ralloc[11])
fail to scale especially for large object allocation. Even for small
object allocation, e.g., less than 100 bytes, their performance are
still orders of magnitude slower than jemalloc[22] in DRAM. More-
over, our new requirement to reduce DRAM footprint relies on
both volatile and persistent memory management. However, cur-
rent volatile PM allocators[12] are normally designed as an extra
volatile PM pool that requires exclusive memory space, which leads
to large memory consumption.

Expensive Persistent Range Indexes. Introducing a persis-
tent index inmemtable becomes a common approach to reduceWAL
overhead[30]. However, the updates for index nodes in PM normally
covers multiple words and results in multiple small random writ-
ings, which is expensive in PM[14, 37, 53]. And updates for multiple
words introduce logging or other costly approaches[13, 16, 37, 49]

Persistent records in PM

L1,L2,…Ln. Manifest

Pe
rs
ist
en
t m
em
or
y

H
al
lo
c

D
isk

§3.4
Reorder
Ring §3.2

Semi-persisent
MemTable §3.1

§3.3
Global
Index/L0

Co
mp
act

Snapshot

Active Immu

Switch

Compaction L0 L1

Writes
ChainLog

Figure 3: System architecture for our solution, where all per-
sistent memory is managed by Halloc.

to guarantee the atomicity[5, 47]. We have also tested the state-of-
the-art B+tree FAST&FAIR[27] that is designed specifically for PM.
We observe that its performance is only 10% of the raw through-
put of Optane DCPMM hardware. These observations tell us that
maintaining a persistent range index in memtable is expensive.

Indispensable Transaction Logs. The transaction log is nor-
mally encapsulated in WAL for LSM-tree based OLTP storage
engines[40], which invalidates the assumption that introducing
a persistent memtable can eliminate the WAL overhead[30, 31, 36].
The transaction mechanism implies the atomic durable batch op-
erations over a group of KVs. And it leads to extra cost of logging
and expensive cacheline flushes and fences for maintaining WAL in
LSM-tree based OLTP storage engines. Wang et al.[48, 50] points
out that transaction logs incur up to 35% performance overheads in
PMDK[5]. As a result, these approaches still suffer from the large
overhead incurred by WAL for OLTP workloads.

3 DESIGN
We proposes four key techniques to utilize PM to address the
challenges while achieving high performance (shown in Figure
3). This includes the Semi-persistent Memtable(§3.1), the Reorder
Ring with ChainLog(§3.2) to enable log-free transactions, the Global
Index(§3.3) to maintain a large globally sorted persistent level in
PM as the 𝐿0 in LSM-tree, and the specifically designed PM allo-
cator named Halloc(§3.4),. The other levels (𝐿1, . . . , 𝐿𝑛) are kept
unchanged in SSD. Note that we still use DRAM in application
runtime for block/row cache and volatile indexes.

As shown in Figure 3, the updated entries are firstly batched
and queued by reorder ring, and then inserted into the active semi-
persistentmemtable.When the activememtable is full, it is switched
to immutable state and compacted into the proposed 𝐿0 by the light-
weight in-memory compaction. Since the proposed 𝐿0 guarantees
the persistence in PM, no flushes to SSD are needed. When the 𝐿0
is full, its immutable snapshot is created and compacted into 𝐿1 in
SSD without blocking the foreground writes. A lookup finds the
most recent version of the given key by probing the semi-persistent
memtable, the proposed 𝐿0 and other levels in SSD, and terminates
when the target key matches.

The design brings three significant benefits for LSM-tree based
storage engines: (1) we avoid the overheads of both WAL and ad-
ditional logging by PM programming libraries and achieve fast
recovery by reorder ring and semi-persistent memtable; (2) the

1874

batch i+1batch i

slot slot slot slot … slot slot

kv… …

ks k vs v

1 2 3leaf 5 8leaf

pe
rs
ist
en
t
vo
la
til
e

write
cursor

9

batch i+2 en
d

Figure 4: The structure of semi-persistent memtable, ks: key
size, k: key, vs: value size and v: value.
semi-persistent memtable and proposed 𝐿0 guarantee the persis-
tence in PM thereby no flushes to SSD are needed. Therefore, we
can significantly reduce the amount of data written to SSD as well as
background flush overheads; (3) the proposed 𝐿0 is globally sorted,
so the read amplification for 𝐿0 is reduced and no heavy background
compaction for 𝐿0 is needed when compared with the conventional
LSM-tree based engines for DRAM-SSD storage architecture (e.g.,
RocksDB, LevelDB and X-Engine).

3.1 Semi-persistent Memtable
Updates for persistent indexes normally covers multiple words
and results in multiple small random writes, which leads to write
amplification and overheads to guarantee the consistency of index
nodes in PM. We propose the semi-persistent memtable, which
employs two optimizations to address the problem.

Keeping Index Nodes Volatile. We keep the index nodes in-
side memtables volatile. The design is inspired by the observation
that industry LSM-tree based OLTP engines do not keep a very
large single memtable (normally 64-256MB) because of two rea-
sons. Firstly, we find that cloud users often purchase small database
instances with only 8-32GB main memories each, which satisfy
their performance requirements at an acceptable cost. Secondly,
keeping a small memtable reduces the data size per flush that helps
amortizing the I/O consumptions. Given a 256MB memtable, our
experiment shows that rebuilding volatile index nodes by scanning
it in PM takes less than 10ms. This performance during recovery
is fast enough, so that we can tolerate volatile index nodes. And,
expensive persistent range indexes are not required and the range
index can be kept volatile. In this paper, we adopt ART[33] with
optimistic lock coupling (OLC)[34] and Epoch Based Reclamation
(EBR)[23] as the volatile range index because of ART’s good cache
locality and fast prefix matching[51]. Specifically, the KV pair with
one version value(e.g., version 9 in Figure 4) is directly stored with
8-byte pointer in index node. Multiple multi-versioned values (e.g.,
leaf nodes with version 1,2,3 and 5,8 in Figure 4) for a key are stored
into a sorted array, the pointers of which are attached to a leaf
node in ART. The record in PM is organized by encapsulating the
key and value together with built-in metadata. The keys are not
stored into index nodes, because the index is volatile and is rebuilt
by scanning the keys in PM.

Batching toReduceWriteAmplification. Randomwrites are
natively processed as seperate 256-byte accesses in the PM, causing
write amplifications. To avoid this, we batch small writes into a
large WriteBatch, and flush it to the PM sequentially as a whole.
Each batch is persisted after issuing one fence. And, these batches in
a memtable are logically linked together to enable correct recovery

R11 R13 R14 R15 R16 R17

tnx
tnx
tnx

ba
tc
h

B0 B1 B2 B3 B4 B5

tnx
tnx
tnx

ba
tc
h

tnx
tnx
tnx

ba
tc
h

tnx
tnx
tnx

ba
tc
h

tnx
tnx
tnx

ba
tc
h

ChainLog

D
R
A
M

PM

Ring
reorder

bu
ck
et

Figure 5: The architecture for Reorder Ring.

(the batch shown in Figure 4, where the slot is used to store 8-byte
zone id from Halloc and the zone is a large fixed-size PM memory
chunk). We export the batch size here as a tunning knob that affects
the trade-off between write latency and throughput.

3.2 Reorder Ring
The Reorder Ring(ROR) is a concurrent ring based transaction
log-free commit algorithm for persistent transaction processing
in PMs, compared with conventional approaches that write extra
transaction logs to guarantee atomicity for transactions in OLTP
workloads. To achieve the goal, ROR employs three key techniques:
ChainLog, batching and concurrent ring. As shown in Figure 5,
the ChainLog guarantees log-free atomic multi-words writes to
PM. The batching is used to merge small transaction buffers into
large ones to avoid small random writes to the PM. And the array-
based concurrent ring enables concurrent persistence by reordering
ChainLog items to improve multi-core scalability.

3.2.1 ChainLog. The ChainLog is a linked persistent data struc-
ture to achieve atomic multi-word writes for transactions in OLTP
workloads without extra logging overheads in PM, as shown in the
example of Figure 7. That is the reason why we name it as Chain-
Log, i.e., chained log. Specifically, a group of transaction buffers (in
DRAM, Figure 5) are firstly batched as 𝐵𝑖 = {𝑏1, 𝑏2, · · · , 𝑏𝑘 } where
the 𝑏𝑘 are the records to write into memtable𝑚𝑘 . The 𝐵𝑖 performs
grant operation from the memtable set𝑀 = {𝑚1,𝑚2, · · · ,𝑚𝑛} to
get a ChainLog 𝑅𝑖 = {𝑟𝑖1, 𝑟𝑖2, · · · , 𝑟𝑖𝑘 } where 𝑘 ≤ 𝑛, before it is
persisted. Each 𝑟𝑖𝑘 ∈ 𝑅𝑖 is associated to one unique𝑚 𝑗 ∈ 𝑀 . All
writes to 𝑟𝑖𝑘 from𝑚 𝑗 are append-only. The 𝑅𝑖 should satisfy the
following two conditions:

(1) Atomicity. The 𝑅𝑖 is atomically persisted iff ∀𝑟𝑖𝑘 ∈ 𝑅𝑖 are
atomically persisted.

