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ABSTRACT
Personalized PageRank (PPR) has wide applications in search en-

gines, social recommendations, community detection, and so on.

Nowadays, graphs are becoming massive and many IT companies

need to deal with large graphs that cannot be fitted into the memory

of most commodity servers. However, most existing state-of-the-art

solutions for PPR computation only work for single-machines and

are inefficient for the distributed framework since such solutions

either (i) result in an excessively large number of communication

rounds, or (ii) incur high communication costs in each round.

Motivated by this, we present Delta-Push, an efficient framework

for single-source and top-𝑘 PPR queries in distributed settings. Our

goal is to reduce the number of rounds while guaranteeing that the

load, i.e., the maximum number of messages an executor sends or

receives in a round, can be bounded by the capacity of each executor.

We first present a non-trivial combination of a redesigned parallel

push algorithm and the Monte-Carlo method to answer single-

source PPR queries. The solution uses pre-sampled random walks

to reduce the number of rounds for the push algorithm. Theoretical

analysis under theMassively Parallel Computing (MPC)model shows

that our proposed solution bounds the communication rounds to

𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
) under a load of 𝑂 (𝑚/𝑝), where𝑚 is the number of

edges of the input graph, 𝑝 is the number of executors, and 𝜖 is a

user-defined error parameter. In the meantime, as the number of

executors increases to 𝑝 ′ = 𝛾 · 𝑝 , the load constraint can be relaxed

since each executor can hold 𝑂 (𝛾 ·𝑚/𝑝 ′) messages with invariant

local memory. In such scenarios, multiple queries can be processed

in batches simultaneously. We show that with a load of𝑂 (𝛾 ·𝑚/𝑝 ′),
our Delta-Push can process 𝛾 queries in a batch with𝑂 (log 𝑛2

log𝑛

𝛾𝜖2𝑚
)

rounds, while other baseline solutions still keep the same round

cost for each batch. We further present a new top-𝑘 algorithm that

is friendly to the distributed framework and reduces the number of

rounds required in practice. Extensive experiments show that our

proposed solution is more efficient than alternatives.
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1 INTRODUCTION
Given a directed graph 𝐺 , a source vertex 𝑠 , and a decay factor 𝛼 , a

random walk (more precise, a random walk with restart [11]) from

𝑠 is a random traversal on 𝐺 such that (i) it starts from 𝑠; (ii) at
each step it terminates at the current vertex with 𝛼 probability and

randomly jumps to one of the out-neighbors of the current vertex

with 1 − 𝛼 probability. The personalized PageRank (PPR) of vertex
𝑡 with respect to source 𝑠 is the probability that a random walk

from 𝑠 terminates at vertex 𝑡 . Intuitively, the personalized PageRank

𝜋𝑠 (𝑡) of vertex 𝑡 with respect to vertex 𝑠 indicates the importance

of vertex 𝑡 from the perspective of 𝑠 . Hence, PPR is widely used as a

vertex proximity in data mining area and has many applications in

search engines [19, 30], social recommendations [17], community

detection [2], spam detection [18], and so on.

Due to the important applications of PPR, it has attracted a

plethora of research work [25, 26, 36, 37, 39–41] to improve the ef-

ficiency of PPR computation. Most of the solutions are designed for

single-machines and hardly work in distributed settings. However,

graphs are becoming massive and growing rapidly in the era of

big data and many IT companies need to handle huge graphs that

cannot be fitted into the main memory of most commodity servers.

In such scenarios, single-machine algorithms no longer work and

distributed algorithms become the paradigm.

Bahmani et al. [6] utilize MapReduce to calculate PPR queries in

distributed setting and propose theDoubling algorithm to reduce the

communication round over the valiant Monte-Carlo approach. The

state-of-the-art Monte-Carlo based solution is DistPPR proposed

by Lin [24]. DistPPR still optimizes the Monte-Carlo method by

exploiting the parallel pipeline framework. They further introduce

optimization techniques to avoid exploding the memory capacity

by hierarchical sampling on large vertices and save sampling cost

by pre-storing short random walks on vertices with a small de-

gree. However, Monte-Carlo based methods [6, 24] incur a large

number of random walks and can hardly measure the workload

of each vertex, making it difficult to design a load-balancing parti-

tion scheme. Besides, the pipeline method makes the load, i.e., the

maximum number of messages an executor sends or receives in a

round, and the communication cost per round to be determined by

expected values instead of a fixed value. This incurs huge overheads

(reshuffling and repeating the task) if the load exceeds the memory

of some executors. Guo et al. [15] explore the linearity of PPRs

and pre-compute partial results for hub vertices on each executor.

When a query comes, it makes use of the pre-stored partial results

to speed up the query processing. The solution in [15], however,

is still not scalable to graphs with billion edges under the 𝑂 (𝑚/𝑝)
load constraint since (i) its load is𝑂 (𝑛 ·𝑝), which increases with the
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Table 1: Frequently used notations
Notation Description
𝐺 = (𝑉 , 𝐸) A graph with vertex set 𝑉 & edge set 𝐸

𝑛,𝑚 The number of vertices and edges

𝑝 The number of processor in the cluster

𝛾 The batch size to fit the scale of cluster

𝑁𝑜𝑢𝑡 (𝑣) The set of out-neighbors of vertex 𝑣

𝛼 The random walk termination probability

𝜋𝑠 (𝑣) The exact PPR of 𝑣 with respect to 𝑠

𝜋𝑠 (𝑣) The estimation of PPR of 𝑣 with respect to 𝑠

𝜖 The relative error bound in Definitions 2.1-2.2

𝛿 The threshold in Definitions 2.1-2.2

𝑝 𝑓 The failure probability of the estimation

𝜋𝑠 (𝑣) The reserve of 𝑣 with respect to 𝑠

𝑟𝑠 (𝑣) The residue of 𝑣 with respect to 𝑠

number of executors; (ii) it prepossesses the PPR vector of a con-

siderable amount of hub nodes whose sizes are difficult to bound.

This further makes it difficult to bound the load to 𝑂 (𝑚/𝑝). In this

paper, we focus on methods that can achieve a load of 𝑂 (𝑚/𝑝).
Motivated by the limitations of existing solutions, we present

Delta-Push, a new distributed framework for efficient single-source

and top-𝑘 PPR query processing. In distributed settings, the com-

munication costs among different executors and the number of

rounds are the main factors that affect the overall performance.

On one hand, each executor has limited memory and cannot hold

messages with a size larger than its capacity. Therefore, the size

of messages received on each executor usually needs to be lim-

ited by a threshold. In the Massively Parallel Computing (MPC)
model, two distributed algorithms are compared by the number

of rounds required under the same load. The less the number of

rounds the algorithm requires, the more efficient the algorithm is.

We show that the number of rounds of our proposed Delta-Push can

be bounded by 𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
), which performs better, i.e., requires

less number of rounds, than existing alternatives when the required

memory for each executor is 𝑂 (𝑚/𝑝), where𝑚 is the number of

edges and 𝑝 is the number of executors. Moreover, as the number

of executors increases to 𝑝 ′ = 𝛾 · 𝑝 , the load can be relaxed since

each executor can support up to 𝑂 (𝛾 ·𝑚/𝑝 ′) messages with invari-

ant local memory, and the amortized number of rounds for one

query will become𝑂 ( 1𝛾 log
𝑛2

log𝑛

𝛾𝜖2𝑚
). With a reasonable assumption

that 𝛾 = Ω(log𝑛/𝜖) and 𝑚 = Ω(𝑛), we finally reach amortized

𝑂 ( 1𝛾 log(𝑛/𝜖)) rounds for each query.

The main idea of the distributed single-source PPR query algo-

rithm is to combine a redesigned push algorithm with the Monte-

Carlo method to reduce the number of rounds. We will show that

by pre-storing random walks, it is possible to reduce the number of

rounds of the push algorithm. However, the larger number of the

random walks we pre-store, the larger communication overhead

it brings when we combine the push results and the Monte-Carlo

results by a join operation. How to pre-sample a proper number of

random walks while still guaranteeing that the load of each execu-

tor can be bounded? We tackle this challenging issue by a careful

theoretical analysis. Next, we further present a new top-𝑘 algo-

rithm. To our knowledge, none of existing distributed algorithms

for PPR provide any efficient top-𝑘 algorithm but simply adopts the

single-source query algorithm to answer the top-𝑘 queries, causing

unnecessarily high running costs.

Moreover, our method is more friendly to the distributed setting

compared to the existing test-and-trial method. In particular, how

to examine if the top-𝑘 answer is accurate enough (to provide

approximation guarantee)? Typically, we need to either gather the

top-𝑘 lower/upper bounds for the PPR estimations or the top-𝑘 PPR

estimation scores. In this case, we need to first combine the push

result and the pre-stored random walks by a join operation, and

then invoke a sorting procedure to derive the top-𝑘 answers. This

incurs unnecessarily high number of rounds and is not expected.

Our designed top-𝑘 algorithm avoids such additional overheads

and requires (practically) less number of rounds compared to the

single-source counterparts. Extensive experiments on large datasets

demonstrate that our proposed Delta-Push is up to an order of

magnitude faster than alternatives.

2 PRELIMINARIES
2.1 Problem Definition
Given a directed graph 𝐺1

, the personalized PageRank (PPR) 𝜋𝑠 (𝑣)
of any 𝑣 ∈ 𝑉 with respect to 𝑠 is defined as the probability that a

random walk starting from 𝑠 terminates at 𝑣 . An important type

of PPR query is the single-source PPR query where we are given

a source 𝑠 , and the goal is to return the PPR 𝜋𝑠 (𝑣) of each vertex

𝑣 ∈ 𝑉 with respect to the source 𝑠 . Computing the exact PPR is

computational expensive and most existing studies, e.g., [6, 24, 39],

consider approximate single-source PPR query defined as follows.

Definition 2.1. ((𝜖, 𝛿)-approximate single-source PPR) Given a

source vertex 𝑠 , a threshold 𝛿 , an error bound 𝜖 ∈ (0, 1], and a

failure probability 𝑝 𝑓 , an approximate single-source PPR query

returns an estimated PPR 𝜋𝑠 (𝑣) for each vertex 𝑣 ∈ 𝑉 , such that the

following equations hold:

|𝜋𝑠 (𝑣) − 𝜋𝑠 (𝑣) | ≤ 𝜖 · 𝜋𝑠 (𝑣) ∀𝜋𝑠 (𝑣) ≥ 𝛿 ; (1)

|𝜋𝑠 (𝑣) − 𝜋𝑠 (𝑣) | ≤ 𝜖 · 𝛿 ∀𝜋𝑠 (𝑣) < 𝛿. (2)

with at least 1 − 𝑝 𝑓 probability.

Besides, many applications, e.g. recommender system, may not

require all PPR values with respect to 𝑠 . Instead, they only need

to return the 𝑘 vertices with the top-𝑘 highest PPR values with

respect to 𝑠 . Such queries are denoted as the single-source top-𝑘

PPR queries, or simply top-𝑘 PPR queries. Again, returning the exact

top-𝑘 answers may incur high computational costs and existing

studies focus on approximate top-𝑘 queries [39] defined as follows.

