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ABSTRACT
This paper presents a thorough evaluation of the existing methods
that accelerate Lloyd’s algorithm for fast k-means clustering. To
do so, we analyze the pruning mechanisms of existing methods,
and summarize their common pipeline into a uni ed evaluation
framework UniK. UniK embraces a class of well-known methods and
enables a ne-grained performance breakdown. Within UniK, we
thoroughly evaluate the pros and cons of existing methods using
multiple performancemetrics on a number of datasets. Furthermore,
we derive an optimized algorithm over UniK, which e ectively hy-
bridizes multiple existing methods for more aggressive pruning. To
take this further, we investigate whether the most e cient method
for a given clustering task can be automatically selected by machine
learning, to bene t practitioners and researchers.

PVLDB Reference Format:
Sheng Wang, Yuan Sun, and Zhifeng Bao. On the E ciency of K-Means
Clustering: Evaluation, Optimization, and Algorithm Selection. PVLDB,
14(2): 163 - 175, 2021.
doi:10.14778/3425879.3425887

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tgbnhy/fast-kmeans.

1 INTRODUCTION
As one of the most widely-used clustering algorithms, k -means aims
to partition a set of n points into k (k < n) clusters where each
point is assigned to the cluster with the nearest centroid [43, 70].
Answering k-means is NP-hard and Lloyd’s algorithm [48] is a
standard approach. Essentially, it randomly initializes k centroids,
then assigns each point to the cluster with the nearest centroid
and re nes each centroid iteratively. In each iteration, it needs to
compute n · k distances in the assignment step and access n data
points in the re nement step. Such intensive computations make
the Lloyd’s algorithm slow, especially in partitioning large datasets.

Accelerating the Lloyd’s algorithm for k-means clustering has
been investigated for more than 20 years since the rst work was
published [58]. Most of the existing acceleration methods focus
on how to reduce intensive distance computations, which can be
broadly divided into two categories: 1) the index-based methods
that group and prune points in batch [27, 44, 50, 58], and 2) the
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Figure 1: The performances of representative methods,
Regroup, Yinyang, Index and Full (usingmultiple pruningmech-
anisms) on two clustering datasets, where d is the dimen-
sionality of the dataset. The gray bar (“Distance”) denotes the
time taken by each method to compute distance.

sequential methods that scan each point one by one and utilize
a bound based on triangle inequality to avoid calculating certain
distance [26, 34–38, 40, 41, 46, 53, 59, 61, 71].

1.1 Motivations
Conducting a thorough evaluation of existing k-means algo-
rithms. Whilst a large body of methods have been proposed to
accelerate the Lloyd’s algorithm for k-means clustering, there is
still a lack of thorough evaluation on the e ciency of these meth-
ods. Moreover, there seems to be some misunderstanding on the
performance of certain methods in the literature. For example, the
index-based method [44] was interpreted to be slower compared to
the sequential methods (e.g., Yinyang [35], Regroup [61]) when the
dimensionality of dataset is greater than 20 [35], and hence was
discarded by the machine learning (ML) community in its most
recent studies [35, 53, 61]. However, we show in Figure 1 that the
index-based method is in fact relatively fast and has the poten-
tial to signi cantly accelerate large-scale clustering when using a
proper data structure. This motivates us to conduct a fair and more
thorough e ciency evaluation on existing methods.

In fact, most existing studies considered reducing the number of
distance computations as the main goal to improve the e ciency
of their methods. However, a method that computes fewer number
of distances does not simply guarantee to have a shorter compu-
tational time. For example in Figure 1, the Full method, which is
armed with multiple pruning techniques, has the least number of
distance computation, but overall is the slowest on the BigCross
dataset. This is because other metrics, such as the number of data
accesses and the time taken to compute a bound for pruning, also
contribute to the computational cost. To identify the key metrics, it
is essential to analyse the pruning mechanisms of existing methods
and extract a uni ed framework, such that existing methods can
well t to enable a ne-grained performance breakdown of existing
methods and in turn a more comprehensive evaluation.
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Selecting the best k-means algorithm for a given task. Fast
k-means clustering for an arbitrary dataset has attracted much at-
tention [49]. Unfortunately, there is no single algorithm that is
expected to be the “fastest” for clustering all datasets, which is
also in line with the “no free lunch" theorem in optimization [69].
That calls for an e ective approach that is able to select the best
algorithm for a given clustering task. However, existing selection
criteria are still based on simple rules, e.g., choosing the index-based
method when the dimensionality of dataset is less than 20. Given
the complex nature of clustering, they are unlikely to work well in
practice. Given the large amount of data collected from our evalua-
tions, it is natural to apply ML to learn an optimal mapping from a
clustering task to the best performing algorithm. Note that the idea
of using ML for algorithm selection [52] has been explored before,
e.g., meta-learning [66] and auto-tuning in database management
[47, 65]. However, as we will see shortly, it is nontrivial to apply this
technique to k -means clustering because problem-speci c features
have to be carefully designed to describe datasets to be clustered.

1.2 Our Contributions
In this paper, we design a uni ed experimental framework to evalu-
ate various existing k -means clustering methods, and design an ML
approach to automatically select the best method for a given clus-
tering task. More speci cally, we make the following contributions:

• We review the index-based and sequential methods and describe
their pruning mechanisms in Sections 3 and 4.

• Inspired by the common pruning pipeline of existing methods,
we design a uni ed evaluation framework UniK in Section 5, that
enables us to compare existing methods more fairly and com-
prehensively. Some key insights obtained are: 1) the index-based
method can be very fast even for high-dimensional data, when
equipped with a proper data structure such as Ball-tree [64]; and
2) no single method can always perform the best across all cases.
Detailed evaluations are in Section 7.2.

• The above further motivates us to design an adaptive setting for
our UniK, which applies the bound-based pruning from sequential
methods to assign points in batch without scanning all centroids.
In Section 7.2.3, we evaluate our adaptive UniK and show that
it outperforms the existing k-means algorithms when tested on
various real-world datasets.

• To take it further, we adopt ML to automatically select the best
method for a given clustering task in Section 6. This is achieved
by learning from our evaluation records which contain the per-
formance of all the methods on various datasets. An evaluation
on multiple learning models is conducted in Section 7.3.

2 PRELIMINARIES
Given a datasetD = {x1, x2, · · · , xn } ofn points, and each point has
d dimensions, k -means aims to partitionD into k mutually exclusive
subsets S = {S1, S2, · · · , Sk } to minimize the Sum of Squared Error,

argmin
S

k’
j=1

’
x2Sj

kx − c j k2, (1)

where c j = 1
|Sj |

Õ
x 2Sj x , namely the centroid, is the mean of points

in Sj .

2.1 Lloyd’s Algorithm
With the initialized k centroids, the Lloyd’s algorithm for k -means
[48] conducts the assignment and re nement in an iterative manner
until all the centroids do not change.
Initialization. It randomly chooses k points in D as the initial
centroids. Normally, k-means++ [20] is the default initialization
method which aims to make k centroids far away from each other.
Assignment. It needs to assign each of then data points to a cluster
with the nearest centroid, and therefore requires n · k number of
distance computations.
Re nement. It needs to read every data point in a cluster to update
the centroid. Hence n data accesses are conducted.