(2) Monotonicity. If 𝑅𝑖 is granted before 𝑅 𝑗 , then 𝑅𝑖 shall be
persisted before 𝑅 𝑗 .

The satisfaction of the first condition guarantees that a batch is
atomically persisted. And the satisfaction of the second one ensures
that all successfully persistent batches are visible after a system
crash to simplify recovery. If batches are persisted out of order, we
can not distinguish which one is inconsistent after a crash except to
check all batches. Note that we do not need to consider the atomicity
for indexes in memtable𝑚 𝑗 since they are volatile. Whenever the
𝑅 𝑗 is atomically persisted, the indexes of it is constructed to𝑚 𝑗 .

Data Structure of ChainLog. The data structures of 𝑅𝑖 and
other necessary structures are defined below.

1875

cursor

slot slot slot slot … slot slot

gidx

commitundo

pending base

grant idx

limit

gidx 64bundo commit
6b 26b 6b 26b

slot offset slot offset

guarantee atomicity

𝑟!" 𝑟(!$%)" 𝑟(!$')" 𝑟(!$()"

𝑟!"

Figure 6: The structure of memory space allocated for the
memtable. The 𝑔𝑖𝑑𝑥 is used to record the current commit
point and the previous one, each of which takes up 4 bytes
and manages 4GB memory space at most.

• 𝑅𝑖 .𝑠𝑒𝑞 - The sequence number of 𝑅𝑖 . All 𝑟𝑖𝑘 ∈ 𝑅𝑖 have the
same sequence number which persisted in PM. The sequence
number is monotonically increased.
• 𝑟𝑖𝑘 .𝑏𝑎𝑠𝑒, 𝑐𝑢𝑟𝑠𝑜𝑟, 𝑙𝑖𝑚𝑖𝑡 - A write to 𝑟𝑖𝑘 shall begin from the
𝑏𝑎𝑠𝑒 position, where 𝑐𝑢𝑟𝑠𝑜𝑟 ∈ [𝑏𝑎𝑠𝑒, 𝑙𝑖𝑚𝑡), shown in Figure
6. All of them are volatile.
• 𝑟𝑖𝑘 .𝑠𝑒𝑞 - Equal to 𝑅𝑖 .𝑠𝑒𝑞. The 𝑠𝑒𝑞 is persisted and used for
consistency checking in recovery time.
• 𝑚 𝑗 .𝑔𝑖𝑑𝑥, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 - The 𝑔𝑖𝑑𝑥 is a persistent and monotoni-
cally increased commit position for𝑚 𝑗 , where memory space
[0,𝑚 𝑗 .𝑔𝑖𝑑𝑥] is guaranteed to be atomically persisted, shown
in Figure 6. The 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 records the next 𝑟𝑘 to be persisted.
• 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 - The last commit sequence of ChainLog. It is
used to perform recovery, where all ChainLog items with
sequences larger than the value are dropped in recovery.

Atomicity Guaranteeing. A commit for 𝑅𝑖 entails all commits
for 𝑟𝑖𝑘 ∈ 𝑅𝑖 . Considering a commit operation of 𝑅𝑖 , each 𝑟𝑖𝑘 ∈ 𝑅𝑖
is associated with𝑚 𝑗 ∈ 𝑀 and the𝑚 𝑗 .𝑔𝑖𝑑𝑥 is atomically updated
(8-byte atomicity supported by hardware) before the 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 is
updated. If a system crash happens before the updates of 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 ,
then all committed 𝑔𝑖𝑑𝑥 will be rolled back by simply right-shifting
to extract the previous 𝑟𝑖𝑘 from undo field. Figure 7 shows an exam-
ple with 𝑅2 and 𝑅3, where the 𝑅2 has been successfully committed
and the 𝑅3 is the next item to commit. In this example, we assume
a torn write where a crash hits before𝑚3 .𝑔𝑖𝑑𝑥 is updated but the
𝑚1 .𝑔𝑖𝑑𝑥 and𝑚2 .𝑔𝑖𝑑𝑥 have been successfully updated. Since the last
commit id 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 = 2 is not updated, the𝑚1 .𝑔𝑖𝑑𝑥 is rolled back
by right-shifting in recovery.

Recovery. In memtable𝑚 𝑗 , each 𝑟𝑖𝑘 has a 𝑛𝑒𝑥𝑡 field to link the
next 𝑟 (𝑖+1)𝑘 (Figure 6) All of them are persisted in PM. For ChainLog,
all𝑚 𝑗 ∈ 𝑀 can be recovered parallelly by scanning the 𝑟𝑖𝑘 list for
each𝑚 𝑗 to rebuild index nodes since there are no order constraints
between𝑚 𝑗 in rebuilding indexes. The last 𝑟𝑖𝑘 indicated by𝑚𝑖 .𝑔𝑖𝑑𝑥

is fetched for each𝑚𝑖 ; the 𝑟𝑖𝑘 .𝑠𝑒𝑞 is checked whether it is larger
than 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 , where the last 𝑟𝑖𝑘 with torn write is rolled back
by simply right-shifting the 𝑚𝑖 .𝑔𝑖𝑑𝑥 ; an index rebuilding task is
constructed for each𝑚 𝑗 and these tasks can be processed parallelly.
The example in Figure 7 shows that the𝑚1 .𝑔𝑑𝑥 is rolled back and
both𝑚2 and𝑚3 keep unchanged.

3.2.2 Batching. We use batching to merge small ChainLog items
thereby avoiding the small random writes to PM. A transaction

2 3 4
m1

m2

m3

R2 R3 R4

gidx

1 2

1 2

1 2

gidx

2 3

1 2

1 2

undo

crash

commit
3

r21

r22

r23

r31

r32

r41

r42

r43

gidx

x 2

1 2

1 2
still

22
recover

still

still

update

Figure 7: An example where a crash hits in the commit of 𝑅3.

is firstly encapsulated as a WriteBatch then several WriteBatches
are batched as a ChainLog item to be persisted in PM. We follow
the original design for transaction isolation like RocksDB, where
the 2PL and the MVCC are adopted. As illustrated in Figure 5, the
system uses fixed-size current buckets, each of which has one leader
thread to perform writing to PM. When a client thread commits
a WriteBatch, it firstly finds a bucket and checks whether it is
a leader or follower. A follower delegates its WriteBatch to the
leader. And the leader waits a tunable time then assembles multiple
WriteBatches as an enlarged batch. The batch size is designed as a
tunable parameter in our system.

3.2.3 Concurrent Ring. In ChainLog, the 𝑅𝑖 can not be persisted un-
less the all previous ones has been persisted (Monotonicity). How-
ever, the serial persistence exposes scalability bottlenecks on multi-
core platforms. To overcome the problem, ROR enables pipelined
writes for 𝑅𝑖 based on the ring[45]. The basic lock-free ring has a
head to indicate the write position and a tail to indicate the read
position. We add a send index (sid) and another head index (hid)
to enable lock-free ChainLog initialization and lock-free commit.
The concurrency is implemented by buffering multiple writes of 𝑅𝑖
directly in PM and performing pipelined persistence.

Data Structures of Concurrent Ring. The ROR is based on
the concurrent ring. The data structures are listed below.
• 𝑅𝑂𝑅.𝑏𝑖𝑑 - The buffer index. A grant call allocates and then
initializes a ChainLog buffer from ROR ring.
• 𝑅𝑂𝑅.𝑠𝑖𝑑 - The sending index. After the initializing the buffer
id, the ROR updates the 𝑠𝑖𝑑 and grant memory space for 𝑅𝑖 .
• 𝑅𝑂𝑅.ℎ𝑖𝑑 - The head index - The ℎ𝑖𝑑 is introduced to guaran-
tee that the 𝑅𝑖 is always persisted serially.
• 𝑅𝑂𝑅.𝑝𝑖𝑑 - The processing index. The processing index indi-
cates the first log item to persist.
• 𝑅𝑂𝑅.𝑐𝑎𝑝 - The max capacity of the ring in ROR. The data
field limits the maximum number of concurrent 𝑅𝑖 to persist.
• 𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 - The fixed size array of ChainLog descriptors.

The 𝑏𝑖𝑑 and 𝑠𝑖𝑑 are used to allocate a 𝑅𝑖 handle concurrently from
the ring of ROR while the ℎ𝑖𝑑 and 𝑝𝑖𝑑 guarantees wait-free serial
order for the persistence of 𝑅𝑖 .