Definition 2.2. ((𝜖, 𝛿)-approximate top-𝑘 PPR) Given a source

vertex 𝑠 , a threshold 𝛿 , an error bound 𝜖 ∈ (0, 1], a failure probabil-
ity 𝑝 𝑓 , and a positive integer 𝑘 , an approximate top-𝑘 PPR query

returns a sequence of 𝑘 vertices, 𝑣1, 𝑣2, . . . , 𝑣𝑘 , such that for any

𝑖 ∈ [1, 𝑘] with 𝜋𝑠 (𝑣∗𝑖 ) ≥ 𝛿 , the following equations hold with at

least 1 − 𝑝 𝑓 probability:

|𝜋𝑠 (𝑣𝑖 ) − 𝜋𝑠 (𝑣𝑖 ) | ≤ 𝜖 · 𝜋𝑠 (𝑣𝑖 ); (3)

1
We treat an undirected graph as a special case of a directed graph where each undi-

rected edge (𝑢, 𝑣) corresponds to two directed edges ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢 ⟩

1669



Algorithm 1: Forward-Push

Input: Graph 𝐺 , source node 𝑠 , termination probability 𝛼 ,

residue threshold 𝑟𝑚𝑎𝑥

Output: 𝜋𝑠 (𝑣), 𝑟𝑠 (𝑣) for all 𝑣 ∈ 𝑉
1 𝑟𝑠 (𝑠) ← 1; 𝑟𝑠 (𝑣) ← 0 for all 𝑣 ≠ 𝑠;

2 𝜋𝑠 (𝑣) ← 0 for all 𝑣 ;

3 while ∃𝑣 ∈ 𝑉 such that 𝑟𝑠 (𝑣)/|𝑁𝑜𝑢𝑡 (𝑣) | > 𝑟𝑚𝑎𝑥 do
4 for each 𝑢 ∈ N𝑜𝑢𝑡 (𝑣) do
5 𝑟𝑠 (𝑢) ← 𝑟𝑠 (𝑢) + (1 − 𝛼) · 𝑟𝑠 (𝑣)

|𝑁𝑜𝑢𝑡 (𝑣) |
6 end
7 𝜋𝑠 (𝑣) ← 𝜋𝑠 (𝑣) + 𝛼 · 𝑟𝑠 (𝑣);
8 𝑟𝑠 (𝑣) ← 0;

9 end

𝜋𝑠 (𝑣𝑖 ) ≥ (1 − 𝜖) · 𝜋𝑠 (𝑣∗𝑖 ), (4)

where 𝑣∗
𝑖
has the 𝑖-th largest exact PPR score with respect to 𝑠 .

In Definition 2.2, the Equation 3 ensures the accuracy of the esti-

mated PPR values and Equation 4 guarantees that the 𝑖-th estimated

PPR value returned will be close to the exact 𝑖-th largest PPR score.

In this paper, we focus on the estimation with high quality, thus we

fix 𝛿 = 1/𝑛 and 𝑝 𝑓 = 1/𝑛, where 𝑛 is the number of vertices in 𝐺 .

That is, we provide approximation guarantees for above-average

PPR values with high probability.

Table 1 lists the frequently used notations in the paper.

2.2 Distributed Computing
As the scale of graphs becomes more and more massive, many

IT companies need to handle huge graphs that cannot be fitted

into the memory of most commodity servers. In such scenarios,

single-machine algorithms no longer work.

Therefore, we utilize the distributed computing to handle the

PPR problem for massive graphs. In particular, we implement our

method with Spark [45], a distributed computing framework based

on Hadoop [9], whose fundamental computing unit is MapReduce.

A MapReduce algorithm proceeds in three phases: (i) map phase
takes as input the data and emits key-value pairs by the map func-

tion, (ii) shuffle phase distributes the key-value pairs produced in the
map phase and ensures pairs with the same key will be delivered to

the same executor, (iii) reduce phase aggregates the key-value pairs
by the key and then applies the reduce function on the aggregated

data to result in new key-value pairs.

Furthermore, we theoretically analyze our proposal and existing

solutions under the Massively Parallel Computing (MPC) model [3,

7, 14, 21]. MPC is an original model of computation for MapReduce

which givesmore local computation power (in principle unbounded)

compared with other distributed computing models. It appraises

an algorithm from two aspects: (i) the round is the number of times

the executors communicate with each other and compute locally,

indicates the number of phases during MapReduce job proceeding,

(ii) the load represents themaximumnumber of messages a executor

receives, proceeds and sends in each round.

For graph problems with number 𝑛 of vertices and number𝑚

of edges, the input size is𝑚 so that the total space under the MPC

model is usually set to be 𝑂 (𝑝𝑜𝑙𝑦 (𝑚)). Without loss of generality,

we assume that𝑚 = Θ(𝑛1+𝜆) where 0 ≤ 𝜆 ≤ 1 and bound the total

space of the cluster (also the number of messages will be transferred

during each round) by 𝑂 (𝑚) = 𝑂 (𝑛1+𝜆).
To partition the input graph, we adopted the Longest Processing

Time (LPT) scheduling algorithm [42], which is originally designed

for balanced scheduling on parallel machines. The partitioning

result with LTP algorithm provides strong theoretical guarantees

on the load. In particular, it guarantees that the maximum number

of edges a partition holds will be no greater than 1.5 times of the

optimal vertex partition scheme which will be 𝑂 (𝑚/𝑝) if no vertex

with a degree (in degree + out degree) above𝑚/𝑝 . In case we have a

node 𝑣 with degree above𝑚/𝑝 , we divide the edges incident to 𝑣 to
several disjoint subset and each subset has no more than𝑚/𝑝 edges.
By this way, the adopted LPT partition algorithm still guarantees

that each executor stores 𝑂 (𝑚/𝑝) edges so that we can bound the

load by 𝑂 (𝑚/𝑝) for the cluster which consists of 𝑝 executors.

2.3 Existing Solutions Revisited
FORA. FORA [38] is a solution for approximate single-source and

top-𝑘 PPR query on single-machines. It consists of two phases: the

Forward-Push [2] and the Random Walk [10].
Algorithm 1 shows the pseudo-code of the Forward-Push algo-

rithm. The Forward-Push phase takes as input 𝐺 , a source vertex 𝑠 ,

a termination probability 𝛼 , and a threshold 𝑟𝑚𝑎𝑥 . For each vertex

𝑣 , it maintains a reserve 𝜋𝑠 (𝑣) and a residue 𝑟𝑠 (𝑣). Intuitively, the
reserve indicates the portion of the randomwalks that have stopped

at vertex 𝑣 and 𝑟𝑠 (𝑣) indicates the portion of the random walks that

currently stay at vertex 𝑣 but have not stopped yet. If residues of all

vertices are zero, then reserve 𝜋𝑠 (𝑣) is exactly the PPR value 𝜋𝑠 (𝑣).
In the beginning of the algorithm, the Forward-Push sets 𝑟𝑠 (𝑠) =

1 and 𝑟𝑠 (𝑣) = 0 for all 𝑣 ∈ 𝑉 \ {𝑠}; 𝜋𝑠 (𝑣) = 0 for all 𝑣 (Algorithm 1

Lines 1-2), indicating that all random walks currently stay at node

𝑠 . Then, the Forward-Push applies a push operation to a vertex

𝑣 such that it converts 𝛼 · 𝑟𝑠 (𝑣) to the reserve of node 𝑣 , since

among 𝑟𝑠 (𝑣) of the random walks 𝛼 · 𝑟𝑠 (𝑣) of them will stop at

node 𝑣 . Then, for the remaining (1 − 𝛼) · 𝑟𝑠 (𝑣), it propagates (1 −
𝛼) · 𝑟𝑠 (𝑣)/|𝑁𝑜𝑢𝑡 (𝑣) | to each out-neighbor of 𝑣 . Finally, it clears the

residue of itself (Algorithm 1 Lines 4-8). If the residues of all nodes

are depleted, then the exact PPR values are derived. However, this

incurs enormous computational costs. Hence, in Forward-Push, it

imposes a threshold 𝑟𝑚𝑎𝑥 and only pushes the nodes whose residue

is no smaller than 𝑟𝑚𝑎𝑥 times its out-degrees. By this strategy, the

computational cost can be bounded by 𝑂 (1/𝑟𝑚𝑎𝑥 ). The Forward-
Push preserves the following invariant after each push operation.

𝜋𝑠 (𝑡) = 𝜋𝑠 (𝑡) +
∑
𝑣∈𝑉

𝑟𝑠 (𝑣) · 𝜋𝑣 (𝑡) (5)

However, 𝜋𝑣 (𝑡) is still unknown and in FORA, it further includes

a Random Walk phase to sample 𝜔𝑣 =

⌈
𝑟𝑠 (𝑣) ·

(2𝜖/3+2) log(2/𝑝𝑓 )
𝜖2𝛿

⌉
random walks from each 𝑣 ∈ 𝑉 . Then, it uses the fraction of ran-

dom walks among the 𝜔𝑣 random walks stopped at 𝑡 as an esti-

mation 𝜋𝑣 (𝑡) of 𝜋𝑣 (𝑡). Finally, FORA takes each estimation 𝜋𝑣 (𝑡)
into Equation 5 and outputs an unbiased estimation of 𝜋𝑠 (𝑣) for
each 𝑣 ∈ 𝑉 satisfying Definition 2.1. FORA works efficiently on
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single-machines but does not suit to the distributed computing well

and we will show that in Section 3.1.

Power Method. The Power method [30] is widely used in existing

distributed graph processing systems such as Spark GraphX [13]

as a solution for PPR problems. Power method calculate the PPR

directly based on another form of definition of PPR, where

𝝅𝒔 = 𝛼 · 𝒆𝒔 + (1 − 𝛼) · 𝝅𝒔 · 𝐷−1𝐴. (6)

Here, 𝝅𝒔 is a vector whose 𝑗-th element equals 𝜋𝑠 (𝑣 𝑗 ),𝐴 ∈ {0, 1}𝑛×𝑛
is the adjacencymatrix of𝐺 ,𝐷 ∈ 𝑅𝑛×𝑛 is a diagonal matrix in which

each 𝑖-th element on its main diagonal equals the out-degree of

𝑣𝑖 , and 𝑒𝑠 is an one-hot vector with the position at 𝑠 to be 1. It

starts with 𝜋0𝑠 = 𝑒𝑠 and calculates 𝜋
𝑖
𝑠 = 𝛼𝑒𝑠 + (1− 𝛼) · 𝝅𝒔𝑖−1 ·𝐷−1𝐴

iteratively. With 𝑖 iterations, the 𝐿1 error between 𝝅𝑖
𝑠 and 𝝅𝑠 can

be bounded by (1− 𝛼)𝑖 . To answer the approximate queries, we set

𝑙 such that (1 − 𝛼)𝑙 ≤ 𝜖𝛿 to provide the approximation guarantee.

Monte-Carlo. Many existing solutions for PPR on distributed sys-

tem are based on the Monte-Carlo method [10]. Given a source

node 𝑠 , a Monte-Carlo based algorithm generates 𝜔 random walks

from 𝑠 , and use the fraction of random walks 𝑓𝑠 (𝑣) that terminate

at 𝑣 as an estimation of the PPR 𝜋𝑠 (𝑣) of 𝑣 with respect to 𝑠 . Accord-

ing to [10], the Monte-Carlo based algorithm satisfies Definition

2.1 with a sufficiently large number 𝜔 =

⌈ (2𝜖/3+2) log (2/𝑝𝑓 )
𝜖2𝛿

⌉
of

random walks. The first efficient Monte-Carlo based algorithm on

distributed system is the Doubling algorithm proposed by Bahmani

et al. [6] which merges the segments of short random walks to

increase the length of random walks doubly. However, it wastes

computational resources when themergemethod runs several times

and remains just a few number of long walks.