E 1. Figure 3 shows two centroids c1, c2 (red) and ve data
points (black) bounded by a node N . The assignment step in Lloyd’s
algorithm computes the distance from every point xi to every centroid
c j to determine the nearest cluster.1

2.2 Acceleration
Given a dataset and k , there are four types of acceleration for fast
k -means with the Lloyd’s algorithm:

• Hardware Acceleration. Parallelization [73], GPU [72], and
cache [23] can accelerate it at physical level.

• Approximate Acceleration. It aims to nd approximate clus-
tering results within a bounded error w.r.t. the exact result of the
Lloyd’s algorithm, by developing techniques like sampling [19]
and mini-batch [54].

• Fast Convergence. It uses ef cient initialization techniques
such as k-means++ [20, 22]. As Celebi et al. [28] have done an
evaluation on this, it will not be our focus.

• Exact Lloyd’s Algorithm. It focuses on reducing the number
of distance computations in the Lloyd’s algorithm, and can be
integrated with the above methods to reduce their running time.
Clustering has been evaluated from di erent perspectives. For

example, Muller et al. [51] evaluated clustering in subspace projec-
tions of high-dimensional data; Hassanzadeh et al. [42] proposed a
framework to evaluate clustering for duplicate detection. In con-
trast, this is the rst work that evaluates all accelerating tricks
to reduce distance computations in the exact Lloyd’s algorithm.
Figure 2 summarizes a timeline of fast Lloyd’s algorithms.

3 INDEX-BASED ALGORITHMS
By assigning points to the nearest clusters in batch, index-based
algorithms have been proposed to support fast k-means, such as
kd-tree [44, 58] and Ball-tree [50]. Intuitively, if an index node that
coversm points is assigned to a cluster directly, thenm · k number
of distance computations andm data accesses can be reduced.

3.1 Typical Indexes
kd-tree. Indexing the dataset using kd-tree [24] can accelerate k-
means with batch-pruning for low dimensional data [44, 58], where
its intuition is presented in Figure 3(a): node N locates in the hy-
perplane H of c1 completely, thus all the points in N are closer

1By default, index i and j refer to data and cluster index respectively in the rest of this paper.
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Figure 2: The research timeline of fast Lloyd’s algorithms for k-means, where the blue arrows show the successive relationship,
and the underlines di erentiate two types of sequential methods covered in Section 4.2 (dash lines) and 4.3.

Figure 3: Example of assignment of node N in kd-tree and
Ball-tree, based on a hyperplane H and a ball with radius r .

to c1 than c2 and then N cannot be assigned to c2. Unfortunately,
bisecting hyperplane in a high-dimensional space using kd-tree
(Voronoi diagram is a common method) costs much time with a
complexity of O(k logk + k d

d
2 e ) [30].

Ball-tree. Moore et al. [50] proposed to use Ball-tree [64] (a.k.a.
metric-tree) to group points using balls, which is a circle in a 2-
dimensional space as shown in Figure 3(b). All the points in a ball
N are closer to centroid c1 than c2 if

kp − c1k + r < kp − c2k − r , (2)

where p and r are the center and radius of the ball N . The left-hand
side of Equation 2 is an upper bound on the distance from the
points in N to c1, while the right-hand side is a lower bound on
the distance from the points in N to c2. However, data points in a
high-dimensional space are dispersed, resulting in a much bigger
radius r and degenerating its pruning power, i.e., it is unlikely to
nd a ball N and two centroids c1 and c2 such that Equation 2

holds. In this case, using Ball-tree can be even slower than directly
assigning each point to a cluster, due to the computational overhead
of traversing the Ball-tree.
Other Indexes. Apart from kd-tree and Ball-tree, there are other
data structures in metric space that can be used to prune distance
computations [29, 62]. This includes Hierarchical k -means tree [39,
67], M-tree [32] and Cover-tree [25, 34], to name a few. We will
evaluate all these typical indexes in our experiment (Section 7.2.1).

3.2 Pre-assignment Search
Broder et al. [27] proposed to search around a centroid c j the data
points that lie within a distance threshold, and directly assign these
points to c j , in order to avoid certain distance computations. For
example in Figure 3(a), we can search for data points around c1
within a distance threshold kc1−c2 k2 , and the points found can be
assigned to c1 directly, as they are closer to c1 than c2. Here, we can
use an index like kd-tree or Ball-tree to conduct a fast similarity
search [31] to obtain those points within this distance threshold.
Similar operation can be conducted on c2. Then, we can use Lloyd’s
algorithm to assign the rest of data points to a cluster. For those
points that cannot be assigned by this method, we then sequentially

scan k centroids to nd a cluster to assign them. In this sense, it also
belongs to the sequential algorithm to be introduced in Section 4.
We denote this method as Search.

4 SEQUENTIAL ALGORITHMS
Essentially, sequential algorithms try to exploit the triangle inequal-
ity to derive various forms of distance bounds, and use them to
reduce the number of distance computations in the assignment step.
However, it is inevitable to access the stored data and update the
distance bound of each point. These extra costs actually account
for a signi cant portion of the total running time.

4.1 Triangle Inequality
To check whether a point xi belongs to a cluster of centroid c j ,2
we can rst compare the lower bound on the distance between xi
and c j , denoted as lb(i, j), against the upper bound on the distance
from xi to its closest centroid ub(i). If lb(i, j) > ub(i), then xi does
not belong to the cluster c j and we do not need to compute the
distance between xi and c j . Formally, we denote this inequality as

lb(i, j) > ub(i)! a(i) , j, (3)

where a(i) , j means that xi is not assigned to the cluster c j . Since
the pruning is conducted in a pairwise fashion (point, centroid), we
call it local pruning.

Elkan et al. [38] obtained the lower bound lb(i, j) in the following
way: (1) the distance between centroids is used to derive the rst
lower bound lb(i, j) = kca(i )−c j k2 .3 We call it as inter-bound. (2) The
centroid drift from the previous cluster c

0

j to the current cluster c j
is used to derive the second lower bound via the triangle inequality:
lb(i, j) = kxi − c

0

j k − kc
0

j − c j k < kxi − c j k. We call it as drift-bound.
(3) Between these two bounds, the bigger one is chosen as the
nal lb(i, j). We denote the algorithm using both inter-bound and

drift-bound as Elka.
The inter-bound requires to compute the pairwise distance be-

tween centroids, and thus costs k(k−1)
2 number of computations.

The drift-bound uses n · k units of memory, as it stores a bound for
each (point, centroid) pair. The main issues of Elka are: 1) it uses
much space; 2) the bounds derived might not be very tight. In what
follows, we introduce the methods to address each of these issues.

4.2 Methods with a Focus of Less Bounds
4.2.1 Hamerly Algorithm. Instead of storing a lower bound for
each centroid, storing a global bound can save much space. Moti-
vated by this, Hamerly [40] proposed to store the minimum lower

2To facilitate our illustration, each cluster is simply represented by its centroid if no
ambiguity is caused.
3A similar idea was proposed by Phillips [59] one year earlier.
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bound as the global bound. Further, a global lower bound lb(i) for
each point xi is used before scanning every centroid, i.e., lb(i) =

max
#
minj,a0 (i) lb(i, j),minj,a0 (i)

kca0 (i )−c j k
2

$
where a

0

(i) points to
previous cluster of xi , xi can stay if: lb(i) > ub(i)! a(i) = a

0

(i). We
denote this algorithm as Hame, and it is known as the global pruning.