Pipeline Stages. To write a ChainLog item, the thread shall
perform the following steps serially: ① gets a handle for ChainLog
item 𝑅𝑖 from ring; ② initializes the ChainLog descriptor for the
handle;③ grants memory space for𝑅𝑖 ;④writes𝑅𝑖 to PM;⑤ finishes
the write of 𝑅𝑖 . Getting handles from ring between threads shall be

1876

Algorithm 1: Perform concurrent grant
1 Function grant(𝐵𝑖 , 𝑀):

// Stage 1

2 𝑏𝑖𝑑 ← fetch_inc(𝑅𝑂𝑅.𝑏𝑖𝑑)
3 𝑐𝑎𝑝 ← 𝑅𝑂𝑅.𝑐𝑎𝑝

4 busy_wait(𝑏𝑖𝑑 − 𝑅𝑂𝑅.𝑝𝑖𝑑 ≥ 𝑐𝑎𝑝 − 1)
5 𝑅𝑖 ← 𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑐𝑎𝑝]
6 init_fill(𝑅𝑖 , 𝑏𝑖𝑑)

// Stage 2

7 busy_wait(𝑅𝑂𝑅.𝑠𝑖𝑑 ≠ 𝑏𝑖𝑑)
8 𝑅𝑖 .𝑠𝑒𝑞 ← 𝑔𝑟𝑎𝑛𝑡_𝑖𝑑 + 1
9 𝑔𝑟𝑎𝑛𝑡_𝑖𝑑 ← 𝑔𝑟𝑎𝑛𝑡_𝑖𝑑 + 𝐵𝑖 .𝑐𝑜𝑢𝑛𝑡

10 foreach 𝑏𝑘 ∈ 𝐵𝑖 do
11 𝑅𝑖 .𝑟𝑖𝑘 ← grant_memory_space(𝑀,𝑏𝑘)
12 end

13 𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [(𝑏𝑖𝑑 + 1)%𝑐𝑎𝑝] .𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒

14 FETCH_INC(𝑅𝑂𝑅.𝑠𝑖𝑑)
15 return 𝑅𝑖

16 end

serial because of the constraint of concurrent ring. We denote the
serial step as stage 1 (Alg. 1, stage 1). Granting memory space from
memtables for multiple threads shall be serial since the memtable
forces the append-only writes. We denote the serial step as stage
2 (Alg. 1, stage 2). ChainLog items shall follow the Monotonicity
condition, therefore threads shall serially complete the writes of 𝑅𝑖 .
We denote the serial step as stage 3 (Alg. 2, stage 3). When threads
complete writes in the same time in Alg. 2, we have to resolve the
order between threads to force a serial persistence. We add an extra
serial stage (Alg. 2, stage 4) to address the problem. Both Step ②

and step ④ between threads can be parallelly performed since there
are no order constrains for the two steps. However, when threads
come to the serial stages, we have to reorder them to guarantee
that they are processed in correct order. For example, if thread a
gets the ChainLog handle before thread b, thread a should perform
step ③ before thread b and also perform ⑤ before thread b. That is
the reason why we call the method Reorder Ring.

Concurrent Grant. The grant operation is performed by con-
current ring. As shown in Alg. 1, a buffer descriptor of log item is
firstly allocated from the ring (Lines 2-4). The allocation is blocked
by busy waiting if the ring is overloaded (Line 4). Then, a success-
fully allocated 𝑅𝑖 is initialized (Line 6) with id 𝑏𝑖𝑑 . Then it is pushed
into the ring in the allocated order (Lines 7-12), where the memory
space is granted for each 𝑟𝑖𝑘 (Lines 10-12). Finally, the terminator is
inserted to the next buffer to give a termination hint for concurrent
committing (Line 13).

Concurrent Finish. When the writing of a log item 𝑅𝑖 is fin-
ished, the thread explicitly calls grant_finish (Alg. 2) to tell ROR
that the item 𝑅𝑖 can be safely persisted. The thread firstly persist
each 𝑟𝑖𝑘 ∈ 𝑅𝑖 to into persistent memory (Line 5). The ROR performs
batched flushing and requires only one sfence to persist each batch.
Thus it achieves higher throughput than the approaches employing

Algorithm 2: Perform concurrent finish
1 Function grant_finish(𝑅𝑖 , 𝑐𝑏, 𝑐𝑡𝑥):

// Stage 3

2 𝑏𝑖𝑑 ← 𝑅𝑖 .𝑏𝑖𝑑

3 𝑔𝑜_𝑛𝑒𝑥𝑡 ← 𝑡𝑟𝑢𝑒

4 𝑅𝑖 .(𝑐𝑏, 𝑐𝑡𝑥) ← (𝑐𝑏, 𝑐𝑡𝑥)
5 persist(𝑟𝑖𝑘) foreach 𝑟𝑖𝑘 ∈ 𝑅𝑖
6 if CAS(&𝑅𝑂𝑅.ℎ𝑖𝑑, 𝑏𝑖𝑑, 𝑏𝑖𝑑 + 1) then
7 while 𝑔𝑜_𝑛𝑒𝑥𝑡 do
8 do_commit(&𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑅𝑂𝑅.𝑐𝑎𝑝], 𝑏𝑖𝑑)
9 𝑏𝑖𝑑 ← 𝑏𝑖𝑑 + 1

10 𝑔𝑜_𝑛𝑒𝑥𝑡 ←
LOAD(𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑅𝑂𝑅.𝑐𝑎𝑝] .𝑓 𝑙𝑎𝑔) &&
CAS(&𝑅𝑂𝑅.ℎ𝑖𝑑, 𝑏𝑖𝑑, 𝑏𝑖𝑑 + 1)

11 end
12 else
13 STORE(𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑐𝑎𝑝] .𝑓 𝑙𝑎𝑔, 𝑡𝑟𝑢𝑒)
14 if CAS(&𝑅𝑂𝑅.ℎ𝑖𝑑, 𝑏𝑖𝑑, 𝑏𝑖𝑑 + 1) then
15 while 𝑔𝑜_𝑛𝑒𝑥𝑡 do
16 do_commit(&𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑅𝑂𝑅.𝑐𝑎𝑝], 𝑏𝑖𝑑)
17 𝑏𝑖𝑑 ← 𝑏𝑖𝑑 + 1
18 𝑔𝑜_𝑛𝑒𝑥𝑡 ←

LOAD(𝑅𝑂𝑅.𝑔𝑟𝑎𝑛𝑡𝑠 [𝑏𝑖𝑑%𝑅𝑂𝑅.𝑐𝑎𝑝] .𝑓 𝑙𝑎𝑔)
&& CAS(&𝑅𝑂𝑅.ℎ𝑖𝑑, 𝑏𝑖𝑑, 𝑏𝑖𝑑 + 1)

19 end
20 end
21 end
22 end

the state-of-the-art range indexes as their memtables. After 𝑅𝑖 is
safely persisted, the thread checks whether all previous log items
have been persisted by an atomic compare-and-swap(CAS) instruc-
tion (Line 6); If the 𝑅𝑖 satisfies the condition of commit, the thread
will perform the actual commit (Line 8) and try to commit the next
𝑅𝑖+1 (Lines 9-10) by atomic instructions; If 𝑅𝑖 can not be persisted
due to the fact that previous log items have not been persisted,
the thread will mark 𝑅𝑖 that it can be committed and check again
(Lines 13-14); Otherwise it will immediately leave since the 𝑅𝑖 will
be committed by other thread. Note that if the 𝑅𝑖 fails to commit,
then all other log items granted before 𝑅𝑖 will be entirely purged
as the persistence shall satisfy the Monotonicity constraint.

PerformCommit. In case that two adjacent log items are checked
(Line 14 of Alg. 2) simultaneously by two or more threads, the
thread shall check the consistency between 𝑅𝑂𝑅.𝑝𝑖𝑑 and 𝑅𝑖 .𝑝𝑖𝑑

(Line 2 of Alg. 3). After that, the thread updates the 𝑔𝑖𝑑𝑥 for each
𝑟𝑖𝑘 ∈ 𝑅𝑖 and waits for persistence (Lines 3-9). Then, the 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑
is updated to claim that the log item 𝑅𝑖 is persisted (Lines 10-11). A
user callback is called finally if it exists (Lines 12-14).