A more optimized Monte-Carlo based algorithm is DistPPR pro-

posed by Lin [24] which exploits the parallel pipeline framework

to improve the performance. However, the pipeline framework also

brings a risk of failure under a strict workload constraint and the

extremely large amount of random walks is still the bottleneck of

all the Monte-Carlo based algorithms. Moreover, DistPPR cannot

handle the approximate top-𝑘 queries satisfying Definition 2.2 with-

out increasing the asymptotic time complexity. This is because that

to check an interim result within DistPPR, it needs to gather all

the random walks pushed into the pipeline before the checkpoint,

making the amortized analysis for pipeline framework ineffective.

3 SINGLE-SOURCE PPR QUERY ALGORITHM
3.1 Main Idea
As described in Section 2.3, the Monte-Carlo method is inefficient

due to a large number of random walks required to satisfy the ap-

proximation guarantee. Furthermore, in distributed frameworks,

the Monte-Carlo method can hardly measure the workload of each

vertex or edge and thus makes it impossible to design a load bal-

anced partition scheme in some situation.

The index-free FORA [38]methodworkswell on single-machines

by reducing the number of required randomwalkswith the Forward-

Pushmethod. However, the distributed computingmodel is somuch

different from the single-machine setting that it (i) will waste mas-

sive computational resources by partial pushing results 𝑂 (1/𝑟𝑚𝑎𝑥 )
rounds in worst case, (ii) it will be challenging to design efficient

Algorithm 2: Pre-Sample(𝐺, 𝛼)
Input: Graph 𝐺 = (𝑉 , 𝐸), termination probability 𝛼

Output: Pre-sampled random walks

1 𝜔𝑝 ← ⌊𝑚/𝑛⌋;
2 𝑊𝑡 ← ∅;
3 for 1 . . . 𝑝 do
4 foreach 𝑣 ∈ 𝑉 in parallel do
5 𝑊 0

𝑎 (𝑣) ← ∅;
6 for 1 . . .

⌈
𝜔𝑝/𝑝

⌉
do

7 𝑊 0

𝑎 (𝑣) ←𝑊 0

𝑎 (𝑣) ∪ [⟨𝑣, 𝑣⟩];
8 end
9 end

10 𝑊𝑎 ←
⋃

𝑣∈𝑉 𝑊
0

𝑎 (𝑣);
11 while𝑊𝑎 ≠ ∅ do
12 𝑊 ∗𝑡 ←𝑊𝑎 filter{ 𝑝 ↦→ ( 𝑞 $←− [0, 1) ) < 𝛼 };

13 𝑊𝑡 ←𝑊𝑡 ∪𝑊 ∗𝑡 ;
14 𝑊𝑎 ←𝑊𝑎 \𝑊 ∗𝑡 ;

15 𝑊𝑎 ←𝑊𝑎 map-value{ 𝑣 ↦→ 𝑢
$←− 𝑁𝑜𝑢𝑡 (𝑣) };

16 end
17 end
18 return𝑊𝑡 ;

algorithms that samples the random walks dynamically whilst ful-

filling the 𝑂 (𝑚/𝑝) load constraint.

We draw on the experience from FORA+ which combines the

Forward-Push and Monte-Carlo methods to reduce the number

of random walks, but ponder the problem from the opposite per-

spective. The proposed Delta-Push method was come up with the

consideration to do the push method globally and reduce the rounds

of push by pre-sampling a reasonable amount of random walks. In

the meantime, the main concern now is how to reduce the number

of rounds under the load constraint. Next, we elaborate on the

algorithm details of our Delta-Push.

Algorithm details. Delta-Push includes a pre-sample phase to

sample 𝜔𝑝 = ⌊𝑚/𝑛⌋ random walks from each node. Algorithm 2

shows the pseudo-code of the pre-sample phase
2
. Basically, it issues⌈

𝜔𝑝/𝑝
⌉
random walks from each vertex 𝑣 (Algorithm 2 Lines 4-9) in

each iteration and then simulates the randomwalk in the distributed

setting. In particular, we maintain a key-value pair 𝑝 = ⟨𝑠, 𝑣⟩ to rep-
resent a random walk from 𝑠 currently staying at vertex 𝑣 . Then, for

each random walk that has not stopped yet, i.e., each key-value pair

𝑝 , it randomly samples a random number 𝑞. If 𝑞 < 𝛼 , then we mark

the random walk as a terminated walk, and collect all terminated

walks to the result set𝑊𝑡 (Algorithm 2 Lines 12-13). Otherwise, the

random walk randomly jumps to one of the out-neighbors and up-

dates the key-value pair correspondingly (Algorithm 2 Lines 15-16).

The process repeats until all the random walks have stopped. We re-

peat this process 𝑝 times where 𝑝 is the number of processor in the

cluster, and finally we have at least ⌊𝑚/𝑛⌋ sampled random walks.

This finishes the pre-sample phase. Notice that the pre-sample can

2𝑥
$←−𝑆 means 𝑥 is selected from 𝑆 randomly with uniform distribution
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Algorithm 3: Global-Push(𝐺, 𝛼, 𝑟𝑠 , 𝜋𝑠 )
Input: Graph 𝐺 = (𝑉 , 𝐸), termination probability 𝛼 ,

residues 𝑟𝑠 , reserves 𝜋𝑠
Output: The maximum of residues 𝑟 ′𝑚𝑎𝑥 , residues 𝑟

′
𝑠 ,

reserves 𝜋 ′𝑠
1 𝜋∗𝑠 ← 𝑟 map-value{ 𝑟𝑠 (𝑣) ↦→ 𝛼 · 𝑟𝑠 (𝑣) };
2 foreach ⟨𝑣, 𝑟𝑠 (𝑣)⟩ ∈ 𝑟𝑠 in parallel do
3 𝑟∗𝑠 (𝑣) ←

[ 〈
𝑢, (1 − 𝛼) · 𝑟𝑠 (𝑣)

|𝑁𝑜𝑢𝑡 (𝑣) |

〉 ��� 𝑢 ∈ 𝑁𝑜𝑢𝑡 (𝑣)] ;
4 end
5 𝑟 ′𝑠 ← (

⋃
𝑣∈𝑉 𝑟

∗
𝑠 (𝑣)) reduce-by-key{ + };

6 𝜋 ′𝑠 ← (𝜋 ′𝑠 ∪ 𝜋∗𝑠 ) reduce-by-key{ + };
7 𝑟 ′𝑚𝑎𝑥 ← 𝑟 ′𝑠 reduce-value{𝑚𝑎𝑥 };

8 return 𝑟 ′𝑚𝑎𝑥 , 𝑟
′, 𝜋 ′;

be then used by all single-source/top-𝑘 PPR queries from any source

𝑠 since they are independent with respect to this source 𝑠 .

Next, for a single-source PPR query from source 𝑠 , a redesigned

push algorithm is adopted by Delta-Push to make full use of the

local computational power. To explain, local computations are now

no longer the major bottleneck if the time to complete a local task

varies as a polynomial function on the size of the input. Therefore,

it is desired to make full use of the local computations so as to

reduce the number of rounds and communication costs if possible.

Our later analysis gives an affirmative answer to this and we will

elaborate on it later in Section 5. The pseudo-code of our redesigned

push algorithm Global-Push is shown in Algorithm 3. Instead of

pushing the vertices with a residue larger than 𝑟𝑚𝑎𝑥 times its out-

degree (Algorithm 1 Line 3), the Global-Push simply push on all

vertices with non-zero residue in parallel (Algorithm 3 Lines 2-4).

Then, it reduces the reserve and residue values according to the

key (the ID of each vertex).

The pseudo-code of Delta-Push is shown in Algorithm 4. Notice

that our Delta-Push takes a set of queries as the input. This is

expected since in real-life applications we usually need to handle

a set 𝑄 of single-source/top-𝑘 queries instead of a single query.

Initially, Delta-Push loads pre-sampled random walks generated

by Algorithm 2 (Algorithm 4 Line 1). Next, Delta-Push processes

each query in 𝑄 : For each source 𝑠 , it first appends a key-value

pair ⟨𝑠, 1⟩ to 𝑟 (Algorithm 4 Line 5), indicating that we are pushing

from source 𝑠 with full residue 1. Then, it iteratively invokes the

Global-Push until the maximum of the residues of all vertices with

respect to 𝑠 is smaller than 𝜔𝑝/𝜔𝜖,𝛿 , where 𝜔𝑝 is the number of

random walks pre-sampled at each vertex and 𝜔𝜖,𝛿 is the number

of random walks required by the pure Monte-Carlo method to fulfil

Definition 2.1 (Algorithm 4 Lines 7-10). When the Global-Push ends,

it combines the results with pre-sampled results to derive the PPR

estimation of each node 𝑣 with respect to 𝑠 . Specifically, for a given

source 𝑠 , we compute an estimation of 𝜋𝑠 (𝑡) (denoted as 𝜋𝑠 (𝑡))
with reserve 𝜋𝑠 (𝑡) and a combination of residues 𝑟𝑠 (𝑣) and a rough
approximation 𝜋 ′𝑣 (𝑡) for each node 𝑣 (Algorithm 5 Lines 1-6):

𝜋𝑠 (𝑡) = 𝜋𝑠 (𝑡) +
∑
𝑣∈𝑉

𝑟𝑠 (𝑣) · 𝜋 ′𝑣 (𝑡) . (7)

Here, 𝜋 ′𝑣 (𝑡) is derived based on a portion of the pre-sampled random

walks. More precisely, we sample 𝜔𝑣 =
⌈
𝑟𝑠 (𝑣) · 𝜔𝑝/𝑟𝑠𝑢𝑚

⌉
random

Algorithm 4: Delta-Push(𝐺,𝑄, 𝛼, 𝜖)
Input: Graph𝐺 = (𝑉 , 𝐸), queries 𝑄 , termination probability

𝛼 , relative accuracy guarantee 𝜖

Output: Approximate personalized Page Ranks 𝜋

1 Load pre-sampled random walks generated by Algorithm 2,

and group them by sources (denoted as𝑊𝑡 (𝑣));
2 𝛿 ← 1/𝑛; 𝑝 𝑓 ← 1/𝑛;
3 𝜔𝑝 ← 𝑝 ·

⌈
⌊𝑚/𝑛⌋

𝑝

⌉
; 𝜔𝜖,𝛿 ←

⌈ (2𝜖/3+2) log(2/𝑝𝑓 )
𝜖2𝛿

⌉
;

4 foreach 𝑠 ∈ 𝑄 do
5 𝑟𝑠 ← [⟨𝑠, 1⟩]; 𝜋𝑠 ← ∅;
6 𝑟𝑠𝑢𝑚 ← 1; 𝑟𝑚𝑎𝑥 ← 1;

7 while 𝑟𝑚𝑎𝑥 > 𝜔𝑝/𝜔𝜖,𝛿 do
8 𝑟𝑠𝑢𝑚 ← (1 − 𝛼)𝑟𝑠𝑢𝑚 ;

9 (𝑟𝑚𝑎𝑥 , 𝑟𝑠 , 𝜋𝑠 ) ← Global-Push(𝐺, 𝛼, 𝑟𝑠 , 𝜋𝑠 );
10 end
11 output Combine(𝑟𝑠𝑢𝑚, 𝑟𝑠 , 𝜋𝑠 , 𝜔𝑝 ,𝑊𝑡 );
12 end

walks from pre-stored randomwalks starting from 𝑣 . Then, if among

the 𝜔𝑣 random walks, 𝑥𝑡 of them stops and 𝑡 , 𝜋 ′𝑣 (𝑡) is estimated

as 𝑥𝑡/𝜔𝑣 . This finishes one estimation of the single-source PPR. It

then turns to another query until all the queries in𝑄 are processed.