4.2.2 Sort-Centers. Beyond a single bound, Drake et al. [37] pro-
posed to store b < k bounds for each point, which can reduce both
the storage space and the distance computation by bound. The b
points that are selected based on their closeness to the assigned
centroid, so it needs to be updated frequently in each iteration.
Moreover, the selection of parameter b is also highly dependable
on datasets. By default, we use a xed ratio suggested in [37], i.e.,
b = dk4 e. We denote this algorithm as Drak.

4.2.3 Yinyang: Group Pruning. Hame needs to conduct k − 1 local
pruning if the global pruning fails, i.e., lb(i)  ub(i), Ding et al.
[35] proposed to divide k centroids into t = d k10 e groups when k is
much bigger than 10, and add a pruning on a group between local
pruning and global pruning. This is known as group pruning.

In the rst iteration, k centroids are divided into several groups
based on k-means. Each group will maintain a bound rather than
each point. However, the xed group may lead to a loose bound
with the increase of iterations. Kwedlo et al. [46] regrouped the k
centroids in each iteration while [35] only did it in the rst iteration,
and the grouping used a more e cient way than k -means, and the
group bounds become tighter. We denote these two algorithms as
Yinyang and Regroup. An index such as Cover-tree [25] can also be
used to group k centroids [34].

4.2.4 Storing Bound Gaps in a Heap. Hamerly et al. [41] further
proposed a combination of the global lower bound lb(i) and upper
bound ub(i) in Hame, and used their gap lu(i) = lb(i) − ub(i). It can
further reduce the space on storing bounds, but needs a heap for
each cluster to hold it dynamically, and the heap update incurs
extra costs. We denote this algorithm as Heap. Then each point will
be attached with such a gap lu(i) and inserted into a queue, unless
when lu(i) ≥ 0, it will stay in the current cluster and the distance
between all other points and every centroid has to be computed.

4.2.5 Using Centroid Distance Only. Xia et al. [71] proposed to use
only the centroid distance to generate a subset of centroidsNca0 (i ) as
candidates for all the points inside. The main pruning idea is based
on the radius ra of each cluster, where ra is the radius of the current
assigned cluster ca0 (i), i.e., the distance from the centroid to the
farthest point in the cluster. In particular, each candidate centroid
c j should have a distance of less than 2ra from ca0 (i); otherwise, the
points would choose ca0 (i) rather than c j as the nearest centroid:

Nca0 (i ) = {j :
kc j − ca0 (i)k

2
 ra}, (4)

We name this method as Pami20, and it can save much space.
4.3 Methods with a Focus of Tighter Bounds
All the above bounds are based on the triangle inequality over a
point and multiple centroids. To further tighten the bounds, L2-
Norm is used by [26, 36, 41, 61]. We denote the following four
algorithms as Annu, Expo, Drift, and Vector.

4.3.1 Annular Algorithm: Sorting Centers by Norm. Drake et al.
[36, 41] proposed an annular algorithm to lter the centroids di-
rectly. Through using the Norm of centroids, an o -line sorting can
estimate a bound to determine the two closest centroids and tighten
the upper and lower bounds. The basic idea is to pre-compute the
distance from centroid to the origin (a.k.a. norm kc k), and further
employ the triangle inequality to derive an annular area around
the origin which all the candidate centroids are inside:

J(i) = {j : |kc j k − kxi k |  max
#
ub(i), kxi − c j00 k

$
}, (5)

where c j00 is the second nearest centroid of xi .

4.3.2 Exponion Algorithm: Tighter Lower Bound. To further shrink
the annular range of candidates [36] around the origin, Newling et
al. [53] proposed to use a circle range around the assigned centroid.
It lters out the centroids which will not be the nearest, and returns
a centroid set J

0

(i) which is a subset of J(i):
J
0

(i) = {j : kc j − ca0 (i ) k  2ub(i) + kca0 (i ) − c
0

a0 (i )
k }, (6)

4.3.3 Tighter Centroid Dri Bound. In the Elka method, the cen-
troid drift (e.g., kc

0

j − c j k has to be computed every time when the
centroid moves to a new one. It is used to update the lower bound
of distance from every point to the new cluster kx1 − c1k in every
iteration, while using triangle inequality among x1, c1, and c

0

to
update cannot get a tighter bound, and nding a smaller drift is
crucial. By replacing this in Elka, Rysavy et al. [61] proposed to
use the distance between centroid and the origin point (e.g., [0,
0] in two dimension space), and compute a tighter drift δ . Note
that the distance from ca0 (i) to the origin point, i.e., kca0 (i)k, can
be pre-computed. Here, we only show the drift computation in a
2-dimension case.

δ (i , j) = 2 ·

ca0 (i )[1] · ra − ca0 (i )[2] ·
q
kca0 (i ) k

2 − ra2

kca0 (i ) k
2 (7)

It has been proven that δ (i, j) < kc
0

j − c j k [61], then we can update
lb(i, j) = lb(i, j) − δ (i, j). For high-dimensional cases, ca0 (i)[1] and
ca0 (i)[2] can be computed using a more complex conversion in
Algorithm 2 of [61], and we will not elaborate.

4.3.4 Block Vector. Bottesch et al. [26] calculated bounds based
on norms and the Hölder’s inequality to have a tighter bound
between the centroid and a point. The idea is to divide each data
point into multiple blocks of equal size, similar to dimensionality
reduction. By default, the data point is divided into two blocks, i.e.,

x
B
i = {

Õd/2
z=1 xi [z]
d/2 ,

Õd
z=d/2 xi [z]

d/2 }. Then a tighter lower bound can be
obtained by using the pre-computed norm kxi k and kc j k, and inner
product of the block vector xBi and cBj .

lb(i , j) =
q
kxi k2 + kc j k2 − 2 · hxBi , cBj i (8)

where hxBi , c
B
j i denotes the inner vector, i.e., hxBi , c

B
j i = x

B
i [1] ·

c
B
j [1] + x

B
i [2] · c

B
j [2].

5 EVALUATION FRAMEWORK
After reviewing the sequential methods, we conclude a common
pruning pipeline in Figure 4. Five core operators (highlighted in
red color) execute in the following order: (1) access the data point,
(2) then access the global bound to see whether lb is bigger than
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Figure 4: UniK framework with a common pruning pipeline.

ub – (3) if yes, the point maintains in the current cluster; (4) other-
wise, access group and local bounds to determine whether to read
centroids and compute distances to nd the nearest cluster c j to
assign, then it will be inserted into c j ’s list of covered points, and
(5) then update the bounds.

Next, we will present an evaluation framework (UniK) based on
the above pipeline, as shown in Algorithm 1. UniK supports multiple
traversal mechanisms to smoothly switch between di erent index-
based and sequential methods. Note that the above pruning pipeline
mainly works for point data, and existing index-basedmethods need
to scan k centroids without bound-related operations. Hence, before
describing UniK, we will introduce an optimized assignment such
that the bound-based prunings on both nodes and points can well
t into UniK in a uni ed way, followed by an optimized re nement

without any more data access. Our experiments show that UniK
with these optimizations can further accelerate k -means.

