
On the algebra of data sketches
Jakub Lemiesz

Wrocław University of Science and Technology

Wrocław, Poland

jakub.lemiesz@pwr.edu.pl

ABSTRACT
We consider the problem of designing a distributed data sketch for

scenario in which data stream is observed by many independent

network nodes. We require that a sketch apart from being compu-

tationally and memory efficient should also be mergeable in a way

that mimics set theory operations on related data sets.

For example, when monitoring network traffic, one may consider

how many distinct packets passed through a given node (sum of

sets for different time windows) or passed through two given nodes

(intersection of sets from two locations) and what is their total size

(intersection of weighted sets).

In this paper we propose a sketch that allows to efficiently sum-

marize sets constructed from a sequence of set theory operations.

We also provide an analytical control over the trade-off between the

accuracy and storage/computational requirements. In comparison

to the previous works the proposed solution 1) allows the weights of

elements, 2) allows performing set theory operations simultaneous

on a large number of sketches, 3) does not require computationally

expensive numerical calculations and guarantees low overheads.

PVLDB Reference Format:
Jakub Lemiesz. On the algebra of data sketches. PVLDB, 14(9): 1655 - 1667,

2021.

doi:10.14778/3461535.3461553

1 INTRODUCTION
1.1 Cardinality estimation
For massive data streams, often containing millions of elements, so-

lutions based on storing all data and analyzing them afterwards are

usually far too costly in terms of time as well as memory consump-

tion. The classic example is the problem of counting the number 𝑛

of distinct stream elements. It is known that, without some addi-

tional knowledge about the nature of the data, storage linear in 𝑛

is required for the precise answer [2].

Approximate counting algorithms with sublinear storage re-

quirements have been intensively developed and analyzed since

1985 when Flajolet and Martin published the landmark article [25].

Flajolet’s algorithm and subsequent solutions employ hash func-

tions, which provide an easily reproducible substitute of random-

ness and allow to assign identical elements to the same pseudo-

random value. More precisely, one may treat an input stream as

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.

doi:10.14778/3461535.3461553

a multiset 𝔐 = (U, 𝑓), where U denotes underlying set with un-

known cardinality |U| = 𝑛 and function 𝑓 : U→ N≥1 determines

the multiplicity of each element in U. Then, by applying a hash

function ℎ : U→ {0, 1}𝑏 one transforms multiset 𝔐 into what can

be regarded as a set of outcomes of 𝑛 independent uniform random

variables (cf. [29]). In the last step, based on some characteristic

patterns in those outcomes, different estimators of unknown param-

eter 𝑛 can be proposed. The idea is that hashing to a small number

of bits 𝑏 suffices to estimate vary large cardinalities 𝑛.

In the literature there are generally two views on the set of

outcomesℎ(𝔐) – a continuous and discrete view. In the continuous
view the outcomes are considered as random real numbers and

estimations are based on their order statistics. The best known

algorithm in this category is KMV (k-minimum values, see [4, 10]),

which is based on the 𝑘th order statistic of 𝑛 uniformly distributed

random variables. Other algorithms that belong to this group are

discussed for example in [26]. They all attain a standard error of

approximately 1/
√
𝑚 when 𝑚 elements are stored in the sketch.

The algorithm that has been employed in this paper also belongs

to this category.

In the discrete view the outcomes are considered as strings of

bits and cardinality estimation is based on the bit-pattern observa-

tion, e.g. one may keep tracking the position of the leftmost 1-bit.

In this group one has Flajolet’s pioneering algorithm [25] or more

recent LogLog [22], HyperLogLog [24] and HyperLogLog++ [27].

The standard error of these algorithms is also close to 1/
√
𝑚 for

𝑚 stored elements. However, memory required to store a single

element is logarithmically smaller than for algorithms based on

order statistics (cf. [24]). Therefore, algorithms in this category are

much more space-efficient. For instance, HyperLogLog can estimate

cardinalities up to 10
9
with a typical accuracy of 2% and only 1.5

kilobytes of memory.

1.2 Weighted cardinality
Cardinality estimation problem can be generalized to a weighted

version, where each element 𝑖 is associated with a fixed weight

𝑤𝑖 ∈ R+. In the generalized problem the goal is to estimate the

total sum of weights for all unique elements present in a stream.

The authors of [18] have shown that every cardinality estimation

algorithm based on the extreme order statistics (i.e. based on storing

the minimum or maximum values of random variables) can be

transformed into the weighted counterpart.

In this paper we present a solution founded on storing the mini-

mum of exponentially distributed random variables. The associated

weighted cardinality estimator has been derived by maximizing the

likelihood function in [3]. At the beginning of Section 3 we briefly

show how this estimator, presented further in the formula (4), can

be derived in a simpler way and how it can be used to construct

more complex estimators.

1655

https://doi.org/10.14778/3461535.3461553
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461553

1.3 Operation on data sketches
Cardinality estimation algorithms and –more generally – frequency

estimation algorithms (see e.g. [19]) are founded on data sketches

that concisely summarize corresponding data sets. The possibility

of simulating the set theory operations based on such data sketches

has been recently considered in a few papers (e.g. [1, 5, 20, 23, 34]).

As described in [20] simulating set operationswith KMV sketches

is quite efficient. Given two KMV sketches SA and SB that represent
sets A and B by storing 𝑘 smallest of the observed hashes, one can

create sketch SA∪B representing the union A ∪ B only by storing

the 𝑘 smallest values from set SA ∪ SB. Based on sketch SA∪B we

get an estimate of |A ∪ B| , which multiplied by Jaccard similarity

𝐽 (A,B) gives an estimate of |A ∩ B|. Jaccard similarity 𝐽 (A,B) of
sets A and B can be naturally estimated as the cardinality of set

SA∪B ∩ SA ∩ SB divided by 𝑘 . The operations can be generalized

to a larger number of sketches and sketches can be augmented with

multiplicity counters to keep the count of all occurrences of an

element in a multiset (see AKMV in [5]).

The authors of [34] consider Streaming KMV sketches that aug-

ment basic KMV sketches with a running estimate of the cardinality

to reduce the variance of the estimator by half. Two estimation

procedures for union and intersection operations based on new

sketches are proposed. The first involves the computationally costly

maximum likelihood optimization, the second – more efficient –

averages a number of unbiased or consistent estimators.

An important property of the HyperLogLog algorithm is that

given two sketches SA and SB one can create sketch SA∪B as a point-
wise maximum SA∪B [𝑖] = max(SA [𝑖], SB [𝑖]) and the resulting

sketch is identical to the sketch constructed directly from set A ∪ B.
Unfortunately, handling intersections is much more troublesome.

A standard approach is to estimate the size of intersection based on

sketches SA, SB, SA∪B and principle |A ∩ B| = |A| + |B| − |A ∪ B|.
However, as the number of set operations increases, this technique

based on the inclusion-exclusion principle becomes very cumber-

some, expensive and inaccurate (see [5, 20]).

A more sophisticated method of using HyperLogLog sketches

to estimate the cardinality of the union, intersection and relative

complement has been proposed in [23]. The method is based on the

maximum likelihood estimation and although gives a more precise

estimate, it requires a substantial computational effort.

In [1] the authors show that the algorithms connected to the

frequency estimation problem can also produce mergeable sketches.

Let us emphasize that none of the above solutions addresses the

problem with regard to the weighted cardinality as they are de-

signed for discrete domains (i.e. cardinality or frequency estimation).

Moreover, since the main focus was on the statistical properties of

proposed estimators, these solutions often require computationally

expensive numerical calculations and in many scenarios are imprac-

tical. In particular, estimators proposed in [23] and [34] have no

explicit formulas as they are based on the numerical optimization.

In consequence – considering their discrete nature or mentioned

performance limitations – existing solutions seem too limited for

a variety of practical application domains (see Section 5 and 6).

Finally, problems such as creating reusable sketches for intersec-

tion and relative complement, operating simultaneously on many

sketches or secure transfer of sketches have not been well studied.

1.4 Problem formulation
In this paperwe propose a sketching framework that for unweighted

sets matches the results achieved by KMV sketches and addresses

the shortcomings of existing solutions mentioned above by meeting

the following requirements.

(1) Allow weighted sets while providing low storage and com-

putational overhead for both creating the sketch and using

them in the estimation process. Allowing weights is justi-

fied by various applications (see Section 5) and enables easy

construction of numerous estimators (see Section 3).

(2) Allow for efficient simulation of set theory operations simul-

taneously on a large number of sketches. The result of these

operations can be stored in reusable sketches (see Section 4).

(3) Allow for efficient and secure transfer of information in a

distributed environment. Proposed sketches store minima,

which enables using information spreading techniques with

low communication overhead (see extrema propagation [17]).

Moreover, the cryptographic mechanisms can be naturally

incorporated into the framework (see Section 5).

2 DATA SKETCH
Let 𝔐 = (U, 𝑓) be a multiset in which function 𝑓 : U → N≥1
determines the multiplicity of each element in U. We assume that

each element 𝑒 ∈ U can be described as a tuple of 𝑑 + 1 elements

𝑒 =
(
𝑖, 𝜆𝑖,1, . . . , 𝜆𝑖,𝑑

)
, where 𝑖 is a unique identifier of the element

𝑒 and 𝜆𝑖, 𝑗 ∈ R+ describes the 𝑗th feature of 𝑒 . For the sake of

simplicity we assume that if there are 𝑛 distinct elements in 𝔐,

each of them has a unique identifier 𝑖 ∈ {1, 2, . . . , 𝑛}. In practice

identifier 𝑖 may be any unique sequence of an appropriate length.

In this paper we focus on Algorithm 1 that creates a sketch of

a data stream 𝔐. For each element in the stream 𝔐 we calculate

𝑑 ×𝑚 hash values. The parameter 𝑑 denotes the number of features

of each element and𝑚 is the number of independent experiments

that controls the precision of estimates one can get from the sketch.