Approximation guarantee. The remaining question is how to

determine 𝑟𝑚𝑎𝑥 so that Algorithm 4 returns query answers sat-

isfying Definition 2.1. Consider the bound of the total space we

described in Section 2.2 which is𝑂 (𝑚), so we can derive the number

of pre-sampled walks for each vertex is𝜔𝑝 = ⌊𝑚/𝑛⌋, and𝜔𝜖,𝛿 is the

number of randomwalks required by the pure Monte-Carlo method

to provide approximation guarantee which is

⌈ (2𝜖/3+2) log(2/𝑝𝑓 )
𝜖2𝛿

⌉
.

Theorem 3.1. For any vertex 𝑣 ∈ 𝑉 , Delta-Push returns an ap-
proximate PPR 𝜋𝑠 (𝑣) satisfying Definition 2.1 if 𝑟𝑚𝑎𝑥 ≤ 𝜔𝑝/𝜔𝜖,𝛿 ,
where 𝑟𝑚𝑎𝑥 is the maximum of residues 𝑟𝑠 (𝑣) for all 𝑣 ∈ 𝑉 .

Proof. Consider the 𝜔𝑣 random walks generated from vertex

𝑣 . Let 𝑋 𝑖
𝑣 (𝑡) be a Bernoulli variable that takes value 1 if the 𝑖-th

random walk terminates at 𝑡 , and value 0 otherwise. By definition:

𝐸 [𝑋 𝑖
𝑣 (𝑡)] = 𝜋 (𝑣, 𝑡)

If a random walk ends at a vertex t, then our method increases

𝜋𝑠 (𝑣) by 𝑟𝑠 (𝑣)/𝜔𝑣 (denoted as 𝜇𝑣 ), and we have:

𝐸

[
𝜔𝑣∑
𝑖=1

(𝜇𝑣 · 𝑋 𝑖
𝑣 (𝑡))

]
= 𝑟𝑠 (𝑣) · 𝜋𝑣 (𝑡)

Observing that

∑𝜔𝑣

𝑖=1
(𝜇𝑣 ·𝑋 𝑖

𝑣 (𝑡)) is exactly the amount of increment

that 𝜋𝑠 (𝑣) receives from 𝑣 , we denote this increment as𝜓𝑣 . Then:

𝐸

[∑
𝑣∈𝑉
(𝜓𝑣)

]
=

∑
𝑣∈𝑉

𝑟𝑠 (𝑣) · 𝜋𝑣 (𝑡)

Besides, we have following conclusion derived from FORA [38]:

Lemma 3.2. The combination of 𝜋𝑠 (𝑣) and
∑

𝑣∈𝑉 (𝜓𝑣) gives an
approximated PPR 𝜋𝑠 (𝑣) that satisfies Definition 2.1, with the number
of random walks 𝜔𝑣 = 𝑟𝑠 (𝑣) · 𝜔𝜖,𝛿 for each vertex 𝑣 ∈ 𝑉 .
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Algorithm 5: Combine(𝑟𝑠𝑢𝑚, 𝑟𝑠 , 𝜋𝑠 , 𝜔𝑝 ,𝑊𝑡 )
Input: Sum of residues 𝑟𝑠𝑢𝑚 , residues 𝑟𝑠 , reserves 𝜋𝑠 ,

samples count 𝜔𝑝 , pre-sampled walks𝑊𝑡

Output: Approximate PPR 𝜋𝑠
1 foreach ⟨𝑣, 𝑟𝑠 (𝑣)⟩ ∈ 𝑟𝑠 in parallel do
2 𝜔𝑣 ←

⌈
𝑟𝑠 (𝑣)
𝑟𝑠𝑢𝑚

· 𝜔𝑝
⌉
;

3 𝜋𝑟𝑠 (𝑣) ←
[ 〈
𝑡𝑖

$←−𝑊𝑡 (𝑣), 𝑟𝑠 (𝑣)𝜔𝑣

〉 ���� 𝑖 ∈ 1 . . . 𝜔𝑣

]
;

4 end
5 𝜋∗𝑠 ←

⋃
𝑣∈𝑉 𝜋

𝑟
𝑠 (𝑣);

6 𝜋𝑠 ← (𝜋𝑠 ∪ 𝜋∗𝑠 ) reduce-by-key{ + };
7 return 𝜋 ;

Recall that now 𝑟𝑚𝑎𝑥 ≤ 𝜔𝑝/𝜔𝜖,𝛿 . Hence 𝑟𝑚𝑎𝑥 · 𝜔𝜖,𝛿 ≤ 𝜔𝑝 ,

indicating that for an arbitrary node 𝑣 , it has pre-stored a sufficient

number of random walks to be used in Delta-Push. Proof done. □

Theorem 3.3. Algorithm 4 completes in 𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
) rounds.

Proof. We first note that the Global-Push algorithm and the

Combine method only take 𝑂 (1) round. In the main loop (Lines

4-11) of Algorithm 4, we consider the number of iterations for

each query. Notice that with each invocation of the Global-Push

algorithm, 𝑟𝑠𝑢𝑚 will decrease by the rate of 1 − 𝛼 and 𝑟𝑚𝑎𝑥 is

obviously no greater than 𝑟𝑠𝑢𝑚 . The main loop repeatedly invokes

the Global-Push until 𝑟𝑚𝑎𝑥 ≤ 𝜔𝑝/𝜔𝜖,𝛿 . Note that 𝑟𝑚𝑎𝑥 ≤ 𝑟𝑠𝑢𝑚 by

their definition and the worst case which will take the most round

to complete is that 𝑟𝑚𝑎𝑥 keeps being equal to 𝑟𝑠𝑢𝑚 . Recap that

𝜔𝜖,𝛿 =

⌈ (2𝜖/3+2) log (2/𝑝𝑓 )
𝜖2𝛿

⌉
,𝜔𝑝 = ⌊𝑚/𝑛⌋, 𝛿 = 1/𝑛 and 𝑝 𝑓 = 1/𝑛, the

number of times the Global-Push get invoked is bounded by:

𝑂

(
log

1−𝛼
𝜔𝑝

𝜔𝜖,𝛿

)
= 𝑂

(
log

𝜔𝜖,𝛿

𝜔𝑝

)
= 𝑂

(
log

(
log𝑛

𝜖2/𝑛
· 𝑛
𝑚

))
= 𝑂

(
log

𝑛2 log𝑛

𝜖2𝑚

)
This finishes the proof. □

It is easy to see that the memory cost of Algorithm 4 is 𝑂 (𝑚) as
there will be at most one share of residues transferred across each

edge in Algorithm 3, and the pre-sampled random walks used in

Algorithm 5 is 𝑂 (𝑛 · 𝜔𝑝 ) = 𝑂 (𝑛 · ⌊𝑚/𝑛⌋) = 𝑂 (𝑚). We just use the

conclusion of total memory for introducing our solution, and we

will give the analysis of load under the MPC model in Section 5.

3.2 Processing with Batches
Assume that we extend the cluster so that the number of executors is

𝛾 times that of the original cluster. Then there are 𝑝 ′ = 𝛾 ·𝑝 executors
and 𝑂 (𝛾 ·𝑚) space in total. We can apply a minor modification to

Algorithms 3-5 which changes the 𝑘𝑒𝑦 of reserves 𝜋 and residues 𝑟

from only the staying vertex 𝑣 to a pair of source and staying vertex

⟨𝑠, 𝑣⟩ (So a residue will be ⟨⟨𝑠, 𝑣⟩ , 𝑟𝑠 (𝑣)⟩ and reserves are similar).

Thenwe append𝛾 sources 𝑠 ∈ 𝑄 as ⟨⟨𝑠, 𝑠⟩ , 1⟩ into the initial residues
in parallel instead of appending one source (Algorithm 4 Line 5).

Algorithm 6: Batched Main Loop of Delta-Push

1 𝑟𝑠𝑢𝑚 ← 1; 𝑟𝑚𝑎𝑥 ← 𝑆 map{ 𝑠 → ⟨𝑠, 1⟩ };
2 𝑟 ← 𝑆 map{ 𝑠 → ⟨⟨𝑠, 𝑠⟩ , 1⟩ }; 𝜋 ← ∅;
3 while 𝑆 ≠ ∅ do
4 if 𝑟𝑠𝑢𝑚 ≤ 𝑚/𝜔𝜖,𝛿 then
5 𝑟◦ ← 𝑟𝑚𝑎𝑥 filter{ ⟨𝑠, 𝑟𝑠 ⟩ ↦→ 𝑟𝑠 ≤ 𝜔𝑝/𝜔𝜖,𝛿 };

6 𝑆𝑓 ← get-keys{ 𝑟◦ };
7 𝑟 𝑓 ← 𝑟 filter{ ⟨⟨𝑠, 𝑣⟩ , 𝑟𝑠 (𝑣)⟩ ↦→ 𝑠 ∈ 𝑆𝑓 };

8 𝜋𝑓 ← 𝜋 filter{ ⟨⟨𝑠, 𝑡⟩ , 𝜋𝑠 (𝑡)⟩ ↦→ 𝑠 ∈ 𝑆𝑓 };

9 𝑆 ← 𝑆 \ 𝑆𝑓 ; 𝑟 ← 𝑟 \ 𝑟 𝑓 ; 𝜋 ← 𝜋 \ 𝜋𝑓 ;
10 output Combine(𝑟𝑠𝑢𝑚, 𝑟 𝑓 , 𝜋𝑓 , 𝜔𝑝 ,𝑊𝑡 );
11 end
12 𝑟𝑠𝑢𝑚 ← (1 − 𝛼)𝑟𝑠𝑢𝑚 ;

13 (𝑟𝑚𝑎𝑥 , 𝑟𝑠 , 𝜋𝑠 ) ← Global-Push(𝐺, 𝛼, 𝑟𝑠 , 𝜋𝑠 );
14 end

In addition, with the increment of total space, we can also store

𝛾 times the number of pre-sampled random walks and reduce the

push rounds for each batch. In particular, we have 𝜔 ′𝑝 = 𝛾 · 𝜔𝑝
pre-sampled random walks in the batch method. It is valid that the

sets of selected pre-sampled walks to estimate different sources

have a non-empty intersection, so we can consider the 𝑟𝑠𝑢𝑚 and

𝑟𝑚𝑎𝑥 with respect to each source 𝑠 individually. By Theorem 3.1,

the process for a query completes when 𝑟𝑚𝑎𝑥 ≤ 𝜔 ′𝑝/𝜔𝜖,𝛿 . However,
there may exist multiple queries that finish the push phase at the

same round in the batch method. Hence, we must additionally

bound 𝑟𝑠𝑢𝑚 ≤ 𝑚/𝜔𝜖,𝛿 , to guarantee that the total messages in the

combine phase will not exceed 𝑂 (𝛾 ·𝑚) space. Note that for any
source 𝑠 , 𝑟𝑠𝑚𝑎𝑥 ≤ 𝑟𝑠𝑠𝑢𝑚 , and 𝑟𝑠𝑠𝑢𝑚 for each source 𝑠 decreases by the

same rate 1 − 𝛼 in the batch method. By the proof of Theorem 3.3,

the number of push rounds for each batch can be bounded by:

𝑂

(
log

1−𝛼
𝜔 ′𝑝
𝜔𝜖,𝛿

)
= 𝑂

(
log

𝑛2 log𝑛

𝛾𝜖2𝑚

)
Assume that 𝛾 = Ω(log𝑛/𝜖), a reasonable scale factor for a real-life
cluster. The number of rounds for each batch can be bounded by:

𝑂

(
log

𝑛2 log𝑛

𝛾𝜖2𝑚

)
= 𝑂

(
log

𝑛1−𝜆 log𝑛
(log𝑛/𝜖) · 𝜖2

)
= 𝑂

(
log (𝑛1−𝜆/𝜖)

)
where𝑚 = Ω(𝑛1+𝜆) according to our assumption in Section 2.2.