3.3 Global Index
The Global Index (GI) is an indexed data structure to maintain a
globally sorted 𝐿0 in PM for LSM-tree. Modern LSM-tree based
OLTP engines designed for DRAM-SSD storage normally employ

1877

Algorithm 3: Do serial commit
1 Function do_commit(𝑅𝑖 , 𝑝𝑖𝑑):

// Stage 4

2 busy_wait(𝑅𝑂𝑅.𝑝𝑖𝑑 ≠ 𝑝𝑖𝑑)
3 foreach 𝑟𝑖𝑘 ∈ 𝑅𝑖 do
4 𝑛𝑒𝑤_𝑔𝑖𝑑𝑥 ← 𝑟𝑖𝑘 .𝑔𝑖𝑑𝑥 << 32
5 𝑛𝑒𝑤_𝑔𝑖𝑑𝑥 .(𝑜 𝑓 𝑓 , 𝑠𝑙𝑜𝑡) ← 𝑟𝑖𝑘 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔.(𝑜 𝑓 𝑓 , 𝑠𝑙𝑜𝑡)
6 pmem_flush(𝑟𝑖𝑘 .𝑔𝑖𝑑𝑥 ← 𝑛𝑒𝑤_𝑔𝑖𝑑𝑥 , 8)
7 𝑟𝑖𝑘 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔← 𝑟𝑖𝑘 .𝑙𝑖𝑚𝑖𝑡

8 end
9 pmem_drain()

10 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 ← 𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 + 𝑅𝑖 .𝑐𝑜𝑢𝑛𝑡𝑠
11 pmem_persist(&𝑐𝑜𝑚𝑚𝑖𝑡_𝑖𝑑 ,8)
12 if 𝑅𝑖 .𝑐𝑏 exists then
13 𝑅𝑖 .𝑐𝑏(𝑅𝑖 .𝑐𝑡𝑥)
14 end
15 FETCH_INC(𝑅𝑂𝑅.𝑝𝑖𝑑)
16 end

unordered 𝐿0 to reduce compaction overheads and alleviate write
stall problem[54] at the expense of increasing read amplification.
Thanks to the byte-addressable persistent memory, we tackle the
problem by redesigning the 𝐿0 data structure in PM.

In our implementation, the GI employs the same volatile index
as semi-persistent memtable, where KV pairs are persisted in PM.
The records written to memtables are firstly merged into GI by
key-granularity in-memory compaction. All records merged from
memtables involve only pointer operations therefore no data copy
occurs for in-memory compaction. When the memory size of GI
exceeds the space limit, its snapshot is created and merged into SSD
with 𝐿1. Then it is reclaimed and all KV pairs along with GI are also
deleted. Note that the GI can employ any range volatile indexes
because the index nodes are rebuilt upon startup by scanning the
data records.

In-memoryCompaction. Themerging operation frommemta-
bles to GI is performed by in-memory compaction. Similar to semi-
persistent memtable, the key in GI is stored in the leaf node and all
multi-versioned values are stored in a sorted array attached to the
leaf node. When performing in-memory compaction, a key is firstly
inserted into GI if it does not exist. Then stale values belonging
to the key are purged from GI while the new values are inserted
to the sorted array of the leaf. Since all records are managed by
Halloc, key-granularity memory deallocation for KV pairs in PM is
not allowed. The memory is freed only when the compaction for
the snapshot of GI is completed.

Snapshot. We design the snapshot for GI to guarantee that the
GI is still writable when performing compactions from GI to SSD,
so that the merging from memtables to GI will not be blocked.
In GI, the snapshot is implemented by freezing the current GI
and creating a new one. All records in frozen GI are managed by
Halloc and reclaimed only when the snapshot is entirely compacted,
during which the creation of the new GI is not allowed. The design
brings improvements on writes while incurring more overheads
on reading as reading may cross two indexes. Moreover, Halloc

improves the performance of the memory allocator by employing
batch reclaiming strategy while trading off memory management
efficiency. One can achieve key-granularity snapshot by specifying
new PM allocator that supports fine-granularity memory allocation.
However, the design incurs more management costs for persistent
memory. We defer the proposal of an efficient persistent global
index with key-granularity snapshot to future work.

PM→ SSD Compaction. Since the GI is globally sorted and
the snapshot of GI is immutable when performing compaction,
the compaction does not block the other writes for GI. Moreover,
the range of GI can be conveniently split to perform paralleled
compactions even for 𝐿0.

Consistency. The compaction from PM to SSD involves the
change of database state, which should avoid inconsistency caused
by system crashes. We address the problem by maintaining the
manifest log in SSD to record database state since it is not in the
critical path of writes. The snapshot of GI manages records coming
from several memtables. The metadata of the memtables is kept in
Halloc until it is completely compacted into SSD. When a system
crashes during compaction from PM to SSD, the data records in PM
are removed by replaying manifest logs. And the index nodes for
records in PM are rebuilt upon startup.

3.4 Halloc
Halloc addresses the drawbacks of general purpose PM allocators
with three key designs: pool based objects preservation, application-
aware memory management and unified memory allocation. Many
general purpose persistent PM allocators consider both random
allocations and deallocations, which results in very fragmented
memory allocation and expensive cacheline flushes and fences.
Moreover, they suffer from the memory space consumption when
working with current transient PM allocators (e.g., memkind[12]),
which are normally designed with extra volatile PM pool. Halloc
does not enforce the fixed position of memory mapping. All objects
for an object pool are addressed by internal 8 bytes integer and
their actual memory addresses are remapped from a DAX mapped
file upon restart.

3.4.1 Pool Based Objects Preservation. To reduce memory frag-
mentation, Halloc employs persistent objects pool to preserve non-
overlapping memory space between pools. And each pool stores
fixed size objects and the allocation or deallocation of memory is
performed in object granularity. An object pool consists of a meta-
data region to store the description of pool (e.g., pool size, object size
and object count), an objects array, and a log-free freelist (persistent
linked list) to track freed objects. The objects allocation/deallocation
of a persistent pool involves multi-words updates of freelist, which
often exceeds the hardware limit for atomicity guarantee. As a
result, a power outage may lead to persistent memory leaks for
objects managed by a persistent freelist. Existing approaches, e.g.,
PMDK[5], employs transactional semantics addressing the problem,
but they incur extra overheads of logging. We avoid logging by
employing the approach described below.

Specifically, we reserve one bit for each object index of freelist
and design four interfaces to guarantee the atomic object alloca-
tion/deallocation: Get to get a free object from freelist, Commit to

1878

persist object, Check to check whether the given object is commit-
ted thereby applications can determine whether an object should
be dropped, and Release to release an object. As shown in Figure
9, the first three operations are used to guarantee atomic allocation.
To allocate an object, (1) the object a pointed by ℎ𝑑 is allocated by
Get (➊); (2) the object a is initialized and persisted by applications
(➋); (3) applications call Commit (➋) to toggle the bit of object in-
dex to mark a as persisted. If ➋ fails, i.e., because of a power outage,
the object a will be leaked without Commit. If ➌ fails, the object
a will be overwritten without Check. Release is implemented by
resetting the bit of object index and putting it to the freelist. In case
of a power outage, the object is still reclaimed upon startup.

To recover an objects pool during startup, the freelist is firstly
traversed at startup and all objects that can be reached from freelist
are marked in a temporary bitmap. An object that is not committed
and not reachable in freelist is marked as a leaked object and re-
claimed. The design incurs extra overheads during system recovery.
However, we observe that scanning one million objects costs only
milliseconds. The recovery cost is negligible in our system.

3.4.2 Application-aware Memory Management. Halloc provides
two memory management pools for the LSM-tree: customized ob-
jects pool and zone pool. This is based on the memory use pattern of
target applications. Specifically, the memory allocation of memtable
for LSM-tree is in append-only and batch reclaiming mode.

Customized Objects Pool. As shown in Figure 8, Halloc main-
tains two kinds of customized persistent object pools to provide
metadata persistence for LSM-tree: the Subtable pool to persist
the column family object[6, 26] and the memtable pool to manage
PM memories for memtable. A Subtable object in Subtable pool
contains a list of memtable objects linked by memlist similar to
the log-free freelist, where the first memtable is mutable and the
others are immutable, similar to the specification of RocksDB. And
the memtable pool is an object pool, where each memtable object
consists of fixed number slots and each slot manages one memory
region to enable application-specific PM management. Since the
memtable of LSM-tree follows the append-only memory alloca-
tion, the gidx(a newly designed memory pointer seen in §3.3) of
memtable object is designed to reflect the allocation position.

Zone Pool. The zone pool is a built-in pool in Halloc to allow
applications to manage their own runtime memory. We design the
zone pool because the customized objects pool can not perform
memory allocation for objects with variable sizes and of unknown
number in runtime. In LSM-tree, KV pairs normally have different
sizes. Therefore, we can not preserve object pool for all KV pairs.
Specifically, the zone pool is utilized both by memtable for persis-
tent memory management and by volatile manager for transient
memory management. The zone objects allocated for memtable
follows the append-only and batch reclaiming memory allocation
scheme, which is similar to ZNS[9] for SSD and MSLAB[4] for
DRAM. The zone objects allocated for volatile manager are further
split into smaller units for random allocation/deallocation.