(1, 𝜆1) (2, 𝜆2) (3, 𝜆3) (4, 𝜆4) (5, 𝜆5)

set A set B

sketch A sketch B

Figure 1: Sets of elements with weights represented by
sketches. Based on sketches A and B we would like to
estimate the total weights of sets A and B. Moreover,
based on sketches A and B we would like to generate
sketches for sets A ∪ B,A ∩ B,A \ B. In many scenarios each
element can be observed multiple times or the informa-
tion can come to the observer through different paths
(e.g. as a packet or radio signal). For this reason, we model
the input as multisets (A, 𝑓) and (B, 𝑔).

1656

Algorithm 1 CreateSketch(𝔐, 𝑑 ,𝑚)

Initialization:
1: set each of 𝑑 ×𝑚 positions of sketch M to∞

Upon arrival of an element (𝑖, 𝜆𝑖,1, . . . , 𝜆𝑖,𝑑) ∈ 𝔐 :
2: for all 𝑗 ∈ {1, 2, . . . , 𝑑} do
3: for all 𝑘 ∈ {1, 2, . . . ,𝑚} do
4: 𝑢 ← ℎ (𝑖⌢ 𝑗⌢𝑘)
5: M[𝑗, 𝑘] ← min

{
M[𝑗, 𝑘],− ln𝑢

𝜆𝑖,𝑗

}
6: end for
7: end for

Upon request, at any time:
8: Return: M

For the purposes of a formal analysis we assume that the hash

function ℎ : {0, 1}𝑢 → 0.{0, 1}𝑣 , 𝑢, 𝑣 ∈ N+ is truly random and its

output values are uniformly distributed in the unit interval. By 𝑖⌢ 𝑗

we denote concatenation of two numbers, each represented by the

sequence with a fixed length (e.g. by 32-bit binary representation).

Algorithm 1 is a very simple procedure of aggregating the data

from a stream 𝔐 – its simplicity is the precondition for stream

processing applications. As always in this case, the main problem

is how efficient is the sketch for storing the information that we

need to keep in the context of a given problem.

In Section 3 we analyze estimators that can be used to infer from

a sketchM information about the distribution of each single feature

𝑗 as well as about the relations between these features.

In Section 4 we show how different sketches can be merged to

mimic set theory operations on the corresponding data streams.

3 DERIVATION OF ESTIMATORS
3.1 Single experiment
We start with the case that each element of multiset𝔐 has a single

feature, that is, it is a pair (𝑖, 𝜆𝑖). Our goal is to estimate the value

of Λ =
∑𝑛
𝑖=1 𝜆𝑖 . Suppose also that for each element we carry out

a single experiment (generate a single hash value). Thus we have

𝑑 = 1 and𝑚 = 1 and the sketch M is just a single value.

Based on our assumptions on the hash function, valuesℎ (𝑖⌢1
⌢
1)

generated for 𝑖 = 1, . . . , 𝑛 in line 4 of Algorithm 1 can be considered

as uniformly distributed independent random variables. Therefore

random variables 𝑆𝑖 = − lnℎ (𝑖⌢1
⌢
1) / 𝜆𝑖 obtained in line 5 of

Algorithm 1 are also mutually independent. From the inverse trans-

form sampling theorem ([21], p. 29) follows that 𝑆𝑖 is exponentially

distributed: 𝑆𝑖 ∼ 𝐸𝑥𝑝 (𝜆𝑖) . The value stored in M after the whole

stream has been processed is M = min{𝑆1, . . . , 𝑆𝑛} (see line 5 of

Algorithm 1). Since 𝑆1, . . . , 𝑆𝑛 are independent we have

Pr (M ≥ 𝑥) =
𝑛∏
𝑖=1

Pr (𝑆𝑖 ≥ 𝑥) = 𝑒−(𝜆1+...+𝜆𝑛)𝑥 = 𝑒−Λ𝑥 . (1)

Thus M also follows the exponential distribution: M ∼ 𝐸𝑥𝑝 (Λ) .
Since E (M) = 1/Λ we could try to estimate Λ by Λ := 1/M. The

problem with this approach is that E (1/M) is unbounded. Indeed,
E (1/𝑀) =

∫ ∞
0

1

𝑥 Λ𝑒
−Λ𝑥𝑑𝑥 . This is one of the reasons why the

sketch should consist of more than one experiment.

3.2 Multiple independent experiments
Suppose 𝑑 = 1 and for each element we carry out 𝑚 ≥ 2 in-

dependent experiments. Thus, a sketch M is now a single row

M = (M1, . . . ,M𝑚). Note that M𝑘 ∼ 𝐸𝑥𝑝 (Λ) and M1, . . . ,M𝑚 are

independent since a different value of parameter 𝑘 is used for gen-

erating hash values in each experiment (line 4 of Algorithm 1).

The sum of 𝑚 independent exponentially distributed random

variables with the same mean Λ follows the gamma distribution:

𝐺𝑚 :=

𝑚∑︁
𝑘=1

M𝑘 ∼ Γ(𝑚,Λ) ,

where𝑚 ∈ {1, 2, 3, . . .} and Λ ∈ (0,∞) represent the shape and the

rate parameters. Thus, for random variable 𝐺𝑚 we have

E (𝐺𝑚) =
𝑚

Λ
, Var (𝐺𝑚) =

𝑚

Λ2
. (2)

The inverse of random variable 𝐺𝑚 has the inverse gamma distri-

bution 1/𝐺𝑚 ∼ Γ -1 (𝑚,Λ) (see e.g. [37]) and we have

E (1/𝐺𝑚) = Λ
𝑚−1 , Var (1/𝐺𝑚) = Λ2

(𝑚−1)2 (𝑚−2) (3)

where the first equation holds for𝑚 ≥ 2 and second for𝑚 ≥ 3.

From the first equation in (3) we can conclude that

Λ :=
𝑚 − 1
𝐺𝑚

(4)

is an unbiased estimator of Λ for 𝑚 ≥ 2, namely E(Λ) = Λ.
Moreover, by the second equation in (3) for𝑚 ≥ 3 we get

Var
(
Λ/Λ

)
=

1

𝑚 − 2 . (5)

To derive a convenient two-sided concentration bound for Λ the

Cramér’s Theorem can been used (see [32], Lemma 2).

Let us remark that the estimator Λ is the harmonic mean of esti-

mations 1/M1, . . . , 1/M𝑚 (up to the factor𝑚−1 instead of𝑚). There-

fore, even if a part of these estimations heavily overestimate Λ, it
will not significantly affect the value of Λ as it is dominated by the

smallest of them.

Let us also remark that if a feature of the elements observed from

the data stream is always 1, namely 𝜆𝑖 = 1 for all 𝑖 ∈ {1, . . . , 𝑛}
and thus Λ = 𝑛, it can be shown that Λ is a maximum likelihood

estimator of parameter𝑛, where𝑛 is the number of distinct elements

in a multiset 𝔐 (see [3]).

3.3 Independent features
Nowwe focus our attention on themost essential case that elements

have 𝑑 ≥ 1 features and𝑚 ≥ 3. Note that the 𝑗th row of sketchM
corresponds to𝑚 experiments for feature 𝑗 (line 5 of Algorithm 1).

Experiments in different rows can be regarded as independent since

𝑗 is one of the arguments of the hash function (line 4 of Algorithm 1).

Then, by analogy to the estimator (4), for the sketch M we can

obtain a vector of 𝑑 independent estimators Λ = (Λ1, . . . ,Λ𝑑)
where Λ𝑗 :=

𝑚−1∑𝑚
𝑘=1

M𝑗,𝑘
is an unbiased estimator of Λ 𝑗 =

∑𝑛
𝑖=1 𝜆𝑖, 𝑗 .

Independence of the estimators Λ𝑗 turn out to be very useful

for constructing other estimators. In particular, it can be used to

estimate the average value, the variance and other moments of a

feature. These in turn can be used for more in-depth inquiries about

the distribution (e.g. based on tail and concentration bounds).

1657

For instance, assume that we observe elements (𝑖, 𝜆𝑖) and our

goal is to infer about the distribution from which the values 𝜆𝑖
are sampled. Our trick is to encode each element (𝑖, 𝜆𝑖) as a tuple
(𝑖, 𝜆𝑖,0, 𝜆𝑖,1, 𝜆𝑖,2), where for all elements 𝜆𝑖,0 = 1, 𝜆𝑖,1 = 𝜆𝑖 and 𝜆𝑖,2 =

(𝜆𝑖)2. Then, we use Λ0,Λ1,Λ2 to estimate 𝑛, Λ =
∑𝑛
𝑖=1 𝜆𝑖 and∑𝑛

𝑖=1 (𝜆𝑖)2, respectively, using the method described above. Then, to

estimate the average 𝐴 = Λ/𝑛 we compute the ratio Λ1 /Λ0. Since

1 /Λ0 and Λ1 are independent random variables with gamma and

inverse gamma distribution, by using the expected values presented

in formulas (2) and (3) we get E(Λ1 /Λ0) = Λ
𝑚−1

𝑚
𝑛 . Therefore we

can define unbiased estimator of 𝐴 as

𝐴 :=
𝑚 − 1
𝑚
· Λ1

Λ0

. (6)

Knowing the variances of random variables 1/Λ0 and Λ1 presented

in formulas (2) and (3) and based on their independence we can

also easily show that Var(𝐴/𝐴) = 2/𝑚 + O
(
1

/
𝑚2

)
.