Algorithm 6 shows the pseudo-code of the main loop of Delta-

Push for batch processing. All parameters are the same as Algorithm

4 except that 𝜔𝑝 = 𝛾𝑝 · ⌈⌊𝑚/𝑛⌋ /𝑝⌉ instead of 𝑝 · ⌈⌊𝑚/𝑛⌋ /𝑝⌉. To
maximize the efficiency in practice, PPRs with respect to a source 𝑠

will be estimated as soon as 𝑟𝑠𝑢𝑚 ≤ 𝑚/𝜔𝜖,𝛿 and 𝑟𝑚𝑎𝑥 ≤ 𝜔𝑝/𝜔𝜖,𝛿
(Lines 4-11), then the Global-Push is invoked with the reserves

and residues with respect to remained sources (Lines 12-13). As de-

scribed above, this method takes𝑂 ( 1𝛾 log
𝑛2

log𝑛

𝛾𝜖2𝑚
) amortized rounds

for each query with 𝑂 (𝛾 ·𝑚) space in total.
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Algorithm 7: Delta-Push-Top-𝑘 (𝐺,𝑄, 𝛼, 𝜖, 𝑘)
Input: Graph𝐺 = (𝑉 , 𝐸), queries 𝑄 , termination probability

𝛼 , relative accuracy guarantee 𝜖 , results count 𝑘

Output: Approximate top-𝑘 personalized Page Ranks 𝜋

1 Load pre-sampled random walks generated by Algorithm 2,

and group them by sources (denoted as𝑊𝑡 (𝑣));
2 𝛿 ← 1/𝑛; 𝑝 𝑓 ← 1/𝑛;
3 𝜔𝑝 ← 𝑝 ·

⌈
⌊𝑚/𝑛⌋

𝑝

⌉
; 𝜔𝜖,𝛿 ←

⌈ (2𝜖/3+2) log(2/𝑝𝑓 )
𝜖2𝛿

⌉
;

4 𝜖 ′ ← 𝜖/2; 𝑝 ′
𝑓
← 𝑝 𝑓 /𝑛;

5 foreach 𝑠 ∈ 𝑄 do
6 𝑟𝑠 ← [⟨𝑠, 1⟩]; 𝜋𝑠 ← ∅;
7 𝑟𝑠𝑢𝑚 ← 1; 𝑟𝑚𝑎𝑥 ← 1;

8 while 𝑟𝑚𝑎𝑥 > 𝜔𝑝/𝜔𝜖,𝛿 do

9 𝛿 ′ ← 𝑟𝑚𝑎𝑥 ·
⌈
(2𝜖′/3+2) log (2/𝑝′

𝑓
)

𝜖′2𝜔𝑝

⌉
;

10 𝑐𝛿′ ← count{ filter{ ⟨𝑡, 𝜋𝑠 (𝑡)⟩ ↦→ 𝜋𝑠 (𝑡) ≥ 𝛿 ′ } };
11 if 𝑐 ′

𝛿
≥ 𝑘 then

12 break;

13 end
14 𝑟𝑠𝑢𝑚 ← (1 − 𝛼)𝑟𝑠𝑢𝑚 ;

15 (𝑟𝑚𝑎𝑥 , 𝑟𝑠 , 𝜋𝑠 ) ← Global-Push(𝐺, 𝛼, 𝑟𝑠 , 𝜋𝑠 );
16 end
17 output Combine(𝑟𝑠𝑢𝑚, 𝑟𝑠 , 𝜋𝑠 , 𝜔𝑝 ,𝑊𝑡 );
18 end

4 TOP-K PPR QUERY ALGORITHM
An extra advantage of Delta-Push is that it can handle approximate

top-𝑘 queries without bringing additional overheads when retriev-

ing the top-𝑘 answers. To explain, in top-𝑘 queries, typically we

need to either retrieve the top-𝑘 answer or the top-𝑘 upper/lower

bounds. In either scenarios, it requires that the algorithm goes

through a sorting process, incurring additional round overheads.

Next, we explain the details of our top-𝑘 algorithm and show how

to avoid such additional rounds.

To return an approximate top-𝑘 query satisfying Definition 2.2,

we need to consider the 𝑘-th largest PPR value of 𝑠 (denoted as

𝜋𝑠 (𝑣𝑘 )) and it seems that we can provide a guarantee as Equation 1

described if we set 𝛿 = 𝜋𝑠 (𝑣𝑘 ). However, we have no information

about this value, unless we estimated it with high quality guarantees.

The naive solution for approximate top-𝑘 PPR is to keep 𝛿 = 1/𝑛
as the original Delta-Push for single-source queries, which would

lead to unnecessary round overheads.

Looking back to Algorithm 4, we push the residues of all vertices

with respect to a source 𝑠 in each iteration, until 𝑟𝑚𝑎𝑥 , i.e., the

maximum of all residues with respect to source 𝑠 , is no larger than

𝜔𝑝/𝜔𝜖,𝛿 and thus provide a guarantee with threshold 𝛿 . So, is there

any quality guarantee when 𝑟𝑚𝑎𝑥 = 𝑟 ′ > 𝜔𝑝/𝜔𝜖,𝛿? In fact, there is

also a guarantee in this case. If we denote 𝜔𝜖,𝛿′ as replacing 𝛿 in

𝜔𝜖,𝛿 with 𝛿 ′, it is clear that when 𝑟𝑚𝑎𝑥 = 𝜔𝑝/𝜔𝜖,𝛿′ , the results will
satisfy Definition 2.1 with a threshold 𝛿 ′.

Based on the feature we mentioned above, we can first come

up with a test-and-trial method. In particular, we may change the

failure probability of each estimation to 𝑝 ′
𝑓
= 𝑝 𝑓 /(𝑛 log𝑛), and then

decide whether the current top-𝑘 results are sufficiently accurate

with the decrease of the 𝛿 ′ as FORA did for approximate top-𝑘 PPR

in [38]. By union bound, we can prove that this method can provide

results satisfying Definition 2.1. However, for such a basic solution,

it requires to combine/gather the push result and the pre-sampled

random walks in every iteration and then retrieve the top-𝑘 results

to see if the answer satisfies Definition 2.2 or not, which incurs

both high communication costs and much larger number of rounds.

Instead of adopting the test-and-trial strategy in [38, 39], we

propose a significantly simpler method that provides the same

guarantee. In this new algorithm, we only gather push results and

pre-sampled random walks in the last iteration, which significantly

reduces communication costs compared to the above basic solution.

Besides, we may require much less number of Global-Push to the

source 𝑠 compared with Algorithm 4, making the algorithm stop

earlier than the single-source counterpart and more efficient for top-

𝑘 queries. Next, we elaborate on the details of our top-𝑘 algorithm.

Algorithm details. Algorithm 7 shows the pseudo-code of our

proposed top-𝑘 algorithm. At the beginning, we set 𝜖 ′ = 𝜖/2 and
𝑝 ′
𝑓
= 𝑝 𝑓 /𝑛 which we will explain later. The process naturally com-

pletes when 𝑟𝑚𝑎𝑥 ≤ 𝜔𝑝/𝜔𝜖,𝛿 just like the original Delta-Push does.

It will satisfy Definition 2.1 with given 𝜖 for 𝛿 = 1/𝑛 and 𝑝 𝑓 = 1/𝑛 so
that it satisfies Definition 2.2 as well because we just provide a guar-

antee for the vertices 𝑣𝑖 with 𝜋𝑠 (𝑣𝑖 ) ≥ 𝛿 for the approximate top-𝑘

PPR problem. In every iteration, our method first checks whether

there exist at least 𝑘 vertices 𝑣 ∈ 𝑉 with reserve 𝜋𝑠 (𝑣) ≥ 𝛿 ′ (Lines
8-13), and 𝛿 ′ is derived by the following equation:

𝑟𝑚𝑎𝑥 · 𝜔𝜖′,𝛿′ = 𝑟𝑚𝑎𝑥 ·
⌈ (2𝜖 ′/3 + 2) log (2/𝑝 ′

𝑓
)

𝜖 ′2𝛿 ′

⌉
= 𝜔𝑝 (8)

The reserve 𝜋𝑠 (𝑣) is a deterministic value as Global-Push is a de-

terministic algorithm, and in fact, it is a biased estimation of 𝜋𝑠 (𝑣)
which keeps less than or equal to 𝜋𝑠 (𝑣). Thus if there are at least
𝑘 vertices 𝑣 ∈ 𝑉 with reserve 𝜋𝑠 (𝑣) ≥ 𝛿 ′, 𝜋𝑠 (𝑣) ≥ 𝛿 ′ will also hold

for these vertices, and the method stops iterating and estimates

𝜋𝑠 (𝑣) for all 𝑣 ∈ 𝑉 in this case. Otherwise, by the observation of

Equation 8, 𝛿 ′ has a positive linear correlation with 𝑟𝑚𝑎𝑥 . Note that

even though 𝑟𝑚𝑎𝑥 may increase or decrease after a push step, its

upper bound 𝑟𝑠𝑢𝑚 monotonically decreases by a rate of 1 − 𝛼 , and
thus 𝛿 ′ tends to decline. It looks like that we push the upper bound

of threshold 𝛿 ′ in each iteration so that more vertices 𝑣 will satisfy

𝜋𝑠 (𝑣) ≥ 𝛿 ′. This is why we call our method Delta-Push.

It is clear that Algorithm 7 takes the same asymptotic rounds

as Algorithm 4 with the same memory constraint because both

applying a filtering to 𝜋𝑠 and counting the number of elements

(Algorithm 7 Line 10) take 𝑂 (1) rounds and will not create new

data or lead to a shuffling. The top-𝑘 method can also apply a

batch processing as we discussed in Section 3.2. As we described in

Section 3.2, it can complete in𝑂 (log 𝑛2
log𝑛

𝛾𝜖2𝑚
) rounds for each batch

with 𝑂 (𝛾 ·𝑚) space in total. Theoretically, Algorithm 7 imports

more calculating steps compared with Algorithm 4 in each iteration

so it will work worse in the worst case if there are no 𝑘 vertices

with significant PPRs with respect to 𝑠 . But we will show that it

work well in practical experiments in Section 6.
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Correctness. The correctness of Algorithm 7 can be summarized

by the following theorem.