3.4.3 Unified Memory Allocation. Halloc builds volatile memory
manager directly on the zone pool so that both volatile allocation
and persistent allocation can be enabled from one PM pool. The
design enables a unified PM allocation scheme both for volatile

Figure 8: The structure of Halloc, subt: Subtable pool,memt:
memtable pool, am: active memtable and im: immutable
memtable.

b

1

ahd

0 id=10

b

3

ahd

1 id=10 CommitGet

b

2

ahd

0 id=10 Initialize

i i oi i o o ometa

objectindex freelist

Figure 9: Steps of allocating an object from a pool where the
ℎ𝑑 is a dummy head stored in𝑚𝑒𝑡𝑎 field.

allocation and persistent allocation, which improves the space ef-
ficiency of memory management. Similar to memkind, Halloc im-
plements the volatile memory allocation by wrapping the jemalloc
as the volatile manager, where the configurable memory arenas
(memory regions in jemalloc) from PM are registered to jemalloc
to manage transient allocations. Zone objects allocated from zone
pool for volatile purposes do not perform commit, hence all the
zone objects allocated for volatile purposes are reclaimed after the
system restart.

One limitation of the design for volatile manager based on zone
pool is that the size of a volatile object can not exceed the size
of a zone object, because pool based design for zones guarantees
only one continuous memory region in one zone object. However,
we can divide large volatile object into multiple small objects and
perform small allocation for each object. Moreover, if the memory
footprint for large volatile objects can be predicted, we can preserve
such objects specifically in our objects pool for volatile purposes.

4 EVALUATION
In this section, we first use the YCSB and TPCC benchmarks to eval-
uate the overall performance of our proposal. Then we evluate each
individual component designed in Section 3 with microbenchmarks.

Implementation.We base our implementation on an existing
storage engine (denoted as XS) over DRAM-SSD hierarchy which is
in turn based on the forked versions of LevelDB and RocksDB. We
denote our new proposal over PM-SSD architecture in this work as
XP. Specifically, XP replaces the original concurrent skiplist based
memtable in XS with our semi-persistent memtable and use ROR
algorithm to avoid WAL. Moreover, XS originally employs unsorted
𝐿0 data blocks on SSD. In XP, we replace the 𝐿0 by the Global Index
in PM with in-memory compaction. Specially, XS enables intra-𝐿0
compaction feature to merge several unordered data blocks in 𝐿0
into a large one to reduce the read amplification in 𝐿0 in write
heavy workload.

1879

12
10
8
6
4
2
00

5

10

15

20

Seq
load

Uni
A

Zipf Uni
B

Zipf Uni
C

Zipf Latest
D

Uni
E

Zipf Uni
F

Zipf

XS XP XS-PM XP-PM

0

0.1

0.2

0.3

0.4

A B C D E F

XS XP XS-PM XP-PM

Th
ro
ug
hp
ut
 (1
00
K
op
/s)

La
te
nc
y
(m
s/o
p)

(a) Throughout for ycsb benchamrk (b) Average latency for uniform workload A

U
til
 (1
00
%
)

10
0G
B

0.
45

0
2
4
6
8

10
12

Accumulated
write I/Os

Average CPU
consumption

XS-LD XP-LD XS-A XP-A

(c) CPU and I/O consumption

Figure 10: YCSB evaluation, A: reads/updates(50/50), B: reads/updates(95/5), C: reads(100), D: read-latest/updates(95/5), E:
scans/updates(95/5) and F: reads/read-modify-writes(50/50).

Th
ro
ug
hp
ut
 (1
0 K
op
/s)

0.
55

0.
33

0.
35 1.
93

0.
21

0.
26

6.
23

1.
70

1.
66

13
.4
8

0.
90 1.
52

0.
25

0.
15 0.
15 0.
76

0.
23

0.
050.
58

5.
96

20.95

4.
74

3.
05

0.
78

0

5

10

15

20

25

A B C D E F

XS XP

NoveLSM SLMDB

40
.5
6

172.32

23
.1
8

7.
79

0

50

100

150

200

load

Figure 11: Evaluation for single LSM-tree with 40GB dataset.

0

5

10

15

20

100GB 200GB 300GB 400GB 500GB 600GB

XS XP

Th
ro
ug
hp
ut
 (1
00
K
op
/s)

Figure 12: Database size sensitivity for YCSB workload D un-
der 32 client threads.

Experimental Setup. Unless otherwise stated, we configure a
single memtable, the global index (formerly the 𝐿0) and 𝐿1 of a sin-
gle LSM-tree (i.e., a subtable or a partition of a table) as 256MB, 8GB,
and 8GB, respectively. In the baseline, we use 256MB 𝐿0 instead.
Our proposal enables a much larger 𝐿0 than that in the baseline.
Therefore, a large portion of 𝐿0-related I/O amplification is removed
by replacing 𝐿0 with a PM-resident global index. We use synchro-
nous WAL for all baselines to guarantee durability and employ the
direct I/O to bypass the OS page cache for all test cases.

We run the evaluations in an ECS instance on Alibaba Cloud
(ecs.ebmre6p.26xlarge). The instance is equipped with two Intel(R)
Xeon(R) Platinum 8269CY CPUs, with a 32KB L1 cache and a 1MB
L2 cache per core. All cores in a socket share a 36MB L3 cache.
The ECS instance has 187GB DRAM and 1TB Optane DCPMM
persistent memory across two NUMA nodes, each of which has
4 interleaved DCPMMs (512GB in total) in AppDirect mode. We
attach a 2TB ESSD of the highest performance level PL3 (Enhanced
SSD [3]) to the instance as the durable storage. For all experiments,
we use mmap to map a file in ext4 file system by DAX mode and
employ libpmem of PMDK for the basic flush and persistence oper-
ations. The instance runs Linux with kernel version 4.19.81. And
all DCPMM modules are exported as two special storage devices,
where each NUMA node is attached with one storage device.

4.1 Overall Performance
YCSB Benchmark. We pre-load 800 million records with 8-byte
key and 500-byte value spanning 16 subtables (i.e., LSM-trees),
which results in around 500GB of data in total. We consider four

configurations: (1) XS with WAL flushed to the ESSD cloud storage
(XS), (2) our proposal with 200GB space managed by Halloc in the
PM (XP), (3) the XS with the WAL and all levels of the LSM-tree
stored in the PM (XS-PM), and (4) our proposal with all data stored
in the PM (XP-PM), similarly. Configuration (1) and (2) resemble
how we deploy LSM-tree in practice now, and how we plan to use
the PM with our proposal, respectively. In configuration (3) and
(4), we aim to examine how they perform if the durable storage is
replaced with the PM. For all cases, we use 32 client threads with
both uniform and zipfian request distributions for 30 minutes.

Write-intensiveWorkloads(A,F).As shown in Figure 10, with
an uniform distribution in the workload, XP/XP-PM outperforms
XS/XS-PM by 3.8x/2.3x for workload A and by 2.7x/2.2x for work-
load F, respectively. And, XP has lower access latencies (36% smaller)
than XS (Figure 10(b)). With the skewed distribution (zipfian factor
= 1), the gap between XP and XS reduces, while XP-PM performs
worse than XS-PM. These results show in general that the efforts
made by our proposed XP to reduce disk I/Os pay off, compared
with the baseline where significant accesses fall in the storage. The
XS-PM performs well, especially when the workload is skewed, be-
cause all the data fits in the DRAM and the PM, which is considered
to be an expensive architecture in this work.

Read-intensiveWorkloads(B,C,D,E).With the uniform distri-
bution, XP/XP-PM outperform XS/XS-PM by 1.7x/1.2x on workload
B and by 1.4x/1.1x on D and have lower access latencies (reduced by
39%/26% on B and D respectively) because both workloads benefit
from faster writes of XP. With the zipfian distribution, XP/XP-PM
has a little gain (1.1x/1.05x) for workload B because accesses are
skewed towards the DRAM part of XS/XS-PM. Both XP and XP-PM
have no performance improvement over XS and XS-PM on work-
load C and workload E, because most data has been compacted into
the storage. We leave a PM-resident cache as our future work.

CPU and I/O Consumption. The CPU consumption and accu-
mulated write I/O consumption in YCSB load and workload A are
shown in Figure 10(c). The result shows that XP has better CPU
utilization and reduces the accumulated write I/O by 94% compared
with XS in workload A. This is because the XP removes WALs and
flushes and enables the enlarged persistent 𝐿0 in PM to absorb more
updates by in-memory compactions. While in YCSB load, XP has
higher CPU consumption than XS because we load data sequen-
tially with 4 client threads and the ROR employs the busy waiting
in write pipeline.

Database Size Sensitivity. We vary the database size from
100GB to 600GB and run the YCSB D as a typical OLTP work-
load in this evaluation. Figure 12 shows that the performance of
XS degrades by 88% with the growth of databse size while the XP
degrades by 27%. This is because XP always stores the latest hot

1880

0

5

10

15

20

25

30

P9
5
La
te
nc
y
(m
s)

Th
ro
ug
hp
ut
 (
K
op
/s)

0
5
10
15
20
25
30
35

XS
XP

XS
XP

Figure 13: Evaluation for TPC-C benchmark.
data into the larger and faster PM. However, the XS has to read
latest updates from the slow disk each time we start the test.