5.1 Optimizations in UniK
5.1.1 The Assignment Step. To scan all nodes and points simulta-
neously, we de ne an advanced node that shares exactly the same
property with the point, and meanwhile is attached with more
information that can help prune via bounds.
Advanced Index. Given a tree-structured index T built from D,
there are usually three kinds of nodes: root node Nr t , leaf node Nl ,
and internal node Ni . To enable the pruning capability for k -means,
we enrich each node with some extra information as de ned below:

D 1. (Node) N = (p, r , s",ψ , LN , LP ,num,h) covers its
child nodes LN if N is an internal or root node, or a set of child points
LP if N is a leaf node.

where pivot point p is the mean of all the points, radius r is the dis-
tance fromp to the furthest point inN , the sum vector s" represents
the sum of all the points under N ,ψ = kN

0

.p − pk is the distance
from p to the pivot of its parent node N

0

, num is the number of
points covered in the range of N , and h is N ’s height (or depth). We
also analyze the space cost of this index in our technical report [68]
(see Section A.2). To accommodate the assigned points and nodes,
we further enrich the clusters as below:

D 2. (Cluster) Sj = (c j , s", LN , LP ,num) covers a list
of nodes LN and points LP , and num is the number of points in Sj ,
i.e., num = |LP | +

Õ
N 2LN N .num.

NodeAssignment.Given a nodeN , wewill assignN to a cluster Sj
if the gap between the distance from pivot p to the nearest centroid
cn1(p) and the distance from p to the second nearest centroid c j00 is
larger than 2r , i.e.,

kp − c j00 k − r > kp − cn1(p)k + r ! a(N ) = n1(p), (9)

This is also a more general rule of Equation 2 and Figure 3(b)
where c1 and c2 are the two nearest centroids. To achieve the above
condition, a straightforward way is to scan k centroids to nd the
two nearest centroids forp, similar to [50]. To further avoid distance
computation, we use the idea of group pruning (Equation 6) based
on the pivot point p to prune those centroids that cannot be the
nearest two. Before the group pruning, we use a global pruning
similar to Equation 9 by combining r :

lb(p) − r > ub(i) + r ! a(N ) = a
0

(N ), (10)

After the global and group pruning, we use the local bounds in
Equation 3 by combining r again to avoid the distance computation
between the pivot point p and centroids:

lb(p, j) − r > ub(p) + r ! a(N ) , j, (11)

By comparing the bounds for point and node, we combine them
into a single pipeline by setting r = 0 when the checked object
is a point. Node assignment di ers from point assignment in the
way that, the node needs to be further split and checked if it is not
pruned by Equation 9 and 10.

Before computing the distancewhen the child node or the point is
scanned, we estimate the child’s pivot bounds to the centroids based
on the parent-to-child distanceψ using triangle inequality, which
will be further used to prune in a new round without computing
the real distance. Speci cally, let Nc denote one child of N , then
the upper bound and lower bound of N can be passed to Nc by:

lb(Nc .p, j) = lb(N .p, j) − Nc .ψ ,

lb(Nc .p) = lb(N .p) − Nc .ψ , ub(Nc .p) = ub(N .p) + Nc .ψ .
(12)

5.1.2 The Incremental Refinement Step. To update centroids after
all the points are assigned, a traditional re nement will read all
the points in each center again, sum them up and get the mean
vector. Hence, the whole dataset needs to be scanned again in each
iteration. Ding et al. [35] optimized this by updating the previous
centroids with those points that changed clusters only, so only a
subset of points will be re-accessed. However, we can save this cost
if maintaining a sum vector in the assignment.

More speci cally, we maintain a sum vector s" that will be up-
dated when an object (node or point) moves in or out during the
assignment step. Such an update will be rare when the iteration
goes deeper, as only some points change their clusters across it-
erations. Since index node is assigned in batch, then in order to
avoid accessing all the points under it, each node’s sum vector s"
and the number of points num can be computed in advance by an
iterative procedure [50] once the index is built. For example, as
shown in the right part of Figure 4, when an object is assigned to a
new cluster, we will update the sum vector (the symbol of “+”) of
the two clusters which this object moves in and out accordingly.
5.2 Detailed Framework Design
Algorithm 1 presents a general form of our uni ed framework
under UniK, which is composed of a queue data structure and four
core functions. The queue Q is used to hold both the points and the
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Algorithm 1: UniK-k -means (k , D)
Input: k : #clusters, D : dataset.
Output: k centroids: c = {c1, . . . , ck }.

1 Initialization(t , c , Q, S );
2 while c changed or t < tmax do
3 for every cluster Sj 2 S do
4 Update lb(i , j) with centroid drifts for xi 2 Sj ;
5 Q .add (LN , LP );
6 while Q .isNotEmpty() do
7 o  Q .poll (), r  0;
8 Update ub and lb ;
9 if o is node then
10 r  o .#etRadius();

11 if lb(i) − r > ub(i) + r then
12 o stays in current cluster: a(o) a

0

(o);
13 else
14 #ap =GroupLocalPruning(o, i , j ) ;
15 AssignObject(o, S , Q, #ap);

16 Refinement(S );
17 t  t + 1;

18 return {c1, . . . , ck };
19 Function Initialization(t , c , Q, S):
20 t  0, Q  ;, initialize centroids c = {c1, · · · , ck };
21 if Nr t , null then
22 S1 .add (Nr t .s$ , Nr t ); // index [44]
23 else
24 Search on each centroid; // Search [27]

25 S1 .add (D);

26 Function GroupLocalPruning(o, i , j):
27 J  J(i) or Ncj or J

0

(i); // Expo, Pami20, Annu

28 min  +1,min2  +1;
29 for every centroid c j 2 J do
30 Pass group pruning ; // Yinyang, Regroup

31 if ub(i) > lb(i , j) then
32 lb(i , j) ko − c j k;
33 if lb(i , j) < min then
34 a(i) j ,min  lb(i , j),min2  min;

35 returnmin2 −min;

36 Function AssignObject(o, S , Q, #ap):
37 if o is node and Equation 9: #ap < 2r then
38 Sa0 (i ) .remove(o .$ , o);
39 for every child Nc 2 o .LN do
40 Update Nc ’s bound by Equation 12;
41 Sa0 (i ) .add(Nc .s$ , Nc ), Q .push(Nc );

42 else
43 if a0 (i) , a(i) then
44 Sa0 (i ) .remove(o .s$ , o);
45 Sa(i ) .add(o .s$ , o);

46 Function Refinement(S):
47 for every cluster Sj 2 S do
48 c j  

Sj .s!
Sj .num

;

nodes (called as object for unity purpose) to be assigned. When a
node cannot be assigned by Equation 9, its child nodes are enqueued.
The four core functions are elaborated as follows.
Initialization. After randomly selecting k points as the cen-
troids c (line 20), we assign the root node Nr t to the rst cluster S1
if an index has been built (line 22); otherwise, we temporally store
the whole point set D in S1 (line 25). Then in each cluster, all the
nodes and points are pushed into Q. An object o polled from the
queue Q is pruned in the following manner: the global pruning is
rst conducted in line 11, we assign o (denoted as a(o)) if the upper

bound is smaller than the lower bound minus twice of the radius.
GroupLocalPruning. If the global pruning fails, we use the group
pruning in line 27 to lter partial centroids. Then we conduct the
local pruning (line 31); if it fails, we compute the distance from the
centroid to the pivot point, and update the two nearest neighbors’
distances (line 34).
AssignObject. After the scanning of centroids, we obtain the gap
between the distance to the two nearest clusters. Then, we check
whether the object is a node, and compute the gap using Equa-
tion 9 to see whether we can assign the whole node (line 37). If
not, we further split the node and push all its children into the
queue (line 40–41). If it can be assigned or the object is a point, we
will further check whether the object should stay in the current
cluster (line 43); otherwise, we update the cluster (line 44).
Refinement. We divide the sum vector s" by the number of points
inside to update the centroid in line 48. The re nement can be
done without accessing the dataset again, as we have updated the
cluster’s sum vector in line 44 when the object cannot remain in
the current cluster.