Theorem 4.1. The Delta-Push-Top-𝑘 provides 𝜖-approximate top-𝑘
PPRs satisfying Definition 2.2 with probability 1−𝑝 𝑓 where 𝑝 𝑓 = 1/𝑛.

Proof. As we described above, when Algorithm 7 completes

with 𝛿 ′, the Definition 2.1 is satisfied when replacing 𝛿 with 𝛿 ′ and
there exist at least 𝑘 vertices 𝑣 ∈ 𝑉 with 𝜋𝑠 (𝑣) ≥ 𝛿 ′. To prove that

Equation 3 will be satisfied, we consider the vertex 𝑣𝑖 which has

the 𝑖-th largest estimated PPR 𝜋𝑠 (𝑣𝑖 ) in the following three cases:

• 𝝅𝒔 (𝒗𝒊) ≥ 𝜹 ′ : Equation 3 is satisfied since for any 𝜋𝑠 (𝑣) ≥ 𝛿 ′,
|𝜋𝑠 (𝑣) − 𝜋𝑠 (𝑣) | ≤ 𝜖 ′ · 𝜋𝑠 (𝑣) = 𝜖 · 𝜋𝑠 (𝑣)/2 ≤ 𝜖 · 𝜋𝑠 (𝑣).
• 𝜹 ′ > 𝝅𝒔 (𝒗𝒊) ≥ 𝜹 ′ − 𝝐 ′𝜹 ′ : By Equation 2, we have that |𝜋𝑠 (𝑣) −
𝜋𝑠 (𝑣) | ≤ 𝜖 ′ · 𝛿 ′ for any 𝜋𝑠 (𝑣) < 𝛿 ′. Recap that 𝜖 ′ = 𝜖/2 and

𝜋𝑠 (𝑣𝑖 ) < 𝛿 , we have:

|𝜋𝑠 (𝑣𝑖 ) − 𝜋𝑠 (𝑣𝑖 ) | ≤ 𝜖 ′𝛿 ′ ≤
1

2

𝜖𝛿 ′

So, to prove the estimated PPR satisfies Equation 3, we must

prove that 𝜖𝛿 ′/2 ≤ 𝜖 · 𝜋𝑠 (𝑣𝑖 ). Notice that:

𝜖 · 𝜋𝑠 (𝑣𝑖 ) ≥ 𝜖 · (𝛿 ′ − 𝜖 ′𝛿 ′) = 𝜖𝛿 ′ −
1

2

𝜖2𝛿 ′ ≥ 1

2

𝜖𝛿 ′

where the last inequality holds due to 𝜖 − 𝜖2 ≥ 0 for 𝜖 ∈ (0, 1]
and 𝛿 ≥ 0 for their definitions. Thus, 𝜖 ·𝜋𝑠 (𝑣𝑖 ) ≥ |𝜋𝑠 (𝑣𝑖 )−𝜋𝑠 (𝑣𝑖 ) |
satisfies Equation 3.

• 𝜹 ′ − 𝝐 ′𝜹 ′ > 𝝅𝒔 (𝒗𝒊) : In this case, it is impossible for 𝑣𝑖 to be

a top-𝑘 candidate. When the algorithm completes, there are at

least 𝑘 vertices 𝑣∗ with 𝜋𝑠 (𝑣∗) ≥ 𝛿 ′. By Equation 7 we have

𝜋𝑠 (𝑣∗) ≥ 𝜋𝑠 (𝑣∗), and for 𝜋𝑠 (𝑣𝑖 ), by Equation 2 we have that:

𝜋𝑠 (𝑣𝑖 ) ≤ 𝜋𝑠 (𝑣𝑖 ) + 𝜖 ′𝛿 ′ < 𝛿 ′

Recall that there exist at least 𝑘 vertices 𝑣∗ with 𝜋𝑠 (𝑣∗) > 𝜋𝑠 (𝑣𝑖 ),
so 𝑣𝑖 will not become a top-𝑘 vertex.

Next, we show that Equation 4 is satisfied for each returned node

as well. Denote the actual vertex with 𝑖-th largest PPR as 𝑣∗
𝑖
. We

also consider 𝑣𝑖 and 𝑣
∗
𝑖
in three cases:

• 𝝅𝒔 (𝒗∗𝒊 ) ≤ 𝝅𝒔 (𝒗𝒊) : Equation 4 is straightforwardly satisfied ac-

cording to the definition.

• 𝜹 ′ ≤ 𝝅𝒔 (𝒗𝒊) < 𝝅𝒔 (𝒗∗𝒊 ) : It indicates that there exists some vertex

𝑣∗ with 𝜋𝑠 (𝑣∗) ≥ 𝜋𝑠 (𝑣∗𝑖 ) that is overtaken by 𝑣𝑖 because of the

error of estimation. Consider the case 𝑣∗ = 𝑣∗
𝑖
and assume that

𝜋𝑠 (𝑣∗𝑖 ) − 𝜋𝑠 (𝑣𝑖 ) = 𝑑 . Then, we know that the estimation of 𝑣𝑖
and 𝑣∗

𝑖
does not exceed their upper and lower error bound with

𝑝 ′
𝑓
probability. By Equation 1, the upper bound of 𝜋𝑠 (𝑣𝑖 ) is (1 +

𝜖 ′) · 𝜋𝑠 (𝑣𝑖 ) and the lower bound of 𝜋𝑠 (𝑣∗𝑖 ) is (1 − 𝜖
′) · 𝜋𝑠 (𝑣∗𝑖 ). If

𝑣𝑖 overtakes 𝑣
∗
𝑖
, we have 𝜋𝑠 (𝑣𝑖 ) > 𝜋𝑠 (𝑣∗𝑖 ), therefore:

𝑑 < 𝜖 ′ · 𝜋𝑠 (𝑣𝑖 ) + 𝜖 ′ · 𝜋𝑠 (𝑣∗𝑖 ) < 2𝜖 ′ · 𝜋𝑠 (𝑣∗𝑖 )
Thus, we have:

𝜋𝑠 (𝑣𝑖 ) = 𝜋𝑠 (𝑣∗𝑖 ) − 𝑑 > (1 − 2𝜖 ′) · 𝜋𝑠 (𝑣∗𝑖 ) = (1 − 𝜖) · 𝜋𝑠 (𝑣
∗
𝑖 )

It is the necessary condition that 𝑣𝑖 can take place with the 𝑖-th

largest estimated value because if 𝜋𝑠 (𝑣𝑖 ) is not large enough to

overtake 𝑣∗
𝑖
, then it is impossible that 𝑣𝑖 can overtake other 𝑣∗

which with 𝜋𝑠 (𝑣∗) > 𝜋𝑠 (𝑣∗𝑖 ) unless the upper bound or lower

bound is exceeded with at most 𝑝 ′
𝑓
= 1/𝑛2 probability. By union

bound, we have the fail probability to be 𝑝 𝑓 = 1/𝑛.

𝑣1

𝑣2

𝑣3

𝑣4 𝑣5 𝑣6
𝑣7

𝑣8

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

(a) The worst case of directed graph (b) An undirected graph

Figure 1: Example graphs for load analysis

• 𝝅𝒔 (𝒗𝒊) < 𝜹 ′ : We also consider that 𝑣∗
𝑖
is overtaken by 𝑣𝑖 and

assume that 𝜋𝑠 (𝑣∗𝑖 ) −𝜋𝑠 (𝑣𝑖 ) = 𝑑 . By Equation 1, the lower bound

of 𝜋𝑠 (𝑣∗𝑖 ) is (1−𝜖
′) ·𝜋𝑠 (𝑣∗𝑖 ) with at least 1−𝑝 ′

𝑓
probability. Then,

by Equation 2, the upper bound of 𝜋𝑠 (𝑣𝑖 ) is 𝜋𝑠 (𝑣𝑖 ) + 𝜖 ′ · 𝛿 ′ with
at least 1 − 𝑝 ′

𝑓
probability. As we described in the second case,

𝜋𝑠 (𝑣𝑖 ) > 𝜋𝑠 (𝑣∗𝑖 ) when 𝑣𝑖 overtakes 𝑣
∗
𝑖
, we have that:

𝑑 < 𝜖 ′ · 𝛿 ′ + 𝜖 ′ · 𝜋𝑠 (𝑣∗𝑖 ) < 2𝜖 ′ · 𝜋𝑠 (𝑣∗𝑖 )

Thus, similar to the second case, we have 𝜋𝑠 (𝑣𝑖 ) > (1−𝜖) ·𝜋𝑠 (𝑣∗𝑖 )
with at least 1 − 𝑝 𝑓 probability.

This finishes the proof. □

5 THEORETICAL ANALYSIS
In this section, we will show that our proposed solution asymptoti-

cally reduces the communication rounds over existing alternatives

with the same load constraint under the MPC model.

Power method. The power method is widely used in existing

distributed graph processing systems such as Spark GraphX as

the built-in solution for single-source PPR problem. As we ana-

lyzed in Section 2.3, the number of rounds can be bounded with

𝑂 (log
1−𝛼 (𝜖𝛿)) = 𝑂 (log𝑛/𝜖). Next, we analyse the load of the

Power method. In every round, each entry 𝑣 of 𝜋𝑖−1𝑠 generates

|𝑁𝑜𝑢𝑡 (𝑣) | shares and passes them to the target vertices across edges.

Therefore there will be at most one share transferred across each

edge. As we described in Section 2.2 that when the input graph

is well partitioned, each machine handles 𝑂 (𝑚/𝑝) edges, there-
fore each machine will send and receive 𝑂 (𝑚/𝑝) messages which

satisfies the load constraint exactly.

Monte-Carlo method. Before we start the analysis for another
main competitor DistPPR, there is still an issue that needs to be

clarified. Specifically, DistPPR, the best existing distributed algo-

rithm based on Monte-Carlo is originally for the Fully Approximate

PPR problem (Definition 2.2 in [24]), so it starts the same number

of random walks for all the vertices in each round. This original

implementation can hardly collect the sampled walks to result in

an estimation of PPR with high precision for each source under a

reasonable load constraint. To explain, there will be 𝑂 (𝑛2) pairs
of PPR if we start estimating for all sources at the same time. For

this reason, we consider a variant of the DistPPR for the SSPPR

problem (Definition 2.1) to bound the total number of messages

to 𝑂 (𝑚) in each round and we assume that the messages can be

evenly partitioned to 𝑝 parts so that the load of each executor can

be bounded as 𝑂 (𝑚/𝑝). However, this assumption may not hold

and we will discuss the worst case later.
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Recap that in a pure Monte-Carlo based method, it needs to sam-

ple𝜔𝜖,𝛿 = 𝑂 ( log (1/𝑝𝑓 )
𝜖2𝛿

) randomwalks for each query to provide an

approximate answer satisfying Definition 2.1. For each query, we let

the variant method append ⌊𝛼 ·𝑚⌋ random walks into the pipeline

in each iteration to guarantee that the workload of the pipeline

will be 𝑂 (𝑚) in expectation. We have that the variant DistPPR for

SSPPR problem requires 𝑂 (𝜔𝜖,𝛿/(𝛼 ·𝑚)) rounds to start all 𝜔𝜖,𝛿
random walks. After pushing all random walks into the pipeline,

there will still remain 𝑂 (𝑚) active random walks in pipeline in

expectation. It takes 𝑂 (log𝑚) rounds which is necessary for the

guarantee of failure probability by the Chernoff bound as we will

derive in Lemma 5.1, to complete remained random walks.