Single LSM-tree Evaluation. We now compare our proposal
with the state-of-the-art PM-based LSM-tree alternatives SLMDB
and NoveLSM, all configured as a single LSM-tree. We run YCSB
workloads with 4 client threads and load 40GB of data in total. Fig-
ure 11 shows that XP has the highest write throughput (22x faster
than SLMDB and 7x faster than NoveLSM) while loading data. We
find that SLMDB and NoveLSM do not support concurrent writes.
SLMDB incurs large overheads in maintaining the consistency be-
tween disk records and PM records in flushes and compactions,
which exacerbates the write performance. The SLMDB achieves
the highest read performance as shown in workload C, because it
employs a single level architecture with PM and each read costs at
most one disk I/O.

TPC-C Benchmark. We integrate our proposal into MySQL
as a storage engine plugin and run TPC-C benchmark with 1000
warehouse (80GB initial database size in total) for 30minutes. Figure
13 shows that the performance of XP outperforms XS by more than
2x and decreases the P95 latency by 62% for transactions. However,
XP suffers from larger performance fluctuations because it employs
all-to-all compactions from 𝐿0 in PM to 𝐿1 in disk, which causes
more aggressive cache evictions in the LSM-tree. We leave the
optimizations of compactions and caches as future work.

4.2 Evaluation of Semi-persistent Memtable
In this section, we disable all flushes and compactions to evalu-
ate the performance of the semi-persistent memtable. We bypass
ROR by setting the batch size of ROR to 50 as the batch size has
saturated the DCPMM hardware. We compare the DRAM-based
skiplist (SLM) with our semi-persistent memtable (shown in Figure
14). We also implement the FAST&FAIR[27] (a persistent B+tree)
based memtable (denoted as FFM) and the variant of FPTree[44] (a
persistent B+tree with internal nodes in DRAM) based one with
optimistic lock coupling (denoted as FPM). Since both FAST&FAIR
and FPTree do not originally support variably-sized keys, we add a
runtime key parser and store only key pointers for them. We eval-
uate the semi-persistent memtable with the volatile index nodes
managed by the jemalloc in the DRAM (SPM-D) and the proposed
Halloc in the PM (SPM-P), separately. We insert 30 million records
with 8-byte key and 32-byte value (1.5GB dataset in total), which
is translated into the 50-byte record with 17-byte internal key and
33-byte value in the memtable.

Insertion Performance. Figure 14 (a) and (b) show the write
throughput while increasing the number of threads from 1 to 32.
Firstly, SPM-P perform similarly with SPM-D in most cases, al-
though its volatile index nodes stay in the slower PM. Secondly,
compared with LSM/FFM/FPM, SPM-D is up to 5.9x/5.8x/8.3x faster
for sequential writes, and 2.9x/5.7x/6.0x for random writes. Both

SPM-D and SPM-P significantly outperform SLM in terms of inser-
tion performance although the SLM is entirely in DRAM. This is
because the SPM-D is a tries-based index without binary search
and puts the internal nodes into faster DRAM. Although the FPM
also puts the internal nodes into DRAM, it depends on the runtime
key parser in our implementation to load keys from the slow PM.

Lookup Performance. Shown in Figure 14(c), the point lookup
performance of SPM-D consistently outperforms SLM/FFM/FPM
by up to 2.7x/14x/16x, respectively. For lookups, SPM adopts prefix
matching while the baselines adopt binary searching. FPM employs
the fingerprint to speedup point lookup. However, in the memtable,
a point lookup is transformed into a short range scan to get the
latest sequence for a key, reducing the benefits of the fingerprint.
And, the design of out-of-order leaf nodes in FPM exacerbates the
scan performance. The SPM-P is slightly slower than SPM-D as the
SPM-P puts the volatile internal nodes into slower PM. For scan
performance (Figure 14 (d)), both SPM-D and SPM-P are signifi-
cantly slower than SLM. However, the slowdown is not caused by
the index but the slower PM I/Os. Although the trie-based index
suffers from poor scan performance in DRAM-based solutions, it is
not the bottleneck in our solution. In fact, our profiling shows that
70% of the time for SPM is consumed by reading records from PM
for random scan while SLM reads records from the faster DRAM.

4.3 Evaluation of Reorder Ring
In this experiment, we disable all flushes and compactions to evalu-
ate the performance of ROR. Each thread inserts one million records
with 24 bytes. We evaluate the impacts of both the thread number
and the batch size.

Impact of Batch Size. Figure 16(a) reports the correlation of
throughput and latency (avg and P99 for the 50% and 99% of the
longest time for inserting each record, respectively) when we fix
the thread number to 32 and adjust the batch size from 1 to 100.
The result shows that the throughput gains largely by 49x when
the batch size increases from 1 to 90. However, the latency of avg
and P99 increases by 1.3x and 1.7x, respectively. This is because
each batch is processed parallelly after ROR has reordered them.
The throughput outperforms the raw performance (24Mops/s of
random writes) of DCPMM hardware by 1.3x when batch size is 90
as ROR employs sequential cache flushing and uses less memory
barriers than random writs. The throughput improvement slows
down when the batch size is larger than 90 as the the hardware
has been saturated, where the P99 latency increases by 1.7x but the
throughput gains by only 1.4x when the batch size increases from
50 to 90. The performance drops when the batch size is larger than
90 since large batches may block serial commits.

Impact of Thread Number. In Figure 16(b), We fix the batch
size to 50 and vary the thread number from 1 to 64. The results show
that the throughput scales almost linearly when the thread number
increases from 1 to 16. When increasing the thread number from
16 to 64, the throughput improves by only 1.1x but the P99 latency
increases significantly by 2.9x. The reason is that the high resource
contention inside DCPMM limits its ability to handle accesses from
multiple threads simultaneously. The evaluation shows that the
configuration with batch size equal to 50 and threads number less

1881

Th
ro
ug
hp
ut
 (M
op
s)

(a) Sequential write (b) Random write (c) Random read (d) Random scan

SLM FFM FPM

0

2

4

6

8

10

0

5

10

15

20

25

0

0.4

0.8

1.2

1.6

2

SPM-D SPM-P

0

3

6

9

12

15

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Figure 14: Performance evaluation of memtables with threads increasing from 1 to 32.

(a) Random write for different sizes (b) Random lookup for different sizes (c) Random scan for different sizes (d) Performance stability

Th
ro
ug
hp
ut
 (M
op
s)

0

2

4
6

8

10

12

14

0

1

2
3

4

5

6

7

5 30 55 80 10
5

13
0

15
5

18
0

20
5

23
0

25
5

28
0

30
5

33
0

35
5

38
0

40
5

43
0

45
5

48
0

50
5

53
0

55
5

58
0

XS XS-PM XP

32GB 20GB

343GB

15x speedup85% drop

0

0.2

0.4

0.6

0.8

1

64 128 256 500 1024 4096

XS XS-PM XP

64 128 256 500 1024 4096

XS XS-PM XP
1

0.7

0.4

0.04

0.02

0
64 128 256 500 1024 4096

XS XS-PM XP
17

12

7

2

0.1

0

Figure 15: Evaluation for Global Index, where Figure (a-c) depicts the read and write throughout under different record size
and (d) shows the performance stability over time.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

Throughput (Mops/s)

avg p99

bs=50bs=20

bs=90bs=30
raw,24

La
te
nc
y
(u
s)

(a) Impact of batch size

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Throughput (Mops/s)

avg p99

thrd=16

thrd=8

thrd=64

thrd=4

raw,24

(b) Impact of thread number

Figure 16: Throughput-Latency Correlation for ROR, (a): im-
pact of batch size and (b): impact of the number of threads.

Allocation size (byte)

La
te
nc
y
(u
s)

1.
72

1.
87

2.
3 3.
4 6.

28 6.
88

0.
85

0.
91

1.
11 1.
98 3.
18

15.78

0.
66

0.
74

0.
8

0.
81

0.
85

0.
93

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0

5

10

15

20

128 256 1024 4096 8192 16384

pmemobj ral loc
halloc-zone halloc-pool

Figure 17: Evaluation of Halloc for persistent performance.

than 16 is a good choice for ROR algorithm in DCPMM for 24-byte
records. However it depends largely on machines and workloads.

4.4 Evaluation of Global Index
To evaluate the Global Index (GI), we use single LSM-tree and
insert data with size less than the size limit of GI to ensure that
the GI is not compacted to disk. We choose the XS and XS-PM for
comparisons and disable compaction from 𝐿0 to 𝐿1 to leave all data
blocks in 𝐿0. We reserve 10GB block cache and 5GB row cache.