5.3 Multiple Traversal Mechanisms
The symbols in Algorithm 1 are knobs that indicate whether
to apply pruning techniques used in various index-based and se-
quential methods which we evaluate. By turning certain knobs on,
we can switch to a speci c algorithm. For example, by turning on
knobs at Lines 4, 8, 11, 14, 30, 31, and others o , the algorithm will
run as the Yinyang [35]. Formally, we formulate the knobs as below:

D 3. (Knob Con guration) A knob = {0,1} controls
a setting (selection), e.g., whether to use index or not. A knob con gura-
tion θ 2 Θ is a vector of all knobs in Algorithm 1, e.g., [0, 1, 0, · · · , 1],
where Θ denotes the con guration space.

Most existing algorithms can t into UniK by projecting to a
speci c knob con guration,4 and our optimization proposed in
Section 5.1 can be activated by a new knob con guration.5 For
example in Figure 4 we present two traversal mechanisms (i.e. parts
“ 1!” and “ 2!”) based on knobs, where we traverse from the root
node by using 1! in the rst iteration, but in the following iterations
we traverse from the nodes maintained in the current cluster by
using 2!. This is because the pruning e ect is not always good
especially for high dimensional data, and it will still cost extra
time in the tree traversal in next iteration if starting from the root

4They run in the same way as presented in the original papers, and will not incur any
extra costs. Thus, it is a fair evaluation for any algorithm under comparison.
5 By enabling all bound knobs, we will get the Full method in Figure 1. We also argue
that this formulation will be useful to cater for more new con gurations in Θ to be
explored by future studies, but it is not the focus of this paper.
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Figure 5: A basic deci-
sion tree (BDT) for sim-
ple algorithm tuning. Figure 6: Three modules of UTune: a) selective running, b) meta-model training, and c) prediction.

node. If most nodes in the index can be pruned, traversal from the
root (i.e., 1!) in each iteration can gain better performance than
scanning nodes from clusters. In Algorithm 1, we implement such
an adaptive mechanism as scanning both the points and nodes as
an object o with a radius r , where r = 0 when o is a point.

To be more adaptive, in the rst and second iterations of UniK,
we can traverse from the root 1! and current nodes in the clusters
2!, respectively (as shown in line 22 of Algorithm 1, where we put
the root node Nr t into S1 before the rst iteration). Then we can
compare the assignment time of these two iterations. If the time
spent on the rst iteration 1! is bigger than that on the second
iteration 2!, we give up traversing from the root in subsequent
iterations, and scan the current nodes and points maintained in
each cluster; otherwise, we empty the point and node list of each
cluster, and then push the root node at the end of each iteration to
keep bene ting from the index in multiple iterations. We denote
these two traversal styles as index-single and index-multiple.

By default, we set the index as Ball-tree and set the bound con-
guration same as Yinyang (Section 4.2.3). Our experiments in

Section 7.2.3 and 7.3 show the the superiority of such a con gura-
tion over both Ball-tree and Yinyang in some datasets. When we
disable all the bound con gurations, it will be a pure index-based
method [50]. Hence, besides multiple knobs of bound con guration,
we also have four con guration knobs on the index traversal: 1)
not using index; 2) pure; 3) index-single; 4) index-multiple. Next,
we will further discuss how to choose the right knobs to turn on.

6 CONFIGURATION AUTO-TUNING
In this section, we study how to select a fast algorithm for a given
clustering task. This is critical to both an evaluation framework
(like this paper) and practitioners. Our literature review shows that
existing studies [34, 35] rely on simple yet fuzzy decision rules,
e.g., not using index-based method for high-dimensional data or
choosing Yinyang when k is big. In Figure 5, we illustrate a basic
decision tree (BDT) based on these rules. However, our experiments
show this BDT does not work very well.

Therefore, we choose to train an ML model based on our eval-
uation data to automatically select a fast algorithm for a given
clustering task. The algorithm selection is equivalent to a problem
of tuning “knobs” in our evaluation framework UniK (Algorithm 1),
in the sense that each of the existing algorithms corresponds to a
unique knob con guration.
An Overview. We model the knob con guration (algorithm selec-
tion) problem as a typical classi cation problem, where our goal is
to predict the best knob con guration for a given clustering task.

Table 1: A summary of features F = { f 1, f 2, · · · , f x}.
Type Feature Description Normalize

Basic
n The scale of dataset -
k Number of clusters -
d Dimensionality of dataset -

Tree
h(T ) Height of index tree T log2

n
f

|Ni |, |Nl | #Internal & leaf nodes n
f

µ(h), σ (h) Imbalance of tree log2
n
f

Leaf
µ(r ), σ (r ) Radius of leaf nodes Nr t .r
µ(ψ ), σ (ψ ) Distance to parent node Nr t .r

µ(|Lp |), σ (|Lp |) #Covered points in Ni f

To this end, we extract meta-features to describe clustering datasets,
and generate class labels (i.e., ground truth) from our evaluation
logs that contain the records of which con guration performing
the best for a particular dataset. We then feed the meta-features
and class labels into an o -the-shelf classi cation algorithm to
learn a mapping from a clustering dataset (with certain features) to
the best performing algorithm con guration. We can then use the
trained model to predict a good con guration for clustering a given
dataset.6 We name our auto-tuning tool as UTune, and illustrate its
three modules in Figure 6.

6.1 Generating Training Data
Class Label Generation. Since the knob con guration space is
large, it is computationally intractable to try all possible knob con-
gurations and label the dataset with the best-performing con g-

uration. Thus, we only focus on a few knob con gurations corre-
sponding to the high-performing existing methods as our selection
pool [65]. The pseudocode of our selective running can be found
in Algorithm 2 of our technical report [68], and the main idea is
three-fold: 1) we limit the number of iterations tmax as the run-
ning time of each is similar after several iterations (see Figure 13);
2) we exclude those algorithms that have low rank during our
evaluation, e.g., Search [27], and our experiments (see Figure 12)
show that only ve methods always have high ranks; 3) we test
index optimizations if the pure index-based method outperforms
sequential methods. Such a selective running enables us to generate
more training data within a given amount of time, and thus further
improves the prediction accuracy (see Table 5).
Meta-Feature Extraction. We extract a feature vector F to de-
scribe (or represent) a dataset, such as dimensionality, scale, and k
6Note that the learning component in this paper will not tune any existing algorithm
or parameter; its main task is to predict the best one among existing algorithms and
our optimized algorithm. Moreover, our learning model is not limited to some speci c
learning methods such as deep learning; most classi cation models (such as decision
tree, SVM, and kNN) can be trained to complete this prediction task.
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Table 2: An overview of datasets, the index construction
time (second), and #nodes of Ball-tree.