Recall that 𝛿 = 1/𝑛 and 𝑝 𝑓 = 1/𝑛. The number of rounds required

by DistPPR to solve the SSPPR defined as Definition 2.1 is:

𝑂

( 𝜔𝜖,𝛿
𝛼 ·𝑚 + log𝑚

)
= 𝑂

(
𝑛 log𝑛

𝜖2𝑚
+ log𝑚

)
Moreover, the asymptotic cost of rounds for DistPPR is an opti-

mistic estimation because we utilize an assumption of load balance

to guarantee the load constraint but it is impossible in some sit-

uation. The first case is Figure 1(a). When we estimate PPR with

respect to a source 𝑠 , DistPPR appends ⌊𝛼 ·𝑚⌋ = 𝑂 (𝑚) random
walks starting at 𝑠 in each iteration, and each vertex in Figure 1(a)

has only one out-edge. Thus only one executor who handles this

out-edge of 𝑠 must process all random walks which are just ap-

pended in this iteration. In the meantime, random walks starting

from any source 𝑠 will reach 𝑣2 by at most one step in Figure 1(a),

and then they will pass through ⟨𝑣2, 𝑣1⟩ or ⟨𝑣1, 𝑣2⟩ repeatedly. Thus
at most two executors who handle these two edges respectively

must process all random walks which are appended before this

iteration. Therefore, at most three executors are busy to process

𝑂 (𝑚) messages and the other executors are idle in this case. Even

worse, the Monte-Carlo method not only takes bad load balance

under extreme conditions as Figure 1(a), but also works badly in

some common situations. Consider Figure 1(b) which is a common

undirected graph in practice. The vertices 𝑣2 in Figure 1(b) has only

one edge. As we describe above, only one executor which handles

the edge must process the first step of all randomwalks and the load

will be 𝑂 (𝑚). Therefore, it is impossible for DistPPR to keep load

balance unless an arbitrary vertex in the graph has Ω(𝑝) out-edges
based on the above analysis.

Delta-Push. Recap that our Delta-Push includes a pre-sample

phase and a global-push phase. We first analyze the number of

rounds for the pre-sample phase and have the following lemma.

Lemma 5.1. Algorithm 2 completes in 𝑂 (𝑝 log (𝑚/𝑝)) rounds un-
der 𝑂 (𝑚/𝑝) load constraint, with at least 1 − 1/𝑛 probability.

Proof. In Algorithm 2, we pre-sample ⌈⌊𝑚/𝑛⌋ /𝑝⌉ randomwalks

from all vertices each iteration, so that the number of randomwalks

will be 𝜔𝑎 = 𝑛 · ⌈⌊𝑚/𝑛⌋ /𝑝⌉ = 𝑂 (𝑚/𝑝). First, it must be clarified

that the initial phase (Algorithm 2 Lines 4-9) which has a local loop

still takes only 1 round under the MPC model because the MPC

model allow the executor do almost unlimited local calculation in a

round. Now, let 𝑋 𝑖
𝑣 be the steps of the 𝑖-th random walk starting

from 𝑣 until it terminate, then 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝛼). We have that:

𝐸 [𝑋 𝑖
𝑣] =

1

𝛼

Then, we have the following result by Chernoff bound:

𝑃𝑟 [𝑋 𝑖
𝑣 ≥ (1 + 4 ln𝜔𝑎)

1

𝛼
] ≤ exp

(
− (4 ln𝜔𝑎)

2

2 + 4 ln𝜔𝑎
· 1
𝛼

)
≤ exp

(
−16(ln𝜔𝑎)

2

6 ln𝜔𝑎

)
< 𝜔−2𝑎

Finally, by union bound we have:

𝑃𝑟 [𝑀𝑎𝑥{𝑋 𝑖
𝑣} ≥ (1 + 4 ln𝜔𝑎)

1

𝛼
] < 𝜔−1𝑎 <

(
𝑚

𝑝

)−1
≤

(
𝑛

𝑝

)−1
(9)

Therefore, each iteration in Algorithm 2 finishes in 𝑂 (log𝜔𝑎) =
𝑂 (log (𝑚/𝑝)) rounds with at least 1−1/(𝑛/𝑝) probability. Applying
union bound to Equation 9 again, Algorithm 2 will complete in

𝑂 (𝑝 log (𝑚/𝑝)) rounds with least 1 − 1/𝑛 probability.

Pay attention that we only pre-sample 𝑂 (𝑚/𝑝) random walks

in each iteration and it is still under the load constraint in total, so

it cannot exceed the load in any situation. In addition, this bound

of the number of random walks is asymptotically tight. Consider

Figure 1(a), and assume that we start 𝜔 ′ random walks from each

vertex in an iteration. There are 𝛼 · 𝜔 ′ random walks terminated

immediately at their source, and the remained randomwalks (except

which start at 𝑣2) will concentrate on 𝑣2. In the next step, there

will be (𝑛 − 1) · (1 − 𝛼) · 𝜔 ′ random walks on 𝑣2 and the (1 − 𝛼)
of them will pass through the edge (𝑣2, 𝑣1). Thus, to guarantee the

executor who handles this edge will not process above 𝑂 (𝑚/𝑝)
random walks, the 𝜔 ′ must be 𝑂 ((𝑚/𝑝)/𝑛). □

Up to now, we have proved that the pre-sample method com-

pletes in𝑂 (𝑝 log (𝑚/𝑝)) rounds. The rounds of pre-sample method

will become 𝑂 (1) in amortization as long as we need to process

𝑂 (𝑝 log (𝑚/𝑝)) queries, which can be easily satisfied. Therefore,

the pre-sample cost becomes insignificant compared to the rounds

taken by the main loop of Algorithm 4 (Lines 4-12) with numer-

ous queries, such that this cost can be almost ignored in the final

analysis. For this phase, we have the following lemma to bound the

number of its rounds for each query.

Lemma 5.2. The main loop (Algorithms 4 Lines 4-12) completes in

𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
) rounds for each query under 𝑂 (𝑚/𝑝) load constraint,

and gives an approximated PPR that satisfies Definition 2.1.

Proof. We have proved that the main loop will complete in

𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
) rounds with 𝑂 (𝑚) memory cost in total. Now we

prove that if the graph is well partitioned, the data stored in the

memory and all messages transferred in each round are balanced

among partitions. At the beginning of Algorithm 4, we stored pre-

sampled random walks. Notice that all vertices have the same num-

ber of stored samples. Therefore we can simply store a randomwalk

⟨𝑠, 𝑡⟩ which starts at 𝑠 and terminates at 𝑡 on the (𝑠%𝑝)-th partition

so that each partition will handle the same number of samples.

The load of push phase is similar to the Power method we dis-

cussed above. In every round, there will be at most one share of

residues transferred across each edge and the load constraint is

exactly satisfied. When the Global-Push ends, it further invokes

Algorithm 5 to combine the pre-sample and the push results.

As we have described in Section 3.1, Algorithm 5 will use 𝑂 (𝑚)
sampled walks in total for each query to generate 𝑂 (𝑚) shares of
residues and there is one reserve of each terminated vertex 𝑡 with

1676



respect to 𝑠 . Then, as we described above, each partition can handle

exactly 𝑂 (𝑚/𝑝) pre-sampled random walks and output 𝑂 (𝑚/𝑝)
shares. Next, the estimation of PPR of 𝑡 with respect to 𝑠 will be the

combination of some shares of residues and the reserve. Thus, the

number of shares to be combined can be bounded as 𝑂 (𝑚 + 𝑛) =
𝑂 (𝑚). In addition, the reserves and the shares of residues in this

phase can be simply seen as key-value pairs. Therefore it is easy

to apply the reduce method in 𝑂 (1) rounds with balanced load

in existing distributed framework, so that it will not exceed the

𝑂 (𝑚/𝑝) load constraint for each executor. Proof done. □

Given Lemmas 5.1 and 5.2, we have the following theorem to

bound the round to process each query.

Theorem 5.3. The Delta-Push algorithm provides approximate
PPRs satisfying Definition 2.1 with amortized 𝑂 (log (𝑛/𝜖)) rounds
for each query in 𝑄 under the 𝑂 (𝑚/𝑝) load constraint.

Proof. Since the pre-sampled random walks can be proceeded

once and then used for any subsequent single-source queries. Then,

as long as we have at least 𝑝 log (𝑚/𝑝) queries (which can be easily

satisfied), the amortized cost for the pre-sample phase can be then

bounded by𝑂 (1). For the Global-Push phase, the number of rounds

to process each query can be bounded by𝑂 (log 𝑛2
log𝑛

𝜖2𝑚
). Recall that

we assume𝑚 = Ω(𝑛1+𝜆) in Section 2.2, and therefore the amortized

round to process one query can be bounded by:

𝑂

(
1 + log 𝑛

2
log𝑛

𝜖2𝑚

)
= 𝑂

(
log

𝑛2 log𝑛

𝜖2𝑚

)
= 𝑂

(
log

𝑛1−𝜆 log𝑛
𝜖2

)
= 𝑂

(
log

𝑛

𝜖

)
This finishes the proof. □

In addition, a power method provides the same guarantee with

the same asymptotic roundswhich is𝑂 (log
1−𝛼 (𝜖𝛿)) = 𝑂 (log (𝑛/𝜖)).

However, as we showed in Section 3.2, Delta-Push is more scal-

able in batch query processing, which takes less rounds when the

number of executors increases such that total space of the cluster

becomes larger, while the Power method still keeps the same round,

which is inferior to our solution.

6 EXPERIMENTS
In this section, we experimentally evaluate our proposed Delta-Push

against alternatives. All experiments are conducted on an AWS

cluster consisting of 20 processors, each with 16 VCPUs clocked

at 2.5GHz and 64GB memory. The network bandwidth among the

processors is 10Gbps. We compare our method against DistPPR [24],

which is the state-of-the-art Monte-Carlo based method and outper-

forms other methods, e.g. Doubling [6]. We further include Power

method as our baseline. In addition, we report the query perfor-

mance of FORA+ for single-source query (denoted as FORA+) and
the query performance of FORA+ of top-𝑘 query (denoted as FORA+-
Top-𝑘) [38, 39] on a single machine.