System Performance.We insert 50GB records with 8-byte key
and value size increasing from 64 bytes to 4KB bytes and measure
the performance of random write, random read and random scan
under different KV sizes. Figure 15(a) shows that the XP outper-
forms XS and XS-PM for all cases because XP avoids WAL and
flushes. In Figure 15(b) and 15(c), XP largely outperforms XS and
XS-PM in random read and random scan workloads, more than
113x for random read and 21x for random scan respectively. This is

77.9

46.6

24.3
12.8 7.6 5.3 3.6 3.3

0

20

40

60

80

100

1 2 4 8 16 32 64 104

1137.4

233.4
3.3

0
200
400
600
800

1000
1200

XS XS-PM XP

34
5x

sp
ee
du
p

Re
co
ve
ry
 ti
m
e (
s)

(a) Instances (b) Number of threads

Figure 18: Recovery time, where Figure (a) depicts recovery
performance for different instances and (b) shows themulti-
thread scalability for XP.

because we disable the 𝐿0 → 𝐿1 compaction in XS, thereby causing
large read amplification due to plenty of unordered data blocks in
𝐿0 (over 58 files). The XP avoids the problem thanks to the GI.

Performance Degradation. In the experiment, we run random
reads/writes (1:1) with 32 threads for 10 minutes. Figure 15(d) illus-
trates that XP is faster (up to 15x speedup) and more stable (less
than 35% performance drop) than XS and XS-PM while XS and
XS-PM suffer from more than 85% performance drop. For the XS,
the accumulated unsorted 𝐿0 results in large overheads for reads
(more than 30 unordered data blocks). Since XS may merge multiple
unordered data blocks in 𝐿0 into a large one to reduce read amplifica-
tion, the performance of XS increases when time=230 and time=355.
However, it is still significantly slower compared to XP, even XP
writes about 345GB records in total while XS/XS-PM only write
30GB/32GB records in the test cycle. In contrast, XP persists data in
PM with no needs of WAL and performs in-memory compaction at
record granularity, which almost avoids the read amplification. The
feature benefits significantly in case of the write-heavy workload
where too many data blocks may pile in 𝐿0.

4.5 Evaluation of Halloc
We compare Halloc with the state-of-the-art representative persis-
tent allocators including Ralloc[11] and pmemobj v1.4[5] to evalu-
ate its persistent performance. We exclude transient performance
of Halloc with libmemkind[12] since both of them are the wrap-
per of jemalloc. More performance evaluations about such kind of
transient allocators can be found in Waddington et al.[48].

1882

We test the latency for memory allocation by measuring the
duration of performing 1 million allocations of objects with size
varying from 128 bytes to 16KB. Figure 17 shows that Halloc-zone
consistently has the lowest latency across all allocation sizes. Fur-
thermore, Halloc-pool has latency less than 1 us for all test cases.
Although ralloc has a little shorter latency than Halloc-pool for
allocation size of 128 bytes or 256 bytes, its performance decreases
significantly when the allocation size grows larger. For example,
for allocation size of 16KB, the latency of ralloc is around 15x of
Halloc-zone or Halloc-pool. The pmemobj allocator consistently
has the largest latency for allocation size less than 16K. The perfor-
mance advantage of Halloc is largely due to the fact that it issues
only one cache flush and one fence for objects of any size.

4.6 Recovery Time
In the experiment, we compare our solution (XP) with XS and
XS-PM to evaluate the recovery performance. We randomly insert
data of around 32GB with 8-byte key and 500-byte value, which is
around 70 million records in total. The size limit of Global Index is
set to 32GB, which enforces that all of the 32GB records are only
stored in 𝐿0 (Global Index) for XP. For XS and XS-PM, we maintain
32GB data in memory with no flushes and compactions, which
results in at least 32GB valid WAL at runtime.

We set the number of recovery threads varying from 1 to 104
for XP. Figure 18(a) shows that our solution achieves nearly instant
recovery, i.e., 3.6s for 64 threads. However both the XS and the
XS-PM take hundreds of seconds. The original design of XS only
uses single thread to replay the WAL upon startup time, while our
solution utilizes all CPU resources to simultaneously rebuild the
index nodes. The recovery time is almost reduced linearly with the
increasing number of threads (Figure 18(b)).

5 RELATED WORK
One of the major benefits of building databases on the PM is the
potential to achieve durable transactions without using disk-based
log files (e.g., WALs, redos, etc.). While directly porting the WAL
from the slower SSD to the PM helps [36, 52, 53], the latency of
writing logs remains in the critical path of transactions. To make
it even more challenging, current PM hardware only supports 8-
byte atomic writes [53], and further requries expensive memory
fences and flushes to achieve the atomicity and persistency. Thus,
some existiing work replaces database logs with internal logs to
overcome this limitation [5, 47]. Such logging mechanisms may still
cause up to around 35% overhead [50]. PMwCAS[49], CoW[16] and
NAW[13, 37] enable log-free data structures for the design of range
indexes in PM. However, the NAW and CoW significantly rely on
expensive general purpose PM allocators and the PMwCAS incurs
extra overhead for persisting the multi-word descriptor buffers[37].
They have been found to be inefficient for large objects (>100
bytes)[35] and only work for single KV operations. In this work, we
propose a transaction processing mechanisms and data structures
on the PM that support multiple KVs and OLTP workloads.

There are many interesting byproducts after making transac-
tions persistent on the PM in this work. Firstly, in-memory data
structures (e.g., memtables, indexes) can resume working at their

normal performance very quickly after a recovery or reboot, be-
cause their major parts are natively persistent. This feature has
great potentials for the HA (high availability) of databases. For
example, we may no longer need to maintain fresh and full-fledged
database replicas for HA purposes. Secondly, regarding of LSM-tree
based storage engines, moving structures from the disk into the PM
(e.g., 𝐿0) natively reduces the I/Os and CPUs that are previously
required for flushes and compactions, introducing new perspectives
to address LSM-tree challenges. Both the overall performance and
the endurance of the storage benefit from such design.

Bortnikov et al. [10] and Balmau et al. [8] have explored in-
memory compactions such as merging hot records in the memory
in advance. On the DRAM, however, such optimizations may in-
crease pressures on the memory footprints, which is less of an
issue in the PM. In this work, we strike at making PM-native data
structures along with their access methods (e.g., compactions). On
PM-native data structures, approaches[36] that directly put the
disk-resident levels into PM to speedup the I/O in compaction suf-
fer from high overheads in data copying between levels. TLSM
uses the persistent skiplist as levels in PM[32], but the persistent
skiplist shows poor merge performance. MatrixKV[54] proposes
the matrix container to maintain the 𝐿0 in PM, but still shows inef-
ficiency in range query as data records in matrix container are not
globally sorted. SLMDB[30] maintains a persistent mutable B+tree
in LSM-tree to improve read performance and compacts LSM-tree
with persistent B+tree. However, the solution suffers from large
overheads in maintaining the consistency between the B+tree and
LSM-tree. FPTree uses fingerprints to accelerate point lookups and
exploits Hardware Transactional Memory (HTM) for concurrency
control [44]. In this work, we are looking at general-purpose data
structures that perform reasonably well for a wide range of work-
loads including range lookups, inserts, and deletes, and can be
integrated into existing LSM-tree backed OLTP storage engines
with acceptable engineering efforts.

6 CONCLUSION
In this work, we investigate how to leverage PMs to revisit the con-
ventional LSM-tree based OLTP storage engines. Specifically, we
(1) propose a light-weight PM allocator called Halloc optimized for
LSM-tree, (2) design a high-performance semi-persistent Memtable
utilizing the persistent in-memory writes of PM, (3) design the con-
current Reorder Ring algorithm to achieve log-free transactions for
OLTP workloads and (4) present a Global Index as the new globally
sorted persistent level with non-blocking in-memory compaction.
Our evaluation shows that these key designs can unleash the power
of PM-SSD storage architecture to significantly improve the per-
formance of LSM-tree based OLTP storage engines. The overall
evaluation shows that the performance of our proposal over PM-
SSD storage hierarchy outperforms the baseline over DRAM-SSD
storage hierarchy by up to 3.8x in YCSB benchmark and by 2x in
TPC-C benchmark.

ACKNOWLEDGMENTS
This work is partially supported by the National Natural Science
Foundation of China (project No.61772056) and the National Key
R&D Program of China under Grant 2019YFB2102400.

1883

REFERENCES
[1] Intel 2015. Intel and Micron Produce Breakthrough Memory Technology. Intel.