Ref. Name n d Time #Nodes Used by
[1] BigCross 1.16M 57 10.8 183k [63]
[2] Conflong 165k 3 0.26 21.8k [53]
[11] Covtype 581k 55 3.87 88.3k [38, 40, 41]
[3] Europe 169k 2 0.27 11.2k [53]
[14] KeggDirect 53.4k 24 0.17 2.8k [35, 53]
[13] KeggUndirect 65.5k 29 0.31 4.5k [35, 53]
[5] NYC-Taxi 3.5M 2 8.7 228k -
[15] Skin 245k 4 0.33 21.2k [53]
[12] Power 2.07M 9 4.3 43.7k [34]
[10] RoadNetwork 434k 4 0.55 6.9k [35]
[16] US-Census 2.45M 68 204 135k [53]
[9] Mnist 60k 784 4.8 7.3k [35, 40, 53]

shown in Table 1. In addition to the basic features, we also extract
novel and more complex features that can capture certain proper-
ties of data distribution based on our built index. Recall the pruning
mechanisms in Section 5, they work well when data shows good
assembling distribution. The index construction actually conducts
a more in-depth scanning of the data and reveals whether the data
assembles well in the space. Specifically, the information we got
includes the tree depth h(T ), number of leaf nodes |Nl |, number of
internal nodes |Ni |, and imbalance of tree (i.e., the mean value and
standard deviation of all leaf nodes’ heights h).

Further, we extract more features of all the leaf nodes, includ-
ing the radius of nodes r , the distance from child to parent nodes
ψ , and the number of points in the leaf nodes |Lp |, during index
construction. Specifically, we select all the leaf nodes N and extract
their (r ,ψ , |Lp |), then compute their mean µ and standard deviation
σ , which are all normalized by their maximum values in the tree.

6.2 Meta-Model Training and Prediction
We model the algorithm selection as a multi-label classi cation
problem in terms of using an index or not, and using which one of
the ve bound con gurations. The prediction needs to be conducted
in two parts based on our two ground truth les which shows the
rank of various index and bound con gurations, respectively. Firstly,
we predict the optimal bound con guration. Secondly, we predict
the index con guration and whether the bound should be combined,
as mentioned in Section 5.3. Thenwe combine the results from these
two predictions and generate the nal con guration. For a new
clustering task, we can extract the features based on our built index
(e.g., Ball-tree), and use the learned model to predict a high-ranked
knob con guration of algorithms.

7 EXPERIMENTAL EVALUATIONS
Our evaluation seeks to answer the following questions:
• Which index structure is proper for index-based methods?
• How does the performance of sequential methods vary?
• Can our evaluation framework UniK enable further improvement
on the performance of existing clustering methods?

• Can UTune predict a fast algorithm through learning?

7.1 Experimental Setup
Implementation. We implemented all the algorithms in Java
1.8.0_201, and used Scikit-learn 0.22.2 [4, 57] to train our classi-
cation models. All experiments were performed on a server using

an Intel Xeon E5 CPU with 256 GB RAM running RHEL v6.3 Linux.
Our code is available at [6] for reproducibility.
Parameter Settings. The performance of index-based methods
and three sequential algorithms (i.e., Yinyang [35], Drak [37], and
Vector [26]) will be a ected by parameters. To be fair, we follow the
suggestions of those sequential methods and set xed parameters,
detailed settings can be found in their description in Section 4. The
e ects on index-based methods will be studied in Section 7.2.1.
Measurement. Same as the traditional methods [35, 55], we mea-
sure the running time and the percentage of pruned distance com-
putation (i.e., pruning power). In order to run more rounds of exper-
iments, we record the total running time of the rst ten iterations
(after which the running time usually becomes stable as shown
in Figure 13). Moreover, we measure #data access, bound access,
bound updates, and footprint. For each measurement above, we
report the average value across ten sets of randomly initialized
centroids using k-means++ [20].
Datasets.We select a range of real-world datasets (Table 2), most
of them are from the UCI repositories [21], and also used in the
state-of-the-art such as [35, 53]. Moreover, we introduce several
recent new datasets, including pick-up locations of NYC taxi trips.
The datasets’ hyperlinks can be found in the reference.

7.2 Evaluation of Existing Methods in UniK
7.2.1 Index-based Methods. We implemented ve indices: kd-tree,
Hierarchical k-means tree (HKT) [39], Ball-tree [56], M-tree [32],
and Cover-tree [25] covered in Section 3.1. The latter four that
bound points by a radius can be easily extended to support UniK.
Index Construction. Figure 7 compares these ve indices over
BigCross, and shows the construction time and clustering time w.r.t.
the dimension d and the data scale n, respectively. Here, we set
n = 10, 000 when varying d , and M-tree is quite slow for a bigger n;
that also explains why we ignore its performance.

Observations. (1) With the increase of d and n, the construction
time increases and is more sensitive to n, but it is still tolerable for
Ball-tree, Cover-tree, and kd-tree. (2) In average, Ball-tree is the
fastest in clustering and 2nd fastest in index construction. (3) Even
though kd-tree is the fastest in index construction, its leaf-nodes can
only cover one point whereas Ball-tree can cover multiple points.
Thus, kd-tree has many more nodes than Ball-tree (the ratio is
around the capacity f = 30 according to our experiments), and Ball-
tree is more applicable for large-scale clustering. (4) Columns 5 and
6 of Table 2 also show the index construction time and the number
of nodes of Ball-tree. We nd that the index of most datasets can be
built within ten seconds, which means the delay of index building
before clustering is tolerable.
Clustering E ciency. Observations. (1) With the increase of data
scale, the cost of clustering rises dramatically for every index, but
Ball-tree still beats other indices. (2) When the dimensionality in-
creases, kd-tree’s performance degrades the most due to its complex
pruning mechanism by using hyperplane; other indices are not im-
pacted much as they use a radius to prune without any extra cost.
(3) A bigger k makes the clustering slower, in a linear manner.
Our Choice. Thus, we choose Ball-tree [56] as UniK’s default index
structure and conduct a further comparison with sequential meth-
ods and our proposed UniK and UTune. The space cost of the index
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Figure 8: Overall speedup in various datasets when setting k as 10 and 100, respectively.
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Figure 12: Leaderboard of sequential methods as top 1 & 3.

is not high compared with most sequential methods, which will be
presented in Figure 10. Moreover, setting a proper capacity f for
leaf nodes in M-tree, HKT, and Ball-tree is crucial,7 and a larger
f can save more space as the number of nodes will decrease. To
balance the space and e ciency, we set a relatively small capacity
(i.e. 30), and a sensitivity test of capacity will be conducted later in
Figure 14, together with UniK. It shows that the clustering e ciency
is not a ected much by the capacity.
7.2.2 Sequential Methods. Learderboard. Figure 12 shows a

7Cover-tree and kd-tree do not have a parameter on capacity.

leaderboard of various sequential methods by setting di erent pa-
rameter settings (k , n, and d) across all the datasets in Table 2. We
can observe that ve sequential methods have competitive perfor-
mance: Hame, Drak, Heap, Yinyang, and Regroup.
Our Choice. Thus, we will use these ve sequential algorithms as
the selection pool in our auto-tuning model UTune.
Speedup and Pruning Ratio. We rst investigate the speedup
and the pruning ratio in distance computation. Figure 8 shows the
overall speedup over the Lloyd’s algorithm, compared with the rep-
resentative index-based method (INDE): Ball-tree. Since assignment
occupies most time of the clustering time and it shows a similar
trend with the overall speedup, we ignore it here, and it can be
found in our technical report [68] (see Section A.3). Interestingly,
the improvement of re nement (Figure 9) using our incremental
method signi cantly improves the e ciency for all algorithms.