Similarly we can construct and analyze an estimator for any raw

or central moment. However, in case of central moments one need

to be careful while using standard formulas. For example, when

the variance Var (𝑋) = E(𝑋 2) − E(𝑋)2 is small and estimates for

E(𝑋 2) and E(𝑋)2 are large, then the variance estimation obtained

from their subtraction is unreliable. Fortunately, one of several

stable single-pass procedures for computing central moments can

be applied based on the sketch M (e.g. the Welford’s algorithm [9]).

In general, independence of experiments for different features

enables analyzing their relationship. For example, in exactly the

same way as for the average Λ/𝑛 one can derive unbiased estima-

tor of the ratio Λ 𝑗1/Λ 𝑗2 for any two features 𝑗1 and 𝑗2. Moreover

this independence allows for merging the features. Namely, we

can take the position-wise minimum of two rows of the sketchM
corresponding to features 𝑗1 and 𝑗2 to obtain a single row corre-

sponding to the scenario in which elements of the form (𝑖⌢ 𝑗1, 𝜆𝑖, 𝑗1)
and (𝑖⌢ 𝑗2, 𝜆𝑖, 𝑗2), 𝑗1 ≠ 𝑗2 are observed (i.e. two different features of

the same element are treated as as the same feature of different ele-

ments). For the row obtained one can use estimator (4) and thereby

estimate Λ 𝑗1 + Λ 𝑗2 .

3.4 Dependent features
Coupling the experiments for different features may also have

benefits. Let us recall that for an element

(
𝑖, 𝜆𝑖,1, . . . , 𝜆𝑖,𝑑

)
the values

− lnℎ (𝑖⌢ 𝑗⌢𝑘)
/
𝜆𝑖, 𝑗 (7)

generated in line 5 of Algorithm 1 are computed in a determin-

istic way. Therefore only the first occurrence of

(
𝑖, 𝜆𝑖,1, . . . , 𝜆𝑖,𝑑

)
can change the sketch. However, for two elements with the same

values of features but starting with different ID’s 𝑖1, 𝑖2 the values in

(7) generated for these elements are independent as 𝑖1 and 𝑖2 are

taken as part of the input for the hash function. Similarly, since

the feature number 𝑗 is a part of the input to the hash function,

values generated for different features are independent. Similarly,

taking the experiment number 𝑘 guarantees the independence of

experiments for a given feature.

Somewhat surprisingly, if we remove the feature number 𝑗 from

the input to the hash function, simulations show that some estima-

tions become significantly more precise.

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

(a) 𝜆1, . . . , 𝜆𝑛 ∼ N(1, 0.1) .

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

(b) 𝜆1, . . . , 𝜆𝑛 ∼ U(0, 1) .

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

(c) 𝜆1 = . . . = 𝜆𝑛−1 = 1 and 𝜆𝑛 = 1000 .

Figure 2: Figures 2a - 2c present simulation results compar-
ing normalize estimations of the average𝐴/𝐴 (orange dots)
based on independent experiments and 𝐴/𝐴 (black dots)
based on dependent experiments for𝑚 = 100. For each num-
ber of elements 𝑛 ∈ {2, 3, . . . , 1000} we make a single experi-
ment. Results for different values of 𝜆1, 𝜆2, . . . , 𝜆𝑛 presented
on each figure show that 𝐴 in most cases is much more con-
centrated. By N and U we denote the normal and uniform
distribution. The black horizontal lines symbolize the 10%
error boundaries. The difference between𝐴 and 𝐴 is particu-
larly visible when averaged values are similar. Note however
that the presence of significant outliers can close the differ-
ence between the compared estimators (see Figure 2c).

1658

For example, let us consider the average estimator 𝐴 based on

independent estimators of 𝑛 and Λ defined by formula (6). By re-

moving the feature number 𝑗 from the input to the hash function

we can generate correlated values

− lnℎ (𝑖⌢𝑘) / 1 and − lnℎ (𝑖⌢𝑘) / 𝜆𝑖
respectively for the cardinality estimator Λ0 and sum estimator Λ1.

By this change we obtain a similar estimator𝐴 that has much higher

precision compared to the original estimator 𝐴. The experimental

comparison of two estimators 𝐴 and 𝐴 is presented in the Figure 2.

The significant difference in the concentration of𝐴 and𝐴 is related

to the fact that the hashes generated forΛ0 andΛ1 are correlated – if

they are extremely close to zero, then they simultaneously influence

both estimators. While the intuition behind this phenomenon is

clear the formal analysis of the properties of the estimator 𝐴 seems

to be much more complex.

4 OPERATIONS ON DATA SKETCHES
Consider two data sketches A and B generated by Algorithm 1 for

multisets (A, ·) and (B, ·). Note that the number of occurrences of a

given element in a multiset does not affect the values in the sketch.

This is due to fact that in Algorithm 1 we use a deterministic hash

function and only the first occurrence of an element matters. In

this section we show how A and B can be used to estimate the

results of set theory operations on A and B. For brevity of expo-

sition let us assume that the elements of A and B have only one

feature, namely they are of the form (𝑖, 𝜆𝑖). In this case sketches are

vectors of length𝑚: A = (A1,A2, . . . ,A𝑚), B = (B1,B2, . . . ,B𝑚).
Recall that values stored in A𝑘 and B𝑘 correspond to exponentially

distributed randomvariablesA𝑘 ∼𝐸𝑥𝑝 (|A|𝑤) and B𝑘 ∼𝐸𝑥𝑝 (|B|𝑤) ,
where |A|𝑤 :=

∑
(𝑖,𝜆𝑖) ∈A 𝜆𝑖 .

4.1 Union of sketches
Our goal now is to estimate the value of |A∪B|𝑤 based on A and B.
The solution is simple and efficient: we create sketchA∪· B using the

point-wise minimum: A ∪· B := (min(A1,B1), . . . , min(A𝑚,B𝑚)).
Sincemin(min(X),min(Y)) = min(X∪Y) for two sets of numbers

X and Y, then A ∪· B corresponds to the sketch we would get by

observing elements of A ∪ B. Thus,min(A𝑘 ,B𝑘) ∼ 𝐸𝑥𝑝 (|A∪B|𝑤)
and as follows from definition (4) for𝑚 ≥ 2 we can define unbiased

estimator of |A ∪ B|𝑤 as

𝑈 (A,B) := 𝑚 − 1∑𝑚
𝑘=1

min(A𝑘 ,B𝑘)
. (8)

Clearly, one can generalize this method for any number of sketches

𝑈 (A,B,C, . . .) by replacing summands in (8) bymin(A𝑘 ,B𝑘 ,C𝑘 , . . .).
This ease of processing sums of sets might be a killer application of

data sketches – distributed summations of data elements with no

double counting (see Section 5).

Note also that considered family of sketches is closed under

proposed union operation, so sketch A∪· B representing setA∪B is

a full-fledged sketch and can be stored and used in other operations.

4.2 Jaccard Similarity
Jaccard similarity of sets is defined as 𝐽 (X,Y) := |X ∩ Y|/|X ∪ Y| .
The generalizations of Jaccard similarity that take into account

weights of elements have been proposed several times over many

years (for a long list of papers see [13]). We define weighted Jaccard

similarity on sets A and B as

𝐽𝑤 (A,B) :=
|A ∩ B|𝑤
|A ∪ B|𝑤

. (9)

Jaccard similarity can be efficiently estimated by the well-known

MinHash algorithm (see e.g. [6]). Some interesting techniques for

estimating the weighted Jaccard that introduce weights into the

computation of MinHash have been proposed e.g. in [14, 28, 33].

We will show that in a similar way to how MinHash works

sketches A and B of respectively the set A and B can be used to

easily estimate the value of 𝐽𝑤 (A,B).

Lemma 4.1. Let A𝑘 and B𝑘 be the 𝑘th elements of the sketches A
and B created for sets A and B. Then 𝐽𝑤 (A,B) = Pr(A𝑘 = B𝑘) .

Proof. Let

S𝐴 =

{
𝑆𝑖,𝑘 : (𝑖, 𝜆𝑖) ∈ A ∧ 𝑆𝑖,𝑘 =

− lnℎ(𝑖 ⌢ 𝑘)
𝜆𝑖

}
.

Note that we have A𝑘 = min(S𝐴). Analogously we define S𝐵
and get B𝑘 = min(S𝐵). Note also that if (𝑖, 𝜆𝑖) ∈ A ∩ B, then
𝑆𝑖,𝑘 ∈ S𝐴 ∩ S𝐵 . Apart from the negligible collisions (𝑆𝑖,𝑘 = 𝑆 𝑗,𝑘 for

𝑖 ≠ 𝑗), the reverse implication also holds. Then we can write

Pr(A𝑘 = B𝑘) = Pr(min(S𝐴∩S𝐵) < min((S𝐴∪S𝐵)\(S𝐴∩S𝐵))) .
Let us now consider the right side of the above equation. Using the

fact that minimum of exponentially distributed random variables

is also exponentially distributed (see equation (1)) and that for

𝑋 ∼ 𝐸𝑥𝑝 (𝑥), 𝑌 ∼ 𝐸𝑥𝑝 (𝑦) we have
Pr(𝑋 < 𝑌) = 𝑥/(𝑥 + 𝑦) (10)

we can write

Pr(A𝑘 = B𝑘) =
|A ∩ B|𝑤

|A ∩ B|𝑤 + |(A ∪ B) \ (A ∩ B) |𝑤
and thus

Pr(A𝑘 = B𝑘) =
|A ∩ B|𝑤
|A ∪ B|𝑤

. (11)

□

Based on Lemma 4.1 and the Iverson bracket notation we can

define the following estimator of 𝐽𝑤 (A,B):

𝐽𝑤 (A,B) :=
1

𝑚

𝑚∑︁
𝑘=1

⟦A𝑘 = B𝑘⟧ . (12)

Note that the above sum represents the number of successes in𝑚

independent experiments, therefore it has binomial distribution

with probability of success equal to 𝐽𝑤 (A,B). Thus E(𝐽𝑤 (A,B)) =
𝐽𝑤 (A,B) and Var(𝐽𝑤 (A,B)) = 𝐽𝑤 (A,B) (1 − 𝐽𝑤 (A,B)) . The defi-
nition of weighted Jaccard similarity presented in formula (9) can

be generalized to any number of sets as:

𝐽𝑤 (A,B,C, . . .) :=
|A ∩ B ∩ C . . . |𝑤
|A ∪ B ∪ C . . . |𝑤

. (13)

Then it is easy to repeat the above reasoning to check that estimator

𝐽𝑤 (A,B,C, . . .) :=
1

𝑚

𝑚∑︁
𝑘=1

⟦A𝑘 = B𝑘 = C𝑘 = . . .⟧ (14)

is an unbiased estimator of (13).