Retrieved May 29, 2021 from https://newsroom.intel.com/news-releases/intel-
and-micron-produce-breakthrough-memory-technology

[2] Intel 2019. The Challenge of Keeping Up with Data. Intel. Retrieved May 29,
2021 from https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html

[3] Alibaba Cloud 2021. Enhanced SSDs, Alibaba Cloud. Alibaba Cloud. Retrieved
May 29, 2021 from https://www.alibabacloud.com/help/doc-detail/122389.html

[4] Apache 2021. HBase, a distributed, scalable, big data store. Apache. Retrieved
May 29, 2021 from https://github.com/google/leveldb

[5] Intel 2021. PMDK: Persistent Memory Programming. Intel. Retrieved May 29,
2021 from https://pmem.io/pmdk/

[6] Facebook 2021. Rocksdb, a persistent key-value store for fast storage enviroments.
Facebook. Retrieved May 29, 2021 from https://rocksdb.org/

[7] Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile memory
database management system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Vol. Part F127746. Association for Computing
Machinery, New York, New York, USA, 1753–1758. https://doi.org/10.1145/
3035918.3054780

[8] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. {TRIAD}: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17). 363–375.

[9] Matias Bjørling. 2019. From open-channel SSDs to zoned namespaces. In Linux
Storage and Filesystems Conference (Vault 19). 1.

[10] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
2018. Accordion: Better memory organization for LSM key value stores. Proceed-
ings of the VLDB Endowment 11, 12 (2018), 1863–1875. https://doi.org/10.14778/
3229863.3229873

[11] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati,
and Michael L. Scott. 2020. Understanding and optimizing persistent memory
allocation. International Symposium onMemory Management, ISMM (2020), 60–73.
https://doi.org/10.1145/3381898.3397212 arXiv:2003.06718

[12] Christopher Cantalupo, Vishwanath Venkatesan, Jeff R. Hammond,
Krzysztof Czury lo, and Simon Hammond. 2015. User Extensible Heap
Manager for Heterogeneous Memory Platforms and Mixed Memory Policies. Intel.
Retrieved May 29, 2021 from http://memkind.github.io/memkind/

[13] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[14] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An efficient log-structured key-value storage engine for persistent
memory. International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS (2020), 1077–1091. https://doi.org/
10.1145/3373376.3378515

[15] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. ACM SIGARCH Computer
Architecture News 39, 1 (2011), 105–118.

[16] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on Oper-
ating systems principles. 133–146.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with ycsb. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010.

[18] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous merging. In
Proceedings of the 2018 International Conference on Management of Data. 505–520.

[19] Niv Dayan and Stratos Idreos. 2019. The log-structured merge-bush & the
wacky continuum. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Vol. 4. Association for Computing Machinery, New York,
New York, USA, 449–466. https://doi.org/10.1145/3299869.3319903

[20] Alexander Driskill-Smith. 2010. Latest advances and future prospects of STT-
RAM. In Non-Volatile Memories Workshop. 11–13.

[21] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM Footprint with NVM in Facebook. Proceedings of the 13th EuroSys Confer-
ence, EuroSys 2018 2018-Janua (2018). https://doi.org/10.1145/3190508.3190524

[22] Jason Evans. 2006. A scalable concurrent malloc implementation for FreeBSD. In
Proceedings of the bsdcan conference, ottawa, canada.

[23] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[24] Sanjay Ghemawat and Jeff Dean. 2011. LevelDB. Google. Retrieved May 29, 2021
from https://github.com/google/leveldb

[25] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR) 15, 4 (dec 1983), 287–317.

https://doi.org/10.1145/289.291
[26] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying

Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-engine: An
optimized storage engine for large-scale e-commerce transaction processing.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data. Association for Computing Machinery, 651–665. https://doi.org/10.1145/
3299869.3314041

[27] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte- Addressable Persistent B+-Tree. 187–200
pages. https://www.usenix.org/conference/fast18/presentation/hwang

[28] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-atomic persis-
tent memory updates via JUSTDO logging. ACM SIGARCH Computer Architecture
News 44, 2 (2016), 427–442.

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent memory
module. arXiv preprint arXiv:1903.05714 (2019).

[30] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, SamH. Noh, and Young ri Choi.
2019. SLM-DB: Single-level key-value store with persistent memory. Proceedings
of the 17th USENIX Conference on File and Storage Technologies, FAST 2019 (2019),
191–205.

[31] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Georgia Tech, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile
Memory with NoveLSM. In USENIX Annual Technical Conference. 993–1005.
https://www.usenix.org/conference/atc18/presentation/kannan

[32] Jihwan Lee, Won Gi Choi, Doyoung Kim, Hanseung Sung, and Sanghyun Park.
2020. TLSM: Tiered Log-Structured Merge-Tree Utilizing Non-Volatile Memory.
IEEE Access 8 (2020), 100948–100962. https://doi.org/10.1109/ACCESS.2020.
2985407

[33] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38–49.

[34] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of practical synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware. 1–8.

[35] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of
the VLDB Endowment 13, 4 (2019), 574–587. https://doi.org/10.14778/3372716.
3372728

[36] Jianhong Li, Andrew Pavlo, and Siying Dong. 2017. NVMRocks: RocksDB on
non-volatile memory systems.

[37] Jihang Liu, Shimin Chen, and Lujun Wang. 2019. LB + -Trees : Optimizing
Persistent Index Performance on 3DXPoint Memory. 13, 7 (2019), 1078–1090.

[38] Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey.
VLDB Journal 29, 1 (2020), 393–418. https://doi.org/10.1007/s00778-019-00555-y

[39] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks : LSM-Tree
Database Storage Engine Serving Facebook ’ s Social Graph. Proceedings of the
VLDB Endowment 13, 12 (2020), 3217–3230.

[40] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992.
ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking
and Partial Rollbacks UsingWrite-Ahead Logging. ACM Transactions on Database
Systems (TODS) 17, 1 (jan 1992), 94–162. https://doi.org/10.1145/128765.128770

[41] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy
Ranganathan, and Nathan Binkert. 2013. Consistent, durable, and safe memory
management for byte-addressable non volatile main memory. In Proceedings of
the 1st ACM SIGOPS Conference on Timely Results in Operating Systems, TRIOS
2013. Association for Computing Machinery, Inc, New York, New York, USA,
1–17. https://doi.org/10.1145/2524211.2524216

[42] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
https://doi.org/10.1007/s002360050048

[43] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. 2017. Memorymanagement techniques for large-scale
persistent-main-memory systems. Proceedings of the VLDB Endowment 10, 11
(2017), 1166–1177. https://doi.org/10.14778/3137628.3137629

[44] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 371–386. https://doi.org/10.
1145/2882903.2915251

[45] John D Valois. 1994. Implementing lock-free queues. In Proceedings of the seventh
international conference on Parallel and Distributed Computing Systems. 64–69.

[46] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (2019). https:
//doi.org/10.1145/3329785.3329930 arXiv:1904.01614

1884

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.alibabacloud.com/help/doc-detail/122389.html
https://github.com/google/leveldb
https://pmem.io/pmdk/
https://rocksdb.org/
https://doi.org/10.1145/3035918.3054780
https://doi.org/10.1145/3035918.3054780
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.1145/3381898.3397212
https://arxiv.org/abs/2003.06718
http://memkind.github.io/memkind/
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3299869.3319903
https://doi.org/10.1145/3190508.3190524
https://github.com/google/leveldb
https://doi.org/10.1145/289.291
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/atc18/presentation/kannan
https://doi.org/10.1109/ACCESS.2020.2985407
https://doi.org/10.1109/ACCESS.2020.2985407
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1007/s002360050048
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1145/3329785.3329930
https://arxiv.org/abs/1904.01614

[47] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[48] Daniel Waddington, Mark Kunitomi, Clem Dickey, Samyukta Rao, Amir Ab-
boud, and Jantz Tran. 2019. Evaluation of intel 3D-xpoint NVDIMM technology
for memory-intensive genomic workloads. In Proceedings of the International
Symposium on Memory Systems. 277–287.

[49] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free
indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[50] William Wang and Stephan Diestelhorst. 2018. Quantify the performance over-
heads of PMDK. ACM International Conference Proceeding Series (2018), 7–9.
https://doi.org/10.1145/3240302.3240423

[51] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G. Andersen. 2018. Building a BW-tree takes more than
just BuzzWords. Proceedings of the ACM SIGMOD International Conference on

Management of Data 1 (2018), 473–488. https://doi.org/10.1145/3183713.3196895
[52] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson. 2019. Finding

and Fixing Performance Pathologies in Persistent Memory Software Stacks. Inter-
national Conference on Architectural Support for Programming Languages and Oper-
ating Systems - ASPLOS (2019), 427–439. https://doi.org/10.1145/3297858.3304077

[53] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 169–182. https://www.usenix.org/conference/
fast20/presentation/yang

[54] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
17–31. https://www.usenix.org/conference/atc20/presentation/yao

1885

https://doi.org/10.1145/3240302.3240423
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3297858.3304077
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/atc20/presentation/yao