On the low-dimensional NYC dataset, we observe that the
index-based method can beat all existing sequential methods in
term of running time. This also occurs in several relatively high-
dimensional datasets whenk = 10, such as KeggD and Kegg. Among
all the sequential methods, the Regroup and Yinyang are two fastest
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dimension d over the BigCross dataset.

Table 3: Bound and data accesses in the rst iteration.
Dataset Criteria Lloyd SEQU INDE UniK

Cross
k = 100

Time (s) 96.0 33.1 55.3 16.3
Pruned 0 84% 45% 91%
Bound 0 1.5B 0 0.9B
Point 100M 30M 15.8M 9.8M
Node 0 0 931k 108k

methods on most datasets. We also observe that the speedup is
not consistent with the pruning ratio, e.g., the index is almost 150
times (it is 400 when k = 10) faster on NYC, while its pruning
ratio is only 10% (30% when k = 10) more than others. A reverse
trend happens in the fully optimized algorithm (Full) which has
the highest pruning ratio but very low e ciency.

The above observations verify our claims that index-based
method can be very fast, and a higher pruning ratio cannot
simply guarantee better performance.
Role of Data Access & Bound Access/Update. Figure 10
presents the memory usage of each algorithm. We nd: among
all the space-saving sequential methods, Heap can save the most,
and index-based method’s overhead is also much less than those
sequential methods, and it will not increase with the rise of k .
Moreover in Figure 11, the index-based method has much less data
access, which can explain why it is much faster; Yinyang has much
less bound access and update which can explain why it is faster
than other methods that have very similar pruning ratio. This also
reveals that data access, bound access and bound updates are
three crucial factors that should also be considered in the fu-
ture algorithm design and evaluation. A similar performance
breakdown of setting k = 10 and more analysis can be found in our
technical report [68] (see Section A.3).

7.2.3 Our Unified Method UniK. Next, we compare UniK with (ar-
guably the best) index-based method (INDE): Ball-tree and sequen-
tial method (SEQU): Yinyang, and conduct a series of ne-grained

evaluations on speci c datasets. Detailed results on each dataset
are in Table 6 when comparing with UTune later.
Running Time Per Iteration. Figure 13 shows the running time
on each iteration. We observe that the time spent per iteration
decreases sharply in the rst few iterations and then becomes stable.
UniK is the fastest because of our adaptive traversal mechanism, and
INDE and SEQU dominate each other in two datasets respectively.
Access on Data and Bound. Speci cally, we count the number
of bound accesses, data accesses, and distance computations for
BigCross, as shown in Table 3. The number of bound accesses and
data accesses of SEQU is much higher than INDE and UniK, and UniK

has the minimum number of accesses. For example, SEQU needs 1.5
billion number of bound accesses, and UniK only needs 0.9 billion,
as most points have been pruned by index.
Robustness to Parameters.We test the robustness of UniK to vari-
ous parameters in Figure 14, especially the capacity of the leaf nodes.
By increasing the capacity, the performance decreases slightly but
does not uctuate much. Like other two methods, UniK’s speedup
rises slightly when increasing n, d , and k .
7.2.4 Summary of Lessons Learned. We rst summarize some key
insights that might di er from existing studies:
• Ball-tree is very fast in both construction and clustering. For
low-dimensional spatial datasets such as NYC, Ball-tree can beat
all sequential methods to a great extent. Moreover, Ball-tree also
wins in high-dimensional datasets such as BigCross and Kegg
when k equals 10. This is because the data points assemble well,
and having a small r helps the pruning in batch. Hence, by choos-
ing the right index structure (Ball-tree), the index-based method
can also perform well in high-dimensional data, which breaks the
traditional conclusions towards the index-based methods [53].

• Among all the sequential methods, there are ve methods alter-
nately being the fastest in various clustering tasks. They are: Hame,
Drak, Heap, Yinyang, and Regroup. As a common target on reducing
space on bounds, they also reduce the overhead to maintain and
update those bounds, which further leads to faster performance.

• Several tight bounds proposed do not work well and their space
consumption is high (e.g. [26, 61]), probably because frequent
bound access, comparison, and expensive updates are needed,
and large amount of bounds have to be stored which further
increases maintenance costs. Recall Section 4.3, we can also see
that it is complex to compute and update these bounds.
We also have several new and deeper insights:

• By integrating the index-based and sequential methods, UniK
achieves an average of 53% performance improvement in our
tested clustering tasks, and even up to 73% when k ≥ 100 (details
in Table 6). Compared with index-based methods, it avoids many
distance computations when assigning nodes by bound-based
pruning. Compared with sequential methods, it prevents inten-
sive data accesses and distance computations simultaneously
using batch pruning.

• We have shown the aggregate rank of each method over all
datasets in term of e ciency using pie charts in Figure 12. Fur-
ther, we rate them in Table 4 based on multiple metrics we used,
and more experiments results are not shown due to space limit.
Here we do not list other index-based methods as Ball-tree clearly
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Table 4: Evaluation Summary of Section 7.2. The darker the
circle ◦, the higher degree of its corresponding criteria.
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Ball-tree [50] t ds ds t t dr d dr
Elka [38] d d t dp dp dp dp dr
Hame [40] dr ds t dp dr ds dp ds
Drak [37] dr dt dr dt dq dr dr dp
Annu [36] d dr t dr dp dp ds ds
Heap [41] t t t dr dr dr dr dq

Yinyang [35] t ds dr ds ds ds ds dq
Expo [53] d dr t dp dp dp dp dr
Drift [61] dp dp t dp dp dp dp dp
Vector [26] dp dp dr dp dp dp dp dq
Regroup [61] dr dr ds ds ds ds ds dq
Pami20 [71] dq t t dr ds dr dr dt

UniK t dr ds ds ds ds t dq
dominates the rest. We divided the metrics into two groups: be-
ginners and researchers, where the former is for general data
mining users, and the latter is for research purposes on acceler-
ating k -means over existing algorithms. With our rates, users can
choose a proper algorithm based on their demands.

• Besides the metrics we have evaluated, Table 4 also includes the
robustness to various clustering tasks and ease of implementation
that system engineers can refer to. For domain-speci c analysts,
we highly suggest spatial analysts ( ) to adapt Ball-tree as it can
bring signi cant acceleration for low-dimensional spatial data.
Based on users’ computing devices, we recommend that analysts
with servers ( ) can choose Yinyang or our UniK, and Hame and
Pami20 will be proper for laptops ( ) with limited memory.