1659

4.3 Intersection of sketches
Based on sketchesA and Bwe can also define an unbiased estimator

of the intersection |A ∩ B|𝑤 :

𝐼 (A,B) := 𝐽𝑤 (A,B) 𝑈 (A,B) . (15)

Namely, from (8) and (12) and linearity of expectation we get

E
(
𝐼 (A,B)

)
=
𝑚 − 1
𝑚

𝑚∑︁
𝑘=1

E

(
⟦A𝑘 = B𝑘⟧∑𝑚

𝑘=1
min(A𝑘 ,B𝑘)

)
. (16)

Note that

E

(
⟦A𝑘 = B𝑘⟧∑𝑚

𝑘=1
min(A𝑘 ,B𝑘)

)
=

E

(
1∑𝑚

𝑘=1
min(A𝑘 ,B𝑘)

����� A𝑘 = B𝑘

)
Pr(A𝑘 = B𝑘) (17)

and by Lemma 4.2 proved below, we may drop the condition from

the expression on the right side of equation (17). Moreover we may

replace Pr(A𝑘 = B𝑘) according to (11). In this way the right side of

equation (17) becomes:

E

(
1∑𝑚

𝑘=1
min(A𝑘 ,B𝑘)

)
· |A ∩ B|𝑤|A ∪ B|𝑤

. (18)

By formula (8) we get

E

(
1∑𝑚

𝑘=1
min(A𝑘 ,B𝑘)

)
=
E(𝑈 (A,B))

𝑚 − 1 =
|A ∪ B|𝑤
𝑚 − 1 . (19)

and hence that 𝐼 (A,B) is unbiased estimator of |A∩B|𝑤 for𝑚 ≥ 2:

E
(
𝐼 (A,B)

)
=
𝑚 − 1
𝑚

𝑚∑︁
𝑘=1

|A ∪ B|𝑤
𝑚 − 1

|A ∩ B|𝑤
|A ∪ B|𝑤

= |A ∩ B|𝑤 . (20)

Now it remains to prove the following lemma showing that the

probability distribution ofmin(A𝑘 ,B𝑘) does not depend onwhether
or not equality A𝑘 = B𝑘 holds.

Lemma 4.2. For any 𝑥 ≥ 0 we have

Pr(min(A𝑘 ,B𝑘) ≤ 𝑥 | A𝑘 = B𝑘) = Pr(min(A𝑘 ,B𝑘) ≤ 𝑥) .

Proof. Let us denote 𝑝 = |A∩B|𝑤 and 𝑟 = | (A∪B) \ (A∩B) |𝑤 .

Let us also define independent random variables X1 ∼ 𝐸𝑥𝑝 (𝑝) and
X2 ∼ 𝐸𝑥𝑝 (𝑟). Then for 𝐹𝛼 (𝑥) = 1 − 𝑒−𝑥𝛼 denoting cdf of the

exponential distribution with parameter 𝛼 we have

Pr(min(X1,X2) < 𝑥 ∧ X1 < X2) = Pr(X1 < X2 ∧ X1 < 𝑥) =∫ ∞

0

Pr(X1 < min(𝑧, 𝑥) | X2 = 𝑧) 𝐹 ′𝑟 (𝑧)𝑑𝑧 =∫ ∞

0

𝐹𝑝 (min(𝑧, 𝑥))𝐹 ′𝑟 (𝑧)𝑑𝑧 =
𝑝

𝑝 + 𝑟 𝐹𝑝+𝑟 (𝑥) . (21)

Note that by the formula (10) we have Pr(X1 < X2) = 𝑝/(𝑝 + 𝑟) .
From this fact and equation (21) by using the definition of condi-

tional probability and by noting that random variablesmin(X1,X2)
and X1 < X2 are equivalent to min(A𝑘 ,B𝑘) and A𝑘 = B𝑘 we get

Pr(min(A𝑘 ,B𝑘) ≤ 𝑥 | A𝑘 = B𝑘) = 𝐹𝑝+𝑟 (𝑥) .
We also know that

𝐹𝑝+𝑟 (𝑥) = 1 − 𝑒−𝑥 |A∪B |𝑤 = Pr(min(A𝑘 ,B𝑘) ≤ 𝑥) . □

Analogously to the expected value, with the use of Lemma 4.2,

one can also derive the variance of estimator 𝐼 (A,B) . For𝑚 ≥ 3,

𝑝 = |A ∩ B|𝑤 and 𝑠 = |A ∪ B|𝑤 we get:

Var
(
𝐼 (A,B)

)
=

𝑝2

(𝑚 − 2)𝑚 +
(𝑚 − 1)𝑝𝑠
(𝑚 − 2)𝑚 ≈

𝑝𝑠

𝑚
. (22)

By repeating the above reasoning one can check that the estima-

tor defined analogously to (15) as

𝐼 (A,B,C, . . .) := 𝐽𝑤 (A,B,C, . . .)𝑈 (A,B,C, . . .) (23)

is an unbiased estimator of intersection |A ∩ B ∩ C . . . |𝑤 .
The variance of 𝐼 (A,B,C, . . .) can be expressed as in equation

(22) with 𝑝 = |A ∩ B ∩ C . . . |𝑤 and 𝑠 = |A ∪ B ∪ C . . . |𝑤 .

4.4 Partial sketch for intersection
One cannot expect that the sketches A and B could be stretched

to a full-fledged sketch representing set A ∩ B since, by analogy

to zooming in on an image, we lose resolution. However, we can

create a partially defined sketch A ∩· B = (I1, I2, . . . , I𝑚) in which 0

represents an undefined position:

I𝑘 =

{
A𝑘 if A𝑘 = B𝑘 ,

0 otherwise .

Based on sketch A ∩· B we can define an estimator 𝐼 (A,B) for
|A ∩ B|𝑤 analogously to the estimator 𝐼 (A,B) defined in the ex-

pression (15). Namely, we estimate |A ∪ B|𝑤 by using formula (8)

but taking into account only𝑚′ non-zero positions of sketch A∩· B,
since for these position we have I𝑘 = min(A𝑘 ,B𝑘). Jaccard sim-

ilarity 𝐽𝑤 (A,B) can be estimated by computing the ratio of the

number of non-zero positions𝑚′ to the total number of positions

in the sketch𝑚. Since for non-zero positions we have A𝑘 = B𝑘 we

get exactly the same estimator as in formula (12). Therefore, by

repeating the reasoning from equations (16) – (20) we may verify

that

𝐼 (A,B) := 𝑚′ − 1∑
I𝑘≠0I𝑘

· 𝑚
′

𝑚
(24)

is an unbiased estimator of |A ∩ B|𝑤 for𝑚′ ≥ 2.

Derivation of the variance of 𝐼 (A,B) seems to be more challeng-

ing since 𝑚′ in contrast to 𝑚 is a random variable. In Figure 3d

in Section 4.7 we compare the variance of the estimators 𝐼 and 𝐼

experimentally. If |A ∩ B|𝑤 is small and thus𝑚′ is much smaller

than𝑚, the variance of 𝐼 is larger compared to variance of 𝐼 . Note

however that the amount of information in the partial sketch is

smaller compared to the full-fledged sketch.

On sketch A ∩· B one can perform further operations with other

sketches. For example, for sketchC one can create sketchA ∩· B ∩· C
which at position 𝑘 has

I𝑘 =

{
A𝑘 if A𝑘 = B𝑘 = C𝑘 ,

0 otherwise .

Based on sketch A∩· B∩· C one can use estimator 𝐼 (A,B,C) defined
analogously to (24). Namely, let us note that from definition (13) we

have |A ∩ B ∩ C|𝑤 = |A ∪ B ∪ C|𝑤 · 𝐽𝑤 (A,B,C). One can estimate

|A ∪ B ∪ C|𝑤 by using the generalized union estimator 𝑈 (A,B,C)
from Section 4.1 and𝑚′′ non-zero positions I𝑘 = min(A𝑘 ,B𝑘 ,C𝑘)
of sketch A∩· B∩· C. Jaccard similarity 𝐽𝑤 (A,B,C) can be estimated

1660

based on definition (14) as the ratio𝑚′′/𝑚, since for𝑚′′ non-zero
positions of A ∩· B ∩· C we have A𝑘 = B𝑘 = C𝑘 .

The above reasoning can be easily generalized to a larger number

of intersected sketches. Clearly, the number of non-zero positions

in each successive intersection may decrease and thus the preci-

sion of estimates might deteriorate. Nonetheless, a partial sketch

remains useful as long as it has at least two non-zero positions.

An example discussed in Section 6 shows that constructing partial

sketches based even on the large number of successive intersections

does not necessarily cause a loss of precision.

4.5 Relative complement of sketches
Based on sketches A and B one can obtain an unbiased estimation

for the relative complement |A \ B|𝑤 by using the intersection

estimator (15) and the fact that

|A \ B|𝑤 = |A|𝑤 − |A ∩ B|𝑤 . (25)

We will show how to obtain a more precise estimation. Similarly as

in the proof of Lemma 4.1 we can write

Pr(A𝑘 < B𝑘) = Pr(min(S𝐴 \ S𝐵) < min(S𝐵)) =
|A \ B|𝑤
|A ∪ B|𝑤

.