Implementation. All source codes are implemented with Scala

2.12 on Spark version 3.0 and Hadoop version 3.2. We partition the

input graph with the LPT method as mentioned in Section 2.2 and

maintain the graph with Spark GraphX [13]. For our pre-sampling

Table 2: Datasets. (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9)

Name 𝒏 𝒎 Type
GrQc 5.2K 29.0K undirected

DBLP 613.6K 2.0M undirected

Stanford 281.9K 2.3M directed

Pokec 1.6M 30.6M directed

LJ 4.8M 69.0M directed

Orkut 3.1M 117.2M undirected

Twitter 41.7M 1.5B directed

Friendster 65.6M 1.8B undirected

phase, following the pipeline solution in DistPPR, we pipeline the 𝑝

different iterations to improve the practical performance. However,

to bound the load, we will flush the pipeline and redo the task when

the load constraint is not satisfied. This method works well and

guarantees that load is bounded by 𝑂 (𝑚/𝑝).
Datasets. To show the scalability of our proposed solution, we

test on 8 publicly available datasets: GrQc, DBLP, Stanford, Pokec,
LJ, Orkut, Twitter, and Friendster, with varying graph size from 29

thousand edges to 1.8 billion edges. All datasets except Twitter can

be downloaded from Stanford Large Network Dataset Collection

3
. The Twitter dataset can be found from KONECT [22] project

4
.

Table 2 shows the details of these 8 datasets.

Parameters. In our experiment, we fix 𝛿 = 1/𝑛 and 𝑝 𝑓 = 1/𝑛
to provide guarantees for all above-average PPR values with high

probability. By default, we set 𝛼 = 0.2 and 𝜖 = 0.5 following [24, 39].

6.1 Comparisons with Previous Work
Average query time. In the first set of experiments, we examine

the efficiency of our proposed method against alternatives. Follow-

ing [25], we tune the parameter 𝜖 so that all methods return the

top-500 query with an average precision no smaller than 99.5%.

For the ground-truth, we use the Power method and stop until the

absolute error is no more than 10
−20

. In such a case, even if we

obtained the exact ground-truth values, as long as we store them

in double-precision, the precision loss will be more than 10
−20

.

Hence, the values that we have calculated can be treated as the

ground-truth values.

For distributed algorithms, we compare with DistPPR [24] and

the Power method using the GraphX Pregel API. We further include

the single-source PPR algorithm FORA and run it with a single-

core on a single-machine to see the cost-effectiveness. Figure 2

reports the average running time of all methods. Notice that the

y-axis is log-scale and we terminate the algorithm if it runs with

more than 24 hours or some of executors crash with the Out-Of-

Memory(OOM) error. As we can observe, our Delta-Push is orders

of magnitude faster than the Monte-Carlo method, which is as

expected since it requires far less round complexity than the Monte-

Carlo method. In addition, our Delta-Push is 3x to 5x faster than

the Power method on most datasets. Remarkably, our Delta-Push-

Top-𝑘 algorithm is further several times faster than our Delta-Push

algorithm, and is up to an order of magnitude faster than the Power

3
2021, SNAP. http://snap.stanford.edu/data/index.html

4
2021, KONECT. http://konect.cc/
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Figure 2: Average running time

method. This demonstrates the effectiveness of our Delta-Push

and Delta-Push-Top-𝑘 algorithm. Our Delta-Push (resp. Delta-Push-

Top-𝑘) is slower than the single-machine FORA+ (resp. FORA+-

Top-𝑘), which is expected. The main reason is that Delta-Push and

Delta-Push-Top-𝑘 need to communicate across multiple executors

through the network while the single-machine counterparts do

not need. However, we note that the single-machine FORA+ and

FORA+-Top-𝑘 are limited by the memory capacity of the machine.

When the graph size is larger than thememory capacity, FORA+ and

FORA+-Top-𝑘 no longer work. In contrast, our proposed distributed

algorithms can still work by piling up enoughmachines and running

in the distributed environment.

Communication round. In the second set of experiments, we ex-

amine the communication round of all distributed algorithms. The

results are shown in Figure 3. As we can observe, our Delta-Push-

Top-𝑘 algorithm requires the least number of rounds among all

methods and the number of rounds is orders of magnitude smaller

than DistPPR and the Power method. Delta-Push requires the sec-

ond least number of rounds as it pre-samples random walks and

can reuse it during the query processing. The observation in Figure

3 is generally consistent with that in Figure 2, which means the

number of rounds is indeed an important indicator of the efficiency

for distributed algorithms.

Communication cost.Next, we examine the total communication

cost of all distributed algorithms. Our Delta-Push-Top-𝑘 achieves

the least total communication costs on almost all methods. The

main reason is that our top-𝑘 algorithm requires only very small

rounds, which avoids a lot of communication costs. The Monte-

Carlo method actually requires less number of total communication

costs than Delta-Push. The reason is that Monte-Carlo method only

stores integers while Delta-Push needs to store non-integer values,

like residue and reserve. The Power method requires the highest

communication cost among all methods. However, the commu-

nication cost is not a direct reflection of the efficiency since the

performance of a cluster mainly depends on the executor which is

the last to complete its task. The Monte-Carlo method is difficult to

further scale up because the communication may be quite skewed,

resulting in excessively high load as we will show shortly.

Memory peak. Next, we examine the memory peak of all dis-

tributed algorithms. The Monte-Carlo method has the highest mem-

ory peak while all other methods have similar memory peaks. The

main reason is that the graph is well partitioned and the messages

get sent/received on each executor is balanced. Therefore, the mem-

ory peak on Delta-Push, Delta-Push-Top-𝑘 , and Power method are

quite similar. However, even if the graph is well partitioned, the

Power-Method DistPPR Delta-Push Delta-Push-Top-k

0
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Figure 3: Average rounds
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Figure 4: Total communication cost
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Figure 5: Memory peak

Table 3: Statistics of pre-sample phase.

Name 𝛾 Pre-sample Time (min)

GrQc 50000 4.8

DBLP 5000 32.6

Stanford 2500 28.4

Pokec 200 22.0

LJ 100 25.2

Orkut 50 44.8

Twitter 5 29.2

Friendster 5 68.4

Monte-Carlo method may end up with skewed message distribu-

tions on different executors as we analyzed in Section 5, resulting

in high memory peaks.

Pre-sampling phase. Table 3 shows the batch size and pre-sample

time on each dataset. As we can observe, the number of nodes han-

dled per batch decreases when the size of the input graph increases.

To explain, the cluster has a limited memory and bandwidth while

𝛾 is a factor to make 𝛾 ·𝑚 fit the scale of our cluster. Therefore the

batch sizes of different datasets are different since𝑚 is different on

different datasets. The larger the size of the graph is, the smaller

the batch size is. On all datasets, the pre-sample time is moderate

and is not a bottleneck as we analyze in Section 5. The cost can be

further compensated by the large number of queries.

6.2 Scalability of Delta-Push
In the last set of experiment, we evaluate the scalability of our

proposed method. Figure 6(a) reports the average running time to

evaluate 200 queries per batch on Pokec with 20 ∼ 80 executors.

With an increasing number of executors, it allowsmore pre-sampled

random walks to be stored and we can observe that the average

running time keeps decreasing since it reduces the rounds.

Figure 6(b) shows the average running time to evaluate PPR on

Friendster with different numbers of executors but with the same
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Figure 6: Scalability test

total number of cores and total memory. This compares the settings

where we pile up standard machines in contrast with the setting

where we upgrade the hardware of the machine, e.g., increasing

the memory or number of cores. The leftmost setting is the case

when we have 10 machines and each machine has 128GB memory

and 32 cores. The rightmost setting is the case when we have 80

machines where each machine has 16GB memory and 4 cores. As

we can observe, with a large number of non-powerful machines, the

performance is actually better than that with a few powerful servers.

To explain, the bottleneck is the bandwidth and the larger number

of machines we have, the less number of messages each machine

will send or receive, and the more efficient the communication is.

7 RELATEDWORK
Single-machine PPR algorithms. Personalized PageRank was

first proposed by Page et al. [30]. The first category of solution is

matrix-based methods. The classic solution is the power method as

described in Section 2.3. However, the power method is usually slow

when the graph becomes huge. Some follow-up research work [12,

20, 28, 33, 48] then focuses on improving the matrix multiplication

process by decomposing the input graph into tree structures or

sub-matrices, and utilizing the decomposition to speed up the PPR

queries. However, all such optimization techniques are designed

for single-machines and cannot be applied to distributed settings.

There also exist methods that use the local push algorithm to

derive the single-source PPR queries (Foward Push [2]) and to derive

the single-target PPR queries (Backward Push [1, 19]). Berkin et

al. [8] propose to pre-compute the Forward Push resulting from

several important nodes, and then use these results to speed up the

query performance. Ohsaka et al. [29] further design algorithms to

update the stored Forward Push results on dynamic graphs. Jeh et

al. [19] propose the backward search algorithm to answer single-

target PPR queries. Zhang et al. [46] design algorithms to update

the stored forward and backward push results on dynamic graphs.

Wang et al. [34] further present randomized backward push to

improve the query performance with the same accuracy. However,

all such algorithms cannot be applied to distributed settings.

Another branch of research work combines the local push algo-

rithms with Monte-Carlo method to improve the query efficiency.

Lofgren et al. [25, 26] and Wang et al. [36, 37] combine random

walk and backward push to improve the query performance of

pairwise PPR queries. Wang et al. [38, 39] further propose FORA

to combine the forward push and random walks to improve the

query efficiency. ResAcc [23] accelerates FORA by accumulating

the residues that returned to the source node in the forward push

phase and “distribute” this residue to other nodes proportionally

based on the reserve values prior to the Monte-Carlo phase.

Finally, a plethora of research work [4, 6, 11, 12, 16, 25, 41] study

how to efficiently process the top-𝑘 PPR queries. Gupta et al. [16]

propose to use Forward Push to return the top-𝑘 answers. How-

ever, their solutions do not provide any approximation guarantee.

Avrachenkov et al. [4] study how to use Monte-Carlo approach to

find the top-𝑘 nodes. Nevertheless, the solution does not return

estimated PPR values and does not provide any worst-case assur-

ance. Fujiwara et al. [11, 12] and Shin et al. [33] investigate how

to speed up the top-𝑘 PPR queries with the matrix decomposition

approach. These approaches provide no approximation guarantees.

Wei et al. propose the index-free TopPPR [41], which combines

Forward Push, random walk, and backward push to answer top-𝑘

PPR queries with precision guarantees.

Distributed algorithms. There exist numerous of existing scal-

able distributed algorithms based on the Monte-Carlo method. Bah-

mani et al. [5] propose Doubling to merge segments of short ran-

dom walks and then increase the length of random walks doubly.

Lin [24] proposes to further integrate the pipeline to improve the

PPR query performance. Sarma et al. [32] and Luo [27] investigate

the acceleration of PageRank computation in congestion model.

However, they only focus on reducing the communication round

for the random walks but discard the load which may significantly

affects the query performance. In contrast, in our setting, random

walks are pre-sampled and can be easily amortized to the enor-

mous incoming queries. Guo et al. [15] explore the linearity of PPRs

and pre-compute partial results for hub vertices on each machine.

When a query comes, it makes use of the pre-stored partial results

to speed up the query processing. However, such a solution is still

not scalable to graphs with billion edges. There are also several

existing research works focusing on concurrent PPR [35] or general

graph query processing on a single machine, e.g., [31, 43, 44, 47].

These works are orthogonal to our study and can be further applied

to optimize our query processing handled on the same executor.

8 CONCLUSIONS
In this paper, we present an efficient distributed framework for

single-source and top-𝑘 PPR queries. Theoretical analysis shows

that our proposed solutions are asymptotically better than alterna-

tives and experiments show that they are faster than competitors.
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