Therefore, by analogy to the Jaccard estimator (12), we can define

an unbiased estimator for
|A\B |𝑤
|A∪B |𝑤 as

𝐶𝑜𝑈 (A,B) := 1

𝑚

𝑚∑︁
𝑘=1

⟦A𝑘 < B𝑘⟧ . (26)

Then, using reasoning analogous as in the formulas (16) - (20) and

in the proof of Lemma 4.2 one can show that for𝑚 ≥ 2

𝑅(A,B) = 𝐶𝑜𝑈 (A,B)𝑈 (A,B) (27)

is unbiased estimator of |A \ B|𝑤 .Moreover, the variance of𝑅(A,B)
can be expressed with the variance formula (22) but with parameter

𝑝 = |A \ B|𝑤 . In Figure 3e in Section 4.7 we present experimental

results comparing 𝑅(A,B) with the naive estimator obtained with

the formula (25). When the relative complement |A \ B|𝑤 is small,

estimator 𝑅(A,B) is noticeably more precise.

4.6 Partial sketch for relative complement
To construct a partial sketch representing A \ B we can use a

similar approach as for the intersection. Namely, we define a sketch

A \ B = (R1,R2, . . . ,R𝑚) where

R𝑘 =

A𝑘 if A𝑘 = B𝑘 ,

< if A𝑘 < B𝑘 ,

> if A𝑘 > B𝑘 .

Then we can estimate |A∪B|𝑤 by using formula (8) with elements

of the sketch A \ B different than the symbols <, >, since for these

elements R𝑘 = min(A𝑘 ,B𝑘). To get the estimation for the com-

plement over union 𝐶𝑜𝑈 (A,B) as in the formula (26) we find the

ratio of the number of < symbols in the sketch A \ B to the length

of sketch𝑚. By taking the product of this two estimations in the

same way as in case of the estimator 𝐼 (A,B) we obtain an unbiased

estimator 𝑅(A,B) of |A \ B|𝑤 . However, as shown in the Figure 3f

in Section 4.7, when the relative complement |A \ B|𝑤 is large

estimator 𝑅(A,B) is significantly less precise than 𝑅(A,B) .

4.7 Experimental verification
In this section we experimentally verify analytical results from

sections 4.1 – 4.6. Figures 3a – 3f present the results of simulation

on sets

A = {(𝑖, 1) : 𝑖 = 1, 2, . . . , 𝑛} ,
B𝑗 = {(𝑗 + 𝑖, 1) : 𝑖 = 1, 2, . . . , 𝑛} (28)

for 𝑛 = 1000. With these sets we have the clear situation where

|A ∪ B𝑗 |𝑤 = 𝑛 + 𝑗 , |A ∩ B𝑗 |𝑤 = 𝑛 − 𝑗 , |A \B𝑗 |𝑤 = 𝑗 . Further we

will use these three formulas to normalize the values of estimators

𝑈 (A,B𝑗), 𝐼 (A,B𝑗), 𝑅(A,B𝑗), respectively, to have them close to 1.

In Figure 3a we present a histogram of results returned for set

A by the sum estimator Λ defined in (4) for 𝑚 = 200. From our

experiments it follows that distribution of Λ becomes similar to

the normal distribution as value of parameter𝑚 increases. Note

that from the central limit theorem a random variable with the

gamma distribution as the sum of𝑚 independent exponentially dis-

tributed random variables can be well approximated by the normal

distribution for sufficiently large𝑚.

In Figure 3b we present the value of Λ/Λ for set A and𝑚 chang-

ing from 2 to 1000. Since we know the variance of Λ (equation (5))

we can also plot six functions relating to the three-sigma rule.

Namely, for normally distributed random variable approximately

68.27%, 95.45% and 99.73% of the values lie within one, two and

three standard deviations of the mean, respectively. In our case the

six functions are defined as

1 ± 𝜎 [Λ/Λ], 1 ± 2𝜎 [Λ/Λ], 1 ± 3𝜎 [Λ/Λ]

where 𝜎 [𝑋] =
√︁
Var (𝑋) denotes the standard deviation of 𝑋 .

In Figures 3c–3f we set 𝑚 = 200 and consider operations on

sets A and B𝑗 as 𝑗 changes from 1 to 𝑛. In Figure 3c we present

normalized values of the union estimator 𝑈 (A,B𝑗). Note that 𝑈 is

in fact the sum estimator Λ on set A ∪ B𝑗 . Thus for a fixed𝑚 the

concentration of the normalized estimator𝑈 does not change as 𝑗

changes. Moreover, by using the variance of Λ from equation (5)

we can also draw six functions corresponding to the three-sigma

rule. Note that in this case for fixed𝑚 these functions are constant.

Figure 3d presents normalized values of intersection estimator

𝐼 (A,B𝑗) (black dots) and intersection estimator based on the partial

sketch 𝐼 (A,B𝑗) (orange dots). One can observe that the precision of

𝐼 deteriorates compared to 𝐼 as the size of the estimated intersection

|A ∩ B𝑗 |𝑤 = 𝑛 − 𝑗 goes to zero. Using the variance formula (22) we

also draw six functions related to the three-sigma rule for 𝐼 (A,B𝑗).
In Figure 3e we compare normalized values of the relative com-

plement estimator 𝑅(A,B𝑗) (black dots) to the normalized naive

estimator obtained from the formula (25) (orange dots). One can

observe that the precision of the naive estimator clearly deteriorates

compared to 𝑅 as the estimated relative complement |A \ B𝑗 |𝑤 = 𝑗

goes to zero. In Figure 3f we compare normalized values of estimator

𝑅(A,B𝑗) (black dots) to normalized values of estimator 𝑅(A,B𝑗)
based on the partial sketch (orange dots). Precision of 𝑅 clearly

deteriorates compared to 𝑅 as the value of |A \ B𝑗 |𝑤 = 𝑗 increases.

In Figures 3e and 3f, based on the variance formula (22) with

𝑝 = |A \ B𝑗 |𝑤 and 𝑠 = |A ∪ B𝑗 |𝑤 we also draw six functions

corresponding to the three-sigma rule for estimator 𝑅 .

1661

800 900 1000 1100 1200 1300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

(a) Histogram of 1000 independent realizations of estimator Λ with
parameter 𝑚 = 200 on set A . Black curve represents the normal
distribution with mean E(Λ) and variance Var(Λ) .

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

(b) Orange dots represent values ofΛ/Λ for the setA as parameter𝑚
changes from 2 to 1000. Six black lines represent bounds related to
the three-sigma rule obtained with equation (5) . The concentration
of Λ/Λ increases with𝑚 and does not depend on the set A .

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

(c) Orange dots represent normalized values of𝑈 (A,B𝑗) for𝑚 = 200

and 𝑗 ∈ {1, 2, . . . , 1000}. Using𝑈 (A,B𝑗) is equivalent to using estima-
tor Λ on set A ∪ B𝑗 . Thus for a fixed𝑚 the precision of the normal-
ized estimation does not change with 𝑗 . Six black lines represent
bounds related to the three-sigma rule obtained with equation (5) .

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

(d) Black dots represent normalized values of 𝐼 (A,B𝑗) , orange nor-
malized values of 𝐼 (A,B𝑗) for𝑚 = 200 and 𝑗 ∈ {1, 2, . . . , 1000}. Black
lines show the three-sigma rule for 𝐼 obtained with equation (22).

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

(e) Black dots represent normalized values of 𝑅 (A,B𝑗) and orange
dots normalized naive estimation based on equation (25) for𝑚 = 200

and 𝑗 ∈ {1, 2, . . . , 1000}. Black lines represent the three-sigma rule
for 𝑅 based on equation (22) with 𝑝 = |A \ B𝑗 |𝑤 and 𝑠 = |A ∪ B𝑗 |𝑤 .

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

(f) Black dots represent normalized values of 𝑅 (A,B𝑗) , orange nor-
malized values of �̂� (A,B𝑗) for𝑚 = 200 and 𝑗 ∈ {1, 2, . . . , 1000}. Pre-
cision of �̂� deteriorates compared to 𝑅 as the value of |A \ B𝑗 |𝑤 = 𝑗

increases. Black lines represent the three-sigma rule for 𝑅 obtained
with equation (22) with 𝑝 = |A \ B𝑗 |𝑤 and 𝑠 = |A ∪ B𝑗 |𝑤 .

Figure 3: Figures 3a - 3f present simulation results for different operators on sets A and B𝑗 defined in the formula (28).

1662

5 APPLICATIONS
The natural application for the proposed framework is building

data aggregation scheme for many independently working data

collection entities (e.g. sensors, crawlers, routers, satellites). In such

applications the framework not only enables effective collecting and

aggregation procedures but also flexible manipulation on the ag-

gregated data. The framework can also be used in the construction

of distributed databases. Here we describe a few selected scenarios.

5.1 Opportunistic data collection
Let us concern the following problem: there are multiple data

streams 𝑆1, . . . , 𝑆𝑡 and the agents – so called mules – 𝐴1, . . . , 𝐴𝑚
collecting data. For example, 𝑆1, . . . , 𝑆𝑡 represent sensors in a sensor

field, while 𝐴1, . . . , 𝐴𝑚 are mobile users collecting the data mea-

sured by 𝑆1, . . . , 𝑆𝑡 (for model details see e.g. [35]). The goal is to

collect the measurements and to compute, say, the average value.

Obviously, this can be achieved if the lists of original measurements

together with unique identifiers are provided to the sink – a data

collection point. However, if the data are aggregated by the agents,

then a careful coordination is necessary so that no value is counted

twice (e.g. dividing the sensor field into subregions and assigning

exactly one agent to one subregion).

Data sketches enable running the data collection process in op-

portunistic waywithout any central coordination. Themobilemules

𝐴1, . . . , 𝐴𝑚 simply create independently their data sketches and

from time to time deliver them to the sink. The sink aggregates

the sketches (e.g. by the union operation) and thereby learns the

result for stream data received collectively by all mules. Note that

the scheme is tolerant to mules entering or leaving the system. It

is also tolerant to malicious mules attempting to manipulate the

result. If the malicious goal is to reduce the total, then nothing can

prevent counting a value read by an honest mule. If the malicious

goal is to increase the total, then it is easy the prevent the attack.

Namely, each data stream element is authenticated by its source

(e.g. by means of a digital signature), and this authentication string

is attached to𝑀 [𝑗, 𝑘] if the operation from line 5 of CreateSketch

algorithm is executed. In this case the new authentication string

overwrites the previous one attached to𝑀 [𝑗, 𝑘].

5.2 Data aggregation in wireless networks
Again, we are talking about collecting the data generated by net-

work nodes 𝑆1, . . . , 𝑆𝑡 and delivering the totals to the sink. However

now we assume that the nodes 𝑆1, . . . , 𝑆𝑡 create communication net-

work themselves. There are many strategies how to organize the

communication network (see e.g. the survey [36]). The major prob-

lems in this area is to protect the network from communication

errors or adversary trying to prevent delivery of some measure-

ments to the sink. If the adversary can either corrupt some nodes

or interrupt some connections, then the only defense is to send

the same data over multiple paths. However, if the data has to be

aggregated by the intermediate nodes, then the problem of double

counting arises.

Data sketches solve this problem in an elegant way: a network

node aggregates received data sketches using methods from Sec-

tion 4 and forwards the resulting sketch. So even if the network

follows a flooding strategy, this does not result in an explosion of

the data size while certain accuracy of the data finally delivered is

guaranteed (see: extrema propagation technique [3, 17]). An addi-

tional advantage of this approach is that it is independent of the

network structure, so reconfiguration of routing paths can be done

without interrupting data collection.

5.3 Queries to distributed data sets
Due to many reasons (e.g. privacy protection according to GDPR)

data might be distributed over multiple databases, while databases

may contain the same entries. This may occur for medical databases,

where the same entry concerning a particular patient may be du-

plicated to the medical databases of the doctors responsible for a

treatment of this patient.

The problem arises when a query concerns data contained in all

databases that are not disjoint. For privacy protection reasons each

database should return only aggregated results (e.g. the number

of cases of a particular medical event). If the raw numbers are

released, then it is impossible to avoid double counting. The correct

result would be generated, if a join operation is performed prior

to evaluating the query, but this would be inefficient and possibly

illegal from the point of view of GDPR. Data sketches solve this

problem in an elegant and efficient way: each database releases a

data sketch as an answer and it suffices to aggregate the sketches

using operations described in Section 4.

5.4 Privacy
There are different methods to reduce the leakage of private infor-

mation when releasing the aggregates. For instance, one of popular

methods is to add noise to a private data that is an input to the

data aggregation procedure (see e.g. [11]). Data sketches offer an

alternative mechanism: instead of providing the data directly, a

given entry may or may not be used for an update in line 5 of the

CreateSketch algorithm. So most of the entries have not explicit

impact on the final shape of the sketch. For example, one may think

about the traffic flow analysis: to analyze the flow we can aggregate

sketches from different locations and time windows, but we won’t

be able to track the movement of a single car.

Moreover, the operations over the sketch can be performed on

encrypted data and as a multi-party protocol. All we have to do

is to implement the operations from the step 5 of CreateSketch

algorithm on ciphertexts. If the hash values can be generated on

the source side then it is enough to change the definition of 𝑢 in

line 4 of the CreateSketch algorithm to

𝑢 ← ℎ
(
𝑖⌢ 𝑗⌢𝑘⌢𝜆𝑖, 𝑗

)
(29)

since now ciphertext 𝑐 = − ln𝑢
/
𝜆𝑖, 𝑗 effectively hides value of 𝜆𝑖, 𝑗 .

If only the ciphertext of 𝜆𝑖, 𝑗 is to be send to the aggregator there

are two crucial issues to be solved: how to compare the current

value of𝑀 [𝑗, 𝑘] with − ln𝑢
/
𝜆𝑖, 𝑗 and how to show that 𝑢 has been

created correctly. At this point note that from security point of view

it would be desirable to change the definition of𝑢 such that it would

take into account the value of 𝜆𝑖, 𝑗 similarly as in the formula (29).

6 EXPERIMENTS
To verify the framework we model a scenario based on the actual

problem in a multi-hop wireless sensor network we came across.

1663

In such networks communication errors as well as node failures

are common, so sending a message via a single path could be risky.

A popular strategy is to forward a message to some number of

neighbors that are closer to the destination. We consider a special

case of this approach known as the braid chain strategy (see [16]).

Braid chain. A braid chain of length 𝐿 consists of two paths, each

of length 𝐿. Nodes that are on the same position in two paths

are considered to be in the same layer, so we have two nodes per

layer, say 𝐴𝑖 and 𝐵𝑖 in the layer 𝑖 . Each node from layer 𝑖 can

send a message to both nodes of layer 𝑖 + 1. Let us denote the

probability of a successful transmission between two nodes on

the same path by 𝑝 and probability of a successful transmission

between two nodes on different paths by 𝑞 (see Figure 4). In [16] it

was shown the probability that communication in the braid chain

is not disconnected is much higher to the analogical probability for

two separate paths. In further experiments we set 𝑝 = 0.9, 𝑞 = 0.1

and 𝐿 = 30. Note however that 𝑝 and 𝑞 do not have to sum up to 1.

Data sources. Wewill use data sketches to analyze the packet traffic

in the braid chain. As depicted in Figure 4 we assume there are

two independent data sources A, B and the sink S. The size of

packets generated by A and B is described by random variables

𝑋 and 𝑋 + 1, respectively, where 𝑋 follows the beta distribution

with parameters 𝛼 = 𝛽 = 5 (see Figure 5a). The beta distribu-

tion is similar to the normal distribution but it does not have

long tails – it is defined on [0, 1] interval. Thus, the beta distri-

bution provides more realistic simulations of a packet size, that

match the practical results (see [8]). This can be justified by the

limited range of a packet size in the standard transport protocols.

We assume that each of two sources generates 𝑛 = 10
4
packets.

Mean and variance. To estimate the mean and variance of size of

packets that go through each node of the braid chain we use the

trick from Section 3.3. Namely, we encode each packet as a tuple

with three features (𝑖, 1, 𝜆𝑖 , 𝜆2𝑖), where 𝑖 is a unique identifier of a
packet and 𝜆𝑖 represents its size. In each node of the braid chain

we create a sketch with 𝑑 = 3 rows and𝑚 = 200 columns. Let us

name sketches created in nodes𝐴𝑖 and 𝐵𝑖 asA𝑖 and B𝑖 , respectively.
Recall that the first row of each sketch can be used to estimate the

number of seen packets 𝑛, the second row to estimate their total

size

∑𝑛
𝑖=1 𝜆𝑖 and third row to estimate

∑𝑛
𝑖=1 (𝜆𝑖)2.

Based on the procedure described in Section 3.3 in each node

we create a sketch and estimate the mean and variance of size of

packets that have passed through this node. The results for nodes

on path 𝐴 of the braid chain are presented in Figure 5b. In this and

all subsequent figures the exact results are represented by solid lines

A1 A2 A3 ...

...

A

B

S

A𝐿

B1 B2 B3 B𝐿

p p

q q

p p

q q

Figure 4: Braid chain of length 𝐿with sourcesA,B and sink S.
A𝑖 represents a set of packets seen by node 𝐴𝑖 .

and results obtained with sketches by dashed lines. As expected

for node 𝐴1 the mean size of packets is close to E (𝑋) = 1/2. In
subsequent nodes, as packets from sources A and B get mixed, the

mean size grows to 1, which is the mean size of packets in set A ∪ B.
Note that as mentioned in Section 3.3 estimates for the variance

obtained by the standard formula – represented in Figure 5b by the

black dashed line – are not very stable. Therefor, we have applied

Welford’s online algorithm for estimating the variance based on

the sketches (see Section 3.3). The results obtained by Welford’s

algorithm are represented in Figure 5b by the black dotted line and,

as expected, approximate the true variance much better.

Lost packets. SketchesA𝑖 andB𝑖 described above can be also used to
estimate the number and the total size of packets lost in consecutive

layers of the braid chain. For example, the set of packets from source

A lost up to layer 𝑖 can be expressed as

LA𝑖 := A1 \ (A𝑖 ∪ B𝑖) .

Thus, the number of lost packets |LA
𝑖
| and their total size |LA

𝑖
|𝑤 can

be estimated based on union and relative complement operations on

sketches A1,A𝑖 ,B𝑖 . More precisely, to estimate |LA
𝑖
| and |LA

𝑖
|𝑤 we

should use the first and second row of these sketches, respectively.

The results of estimations for |LA
𝑖
| and |LA

𝑖
|𝑤 for each layer 𝑖

are presented in Figure 5c. Since for the source A the mean size

of a packet is 1/2, therefore on average the total size of packets is

two times smaller than their number. Note that with the chosen

parameters 𝑝 = 0.9 and 𝑞 = 0.1 up to the 10th layer we have lost

approximately 50% from 𝑛 = 10
4
packets. Note also that on a single

path with parameter 𝑝 = 0.9 up to the 10th layer we would lose on

average 1 − (0.9)9 ≈ 61% of packets.

Packet flow analysis. Using sketches A𝑖 and B𝑖 we can also analyze

the presence of packets of a given type in selected subsets of net-

work nodes. For example, we may study the total size of packets

from source A or source B that were present in consecutive nodes

𝑖 ∈ {1, 2, . . . , 𝐿} of path 𝐴. Namely, for sets

𝐴A𝑖 := A1 ∩ A𝑖 , 𝐴B𝑖 := B1 ∩ A𝑖 (30)

we can estimate |𝐴A
𝑖
|𝑤 and |𝐴B

𝑖
|𝑤 . Similarly, we may be interested

in the total size of packets from both sources that were present in

the consecutive nodes of path 𝐴:

| (A1 ∪ B1) ∩ A𝑖 |𝑤 .

We can also investigate the total size of packets from source A that

were always present up to a given node 𝑖 on nodes of path 𝐴:

|A1 ∩ A2 ∩ . . . ∩ A𝑖 |𝑤 (31)

or the total size of packets from source B that were ever present up

to a given node 𝑖 on nodes of path 𝐴:

|B1 ∩ (A1 ∪ A2 ∪ . . . ∪ A𝑖) |𝑤 .

The experimental results for the above weighted cardinalities as

value of 𝑖 changes from 1 to 𝐿 are presented in Figures 5d and 5e.

In Figure 5d we see that the total size of packets from source A on

path 𝐴 starts at 5000 in node 𝐴1 and drops to approximately 500

in node 𝐴30. The total size of packets from source B starts at 0 in

node 𝐴1, grows to approximately 4500 in node 𝐴10 and starts to

drop. As expected, the total size of packets from both sources is the

sum of the total sizes of packets of each type. In Figure 5e we see

1664

that for node 𝐴30 the total size of packets from source A that were

always present on path 𝐴 is approximately equal to 250. Since the

total size of packets from sourceA in node𝐴30 is 500 (see Figure 5d)

it means the other 250 was restored due to the presence of path 𝐵.

Partial sketches. To estimate the weighted cardinality defined in

formula (31) one can collect all sketches A1,A2, . . . ,A𝑖 in one place

and perform the operation defined in formula (23). However, such

approach entails a considerable communication overhead. An alter-

native solution is to use partial sketches. Namely, node 𝐴1 sends

sketch A1 to node 𝐴2, which creates partial sketch A1 ∩· A2 and

sends it to node 𝐴3 which creates sketch A1 ∩· A2 ∩· A3, etc. In

general node 𝐴𝑖 creates partial sketch A1 ∩· A2 ∩· . . . ∩· A𝑖 on which

estimator 𝐼 (A1,A2, . . . ,A𝑖) described in Section 4.4 can be used to

estimate the value of (31). The results returned by estimator 𝐼 for

successive values of 𝑖 are shown in Figure 5e as black dots.

Nodes similarity. As packets from sources A and B are getting

mixed in the braid chain, sets A𝑖 and B𝑖 in consecutive layers

become similar to each other. We can determine how similar they

are by using the weighted Jaccard similarity 𝐽𝑤 (A𝑖 ,B𝑖). However,
in this way we do not consider the source of packets, but only what

percentage of the total size of packets in a layer is common for both

nodes. To take into account the source of packets we may use the

total variation distance

| |a − b| | := 1

2

∑︁
𝑦∈𝑌
|a(𝑦) − b(𝑦) |

representing the similarity of two probability distributions a, b on

the countable space 𝑌 as a number between 0 and 1 (see e.g. [31]).

Namely, using the notation defined in (30), we can compute what

fraction of the total size of packets at node𝐴𝑖 comes from source A

𝑝A𝐴𝑖
:=

|𝐴A
𝑖
|𝑤

|𝐴A
𝑖
|𝑤 + |𝐴B𝑖 |𝑤

and analogically find probability distributions for nodes 𝐴𝑖 and 𝐵𝑖

p𝐴𝑖
:=

(
𝑝A𝐴𝑖

, 𝑝B𝐴𝑖

)
, p𝐵𝑖

:=

(
𝑝A𝐵𝑖

, 𝑝B𝐵𝑖

)
.

Therefore, we can compute the total variation distance | |p𝐴𝑖
−p𝐵𝑖

| |
to measure how similar are sets A𝑖 and B𝑖 in terms of where their

elements come from.

Simulations for Jaccard similarity 𝐽𝑤 (A𝑖 ,B𝑖) and total variation

distance | |p𝐴𝑖
− p𝐵𝑖

| | for 𝑖 ∈ {1, . . . , 30} are presented in Figure 5f .

𝐽𝑤 (A𝑖 ,B𝑖) starts at value 0 for 𝑖 = 1 and grows to 0.45 for 𝑖 = 30.

| |p𝐴𝑖
− p𝐵𝑖

|| starts at value 1 for 𝑖 = 1 and drops to 0 for 𝑖 = 30,

which means that the proportion of total size of packets from source

A and B is roughly the same for nodes 𝐴30 and 𝐵30.

7 PRACTICAL NOTES AND CONCLUSIONS
Memory usage. The most obvious benefit of employing sketches

compared to storing raw data is lowmemory usage. Storing a sketch

requires 𝑑 ·𝑚 ·𝑏 bits, where 𝑑 ·𝑚 is the sketch size and 𝑏 is the num-

ber of bits per hash. Parameters 𝑑 and𝑚 were discussed in Section 3

and do not depend on the number of elements in the input stream.

The optimal value of the parameter 𝑚 depends on the precision

required in a given use case, however from Figure 3b it can be

concluded that 𝑚 = 200 seems to be a reasonable default value.

The number of bits per hash 𝑏 should be chosen so that the proba-

bility of hash collisions for different elements is low. If the number of

collisions is substantial compared to number of elements, the value

obtained in line 5 of Algorithm 1 can be higher than it should be and

the results based on a sketch might be underestimated. Assuming a

hash function provides a uniform distribution the Birthday Paradox

guarantees that the probability of a collision is low if the number

of hashed elements 𝑛 do not exceed

√
2
𝑏
. For example, using 𝑏 = 64

bits per hash is safe up to approximately

√
2
64 ≈ 4 ·109 elements.

Transformation 𝑓 (𝑢) = − ln(𝑢)/𝜆 applied in the algorithm to hash

values is a one-to-one expansion mapping from the interval [0, 1)
onto R+ so it should not cause collisions. However, the use of an

inefficient method for computing the value of the logarithm may

affect the performance of the algorithm (see e.g. [30]).

Note that for unweighted sets the memory-precision trade-off is

almost exactly the same for our solution and for KMV sketches.

Finally, lest us remark that as the number of elements increases

the values stored in the sketch decrease, so a compression algorithm

based on removing unused leading bits could be proposed.

Hash function. The key to the algorithm’s performance is the choice

of a hash function. An appropriate hash function should (1) be fast

enough, (2) map data uniformly to the range, (3) resemble a truly

random hash function – namely, map each data item independently.

In applications having big-size input data and requiring fast process-

ing, for which security aspects are not crucial, non-cryptographic

hash functions like MurMurHash3 and Fowler–Noll–Vo are cur-

rently a popular choice (see [12]). In our experiments on the braid

chain described in Section 6 we relied on the MurMurHash3 func-

tion and found no disturbing signals. It seems that even for very

massive data streams these hash functions should meet postulates

(1) and (2) although it is not entirely clear whether they will pro-

vide adequate independence of experiments. Fortunately, in practice

even simple hash functions are commonly observed to perform as

predicted by the idealized analysis for truly random hash functions.

This phenomenon arises naturally from a combination of the ran-

domness of the hash function and randomness present in the data

(see [15]). Note also that in Algorithm 1 each experiment is based on

computing minimum of hashed values, so an ideal solution would

be to construct a family of hashing functions providing min-wise in-

dependence analogical to this defined in [7] but additionally taking

into account the weights. Finally, let us remark that if we apply the

approach proposed in Section 3.4 the experiments corresponding

to different rows of the sketch do not have to be independent.

Conclusions. In the paper we generalize the problem of evaluating

set theory operations based on data sketches to the weighted sets.

We analyze the solution that relies heavily on the properties of the

exponential distribution. As for the practical issues, more research

is needed in selecting a hashing scheme. In particular one could try

to look for family of functions providing min-wise independence

as this defined in [7] but taking into account the weights.

It also seems that it is possible to incorporate mechanisms related

to cryptography into the sketch to provide data privacy or, con-

versely, data accountability by relating it to the submitting entity.

The latter one can ensure the integrity of the sketch (cf. Section 5.1).

Further research is required to refine the solution in this respect.

1665

(a) Probability distributions for the random variables 𝑋 and 𝑋 + 1.
Variable 𝑋 follows the beta distribution with parameters 𝛼 = 𝛽 = 5.

Mean size

Variance of size

5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) The mean and variance of size of packets passing through each
node 𝐴1 to 𝐴30. The black dots represent estimates of the variance
obtained with the Welford’s online algorithm based on sketches.

Number of lost packets

Total size of lost packets

5 10 15 20 25 30

0

2000

4000

6000

8000

(c) The number |LA
𝑖
| and the total size |LA

𝑖
|𝑤 of packets from source

A that have been lost up to the layer 𝑖 for 𝑖 ∈ {1, . . . , 30}.

Total size of packets from both sources

From source From source

5 10 15 20 25 30

0

2000

4000

6000

8000

(d) The total size of packets from source A, from source B and from
both sources that were present in consecutive nodes of path 𝐴.

Total size of packets from

ever present on path A

Total size of packets from

always present on path A

5 10 15 20 25 30

0

2000

4000

6000

8000

(e) The total size of packets from source A always present and from
sourceB ever present in consecutive nodes of path𝐴. The black dots
represent estimates obtained based on partial sketches.

Total Variation Distance

Jaccard Similarity

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

(f) The Jaccard similarity 𝐽𝑤 (A𝑖 ,B𝑖) and the total variation distance
| |p𝐴𝑖

− p𝐵𝑖
| | for 𝑖 ∈ {1, . . . , 30}.

Figure 5: The figure presents experimental results for the braid chain of length 𝐿 = 30 with parameters 𝑝 = 0.9 and 𝑞 = 0.1.
In Figures 5b - 5f solid lines represent exact results, dashed lines represent results based on sketches with parameter𝑚 = 200.

1666

REFERENCES
[1] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei

Wei, and Ke Yi. 2012. Mergeable Summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Scottsdale,
Arizona, USA) (PODS ’12). Association for Computing Machinery, New York, NY,

USA, 23–34. https://doi.org/10.1145/2213556.2213562

[2] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of

approximating the frequencymoments. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (Philadelphia, Pennsylvania, United

States) (STOC ’96). ACM, New York, NY, USA, 20–29.

[3] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. 2009. Fast Estima-

tion of Aggregates in Unstructured Networks. In Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous Systems. IEEE Computer

Society, 88–93.

[4] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. 2002.

Counting Distinct Elements in a Data Stream. In RANDOM. 1–10.

[5] Kevin Beyer, Rainer Gemulla, Peter J. Haas, Berthold Reinwald, and Yannis

Sismanis. 2009. Distinct-Value Synopses for Multiset Operations. Commun. ACM
52, 10 (Oct. 2009), 87–95. https://doi.org/10.1145/1562764.1562787

[6] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).
IEEE Computer Society, 21–29. https://doi.org/10.1109/SEQUEN.1997.666900

[7] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.

1998. Min-Wise Independent Permutations (Extended Abstract). In Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing (Dallas, Texas,

USA) (STOC ’98). Association for Computing Machinery, New York, NY, USA,

327–336. https://doi.org/10.1145/276698.276781

[8] Ewerton RS Castro, Marcelo S Alencar, and Iguatemi E Fonseca. 2013. Probability

density functions of the packet length for computer networks with bimodal

traffic. International Journal of Computer Networks & Communications 5, 3 (2013),
17.

[9] Tony F. Chan, Gene H. Golub, and Randall J. Leveque. 1983. Algorithms for

Computing the Sample Variance: Analysis and Recommendations. The American
Statistician 37, 3 (1983), 242–247. https://doi.org/10.1080/00031305.1983.10483115

[10] Philippe Chassaing and Lucas Gerin. 2006. Efficient estimation of the cardinal-

ity of large data sets. In 4th Colloquium on Mathematics and Computer Science.
DMTCS Proceedings, 419–422.

[11] Yuwen Chen, José-Fernán Martínez, Pedro Castillejo, and Lourdes López. 2018.

A Privacy-Preserving Noise Addition Data Aggregation Scheme for Smart Grid.

Energies 11, 11 (Nov 2018), 2972. https://doi.org/10.3390/en11112972

[12] Lianhua Chi and Xingquan Zhu. 2017. Hashing Techniques: A Survey and

Taxonomy. ACM Comput. Surv. 50, 1, Article 11 (April 2017), 36 pages. https:

//doi.org/10.1145/3047307

[13] Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. 2010.

Finding the Jaccard Median. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms (Austin, Texas) (SODA ’10). Society for

Industrial and Applied Mathematics, USA, 293–311.

[14] Ondrej Chum, James Philbin, and Andrew Zisserman. 2008. Near Duplicate

Image Detection: min-Hash and tf-idf Weighting.. In BMVC, Mark Everingham,

Chris J. Needham, and Roberto Fraile (Eds.). British Machine Vision Association,

1–10. http://dblp.uni-trier.de/db/conf/bmvc/bmvc2008.html#ChumPZ08

[15] Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan. 2013. Why Simple

Hash Functions Work: Exploiting the Entropy in a Data Stream. Theory of
Computing 9, 30 (2013), 897–945. https://doi.org/10.4086/toc.2013.v009a030

[16] Jacek Cichoń, Mirosław Kutyłowski, and Kamil Wolny. 2017. Braid Chain Radio

Communication. In Algorithms for Sensor Systems, Antonio Fernández Anta,

Tomasz Jurdzinski, Miguel A. Mosteiro, and Yanyong Zhang (Eds.). Springer

International Publishing, Cham, 223–235.

[17] Jacek Cichoń, Jakub Lemiesz, and Marcin Zawada. 2012. On Message Complexity

of Extrema Propagation Techniques. In Ad-hoc, Mobile, and Wireless Networks,
Xiang-Yang Li, Symeon Papavassiliou, and Stefan Ruehrup (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 1–13.

[18] Reuven Cohen, Liran Katzir, and Aviv Yehezkel. 2015. A Unified Scheme for

Generalizing Cardinality Estimators to Sum Aggregation. Inf. Process. Lett. 115, 2
(Feb. 2015), 336–342. https://doi.org/10.1016/j.ipl.2014.10.009

[19] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. J. Algorithms 55, 1 (April
2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[20] Anirban Dasgupta, Kevin J. Lang, Lee Rhodes, and Justin Thaler. 2016. A Frame-

work for Estimating Stream Expression Cardinalities. In 19th International Confer-
ence on Database Theory, ICDT 2016, Bordeaux, France, March 15-18, 2016 (LIPIcs),
Wim Martens and Thomas Zeume (Eds.), Vol. 48. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 6:1–6:17. https://doi.org/10.4230/LIPIcs.ICDT.2016.6

[21] Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, NY, USA.

[22] Marianne Durand and Philippe Flajolet. 2003. Loglog Counting of Large Cardi-

nalities. In Annual European Symposium on Algorithms (ESA03) (Lecture Notes in
Computer Science), G. Di Battista and U. Zwick (Eds.), Vol. 2832. Springer Berlin

Heidelberg, 605–617.

[23] Otmar Ertl. 2017. New Cardinality Estimation Methods for HyperLogLog

Sketches. CoRR (2017). arXiv:1706.07290 http://arxiv.org/abs/1706.07290

[24] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In

Proceedings of the Conference on Analysis of Algorithms (AofA’07). 127–146.
[25] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms

for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182–209.
[26] Frédéric Giroire. 2009. Order statistics and estimating cardinalities of massive

data sets. Discrete Applied Mathematics 157, 2 (2009), 406–427.
[27] Stefan Heule, Marc Nunkesser, and Alex Hall. 2013. HyperLogLog in Practice:

Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.

In Proceedings of the EDBT 2013 Conference. Association for ComputingMachinery,

Genoa, Italy, 683–692.

[28] Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1

Sketching.. In ICDM, Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dimitrios

Gunopulos, and Xindong Wu (Eds.). IEEE Computer Society, 246–255.

[29] Donald E. Knuth. 1998. The art of computer programming, volume 3: sorting and
searching. Addison Wesley Longman Publishing Co., Inc.

[30] Julien Le Maire, Nicolas Brunie, Florent De Dinechin, and Jean-Michel Muller.

2016. Computing floating-point logarithms with fixed-point operations. In 2016
IEEE 23nd Symposium on Computer Arithmetic (ARITH). 156–163.

[31] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press, New

York, NY, USA.

[32] Damon Mosk-Aoyama and Devavrat Shah. 2006. Computing separable functions

via gossip. In Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing (PODC ’06). Association for Computing Machinery,

113–122.

[33] Anshumali Shrivastava. 2016. ExactWeightedMinwiseHashing in Constant Time.

CoRR abs/1602.08393 (2016). arXiv:1602.08393 http://arxiv.org/abs/1602.08393

[34] Daniel Ting. 2016. Towards Optimal Cardinality Estimation of Unions and

Intersections with Sketches. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco, California,

USA) (KDD ’16). ACM, New York, NY, USA, 1195–1204. https://doi.org/10.1145/

2939672.2939772

[35] Yu-Chee Tseng, Fang-Jing Wu, and Wan-Ting Lai. 2013. Opportunistic data

collection for disconnected wireless sensor networks by mobile mules. Ad Hoc
Networks 11, 3 (2013), 1150–1164. https://doi.org/10.1016/j.adhoc.2013.01.001

[36] Hang Wan, Michael David, and William Derigent. 2019. Defining the Com-

munication Architecture for Data Aggregation in Wireless Sensor Networks:

Application to Communicating Concrete Design. In 7th International Conference
on Future Internet of Things and Cloud, FiCloud 2019, Istanbul, Turkey, August
26-28, 2019, Muhammad Younas, Irfan Awan, and Takahiro Hara (Eds.). IEEE,

102–108. https://doi.org/10.1109/FiCloud.2019.00022

[37] Viktor Witkovský. 2001. Computing the Distribution of a Linear Combination of

Inverted Gamma Variables. Mathematics Preprint Archive Vol. 2001 (June 2001),
1360–1371. Issue 6. https://ssrn.com/abstract=3162731

1667

https://doi.org/10.1145/2213556.2213562
https://doi.org/10.1145/1562764.1562787
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1145/276698.276781
https://doi.org/10.1080/00031305.1983.10483115
https://doi.org/10.3390/en11112972
https://doi.org/10.1145/3047307
https://doi.org/10.1145/3047307
http://dblp.uni-trier.de/db/conf/bmvc/bmvc2008.html#ChumPZ08
https://doi.org/10.4086/toc.2013.v009a030
https://doi.org/10.1016/j.ipl.2014.10.009
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.4230/LIPIcs.ICDT.2016.6
https://arxiv.org/abs/1706.07290
http://arxiv.org/abs/1706.07290
https://arxiv.org/abs/1602.08393
http://arxiv.org/abs/1602.08393
https://doi.org/10.1145/2939672.2939772
https://doi.org/10.1145/2939672.2939772
https://doi.org/10.1016/j.adhoc.2013.01.001
https://doi.org/10.1109/FiCloud.2019.00022
https://ssrn.com/abstract=3162731