7.3 Evaluation of Auto-tuning
Based on the above comprehensive evaluations on index-based and
sequential methods, we choose two representative algorithms, one
for each class, denoted as INDE (Ball-tree) and SEQU (Yinyang).8 Next
we compare them with UniK (with our default index and bound
con gurations), and our UTune with various learning models.

7.3.1 Model Training. Ground Truth Generation. Since avail-
able public datasets for clustering are not that many, when run-
ning clustering methods to generate the ground truth, we alter
k = {10, 100, 200, 400, 600, 800, 1000}, n = {103, 104, 105, 106}, and
d = {10, 20, 30, 40, 50} over all the datasets in Table 2. In the appen-
dix of technical report [68] (see Figure 18), we present the e ciency
of the full running and selective running (proposed in Section 6.1
and we used ve methods) on the datasets chosen based on our
leaderboards (see Figure 12). We can observe that selective running
is much faster, as it skips those slow methods and saves much time
to run more parameter settings and get more training data, which
can further improve the precision, as later exhibited in Table 5.
Adopted ML Models.With the ground truth obtained, we adopt
most classical classi cation models [45] for training and prediction:
decision trees (DT), random forests (RF), k nearest neighbor (kNN),
support vector machine (SVM), and Ridge linear classi er (RC).9

8These two algorithms also compose the BDT in Figure 5, where Yinyang is same as
Hame by setting t = 1 when k < 50.
9We divide the ground truth into two parts: 70% for training and 30% for testing.

PredictionAccuracy.We adopt a rank-aware qualitymetric called
mean reciprocal rank (MRR) [33] to measure the precision. Given
a set of testing records R, our loss function is de ned as below:

MRR(R) =
1
|R |

·

’
l 2R

1
rank(pl )

(13)

where rank(pl ) denotes the ranking of prediction pl in the labeled
ground truth.

Table 5 shows the MRR of di erent models (the BDT in Figure 5,
DT, RF, SVM, kNN, RC) in predicting the index con guration (i.e.
Index@MRR) and the choice of bound to be used (i.e. Bound@MRR).
The MRR result can be further interpreted from two dimensions: (i)
For each model, we distinguish the MRR precision over the training
data obtained from the full running and the selective running (high-
lighted as a pre x “S-”), respectively; (ii) For each model, we keep
adding three groups of features in the training phase, namely basic
features, index features (Tree), and advanced features on leaf level
(Leaf ), to verify their e ectiveness. Details on these features are in
Table 1. For completeness purpose, we also report the training and
prediction time in our technical report [68] (see Table 7).

Observations. (1) Within the same limited time, selective running
has higher precision and can achieve 92% if using decision tree
(with a depth of 10) or SVM, while BDT that relies on fuzzy rules
only achieves 43%. This is because selective running manages to
generate more training records than full running (e.g., 1600 vs. 436
in this case). (2) With more index and leaf features, we can have
a higher precision than using basic features only when using the
selective running ground-truth. (3) Among all the classi er models,
the decision tree has the highest precision and it is also very fast
for both training and prediction.

7.3.2 Verification. Among all the prediction models of high accu-
racy, we select the decision tree (DT) to support UTune. Then, we
compare UTune with the representatives: INDE, SEQU, UniK, to verify
whether our predicted con guration works well. Table 6 presents
the running time of Lloyd’s algorithm, and the speedup brought
by INDE, SEQU, UniK, and UTune over Lloyd’s. The percentage of the
pruned distance computations is shown below the speedup. In the
appendix our of technical report [68], we also show the correspond-
ing assignment and re nement time.

Observations. (1) On average, both UniK and UTune outperform the
index-based and sequential methods in multiple cases, especially
when k is big (see bold numbers for significant improvements),
and the integration of bound and indexing further improves the
pruning ratio. (2) UniK cannot always be fast over high-dimensional
data such as Power, which is also consistent with the no free lunch
theorem [69]. The main reason is that the index cannot prune well
in the rst iteration for the datasets that do not assemble well, while
UniK can alter to sequential method and avoid being slow in the
following iterations. (3) By applying an auto-tuning in predicting
the optimal con guration, UTune achieves the best performance
across all datasets. The performance gap is even larger on low-
dimensional datasets such as NYC (up to 389 times speedup), where
UTune rightly predicts the con guration and improves the pruning
percentage over SEQU.

To investigate whether our adopted ML models can generalize
well to datasets that have not been seen during training, we further
test UTune on three new datasets: Spam [7], Shuttle [8], and MSD
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Table 5: Evaluation of knob con guration in terms of MRR prediction accuracy.

Accuracy BDT Basic features + Tree-features + Leaf-features

DT RF SVM kNN RC DT RF SVM kNN RC DT RF SVM kNN RC

Bound@MRR 0.41 0.70 0.68 0.62 0.63 0.57 0.67 0.70 0.64 0.63 0.59 0.69 0.68 0.63 0.63 0.60
Index@MRR 0.37 0.80 0.82 0.84 0.74 0.68 0.83 0.77 0.83 0.74 0.70 0.74 0.77 0.83 0.74 0.74

S-Bound@MRR 0.42 0.84 0.83 0.81 0.82 0.74 0.86 0.87 0.81 0.82 0.74 0.89 0.87 0.88 0.88 0.80
S-Index@MRR 0.43 0.89 0.87 0.86 0.83 0.83 0.91 0.90 0.87 0.83 0.85 0.92 0.92 0.92 0.86 0.84

Table 6: Overall speedup over the running time (second) of Lloyd’s algorithm (the gray column) on various datasets.

Data
k = 10 k = 100 k = 1000

Lloyd
⇥Speedup

Lloyd
⇥Speedup

Lloyd
⇥Speedup

SEQU INDE UniK UTune SEQU INDE UniK UTune SEQU INDE UniK UTune

Cross 262 1.64
71%

1.76
67%

1.36
78%

1.76
84% 1463 2.83

86%
2.16
59%

3.24
90%

4.70
90% 13530 3.31

90%
1.81
46%

4.04
94%

7.73
93%

Conf 2.45 1.32
68%

1.30
61%

1.30
74%

1.32
68% 9.00 1.53

90%
1.63
25%

2.22
90%

2.50
90% 50.75 2.83

90%
1.47
6%

2.88
93%

2.93
93%

Covt 0.65 1.89
74%

2.18
72%

1.68
87%

2.18
72% 2.53 5.62

90%
1.43
23%

5.61
94%

5.67
93% 10.39 7.47

92%
1.04
4%

6.66
92%

7.47
92%

Euro 15.3 1.38
75%

1.42
67%

1.39
84%

1.48
35% 111 3.24

92%
2.53
45%

3.79
90%

4.03
95% 381.9 2.65

94%
0.63
11%

3.12
95%

3.13
95%

KeggD 0.45 2.93
83%

3.59
79%

4.22
84%

4.3
95% 1.16 2.61

92%
1.21
11%

4.00
71%

5.8
95% 8.50 6.58

93%
1.23
11%

7.01
89%

7.57
95%

Kegg 0.49 1.98
78%

2.83
83%

2.40
94%

2.83
83% 2.49 4.69

93%
1.79
31%

5.87
95%

6.15
96% 18.64 6.67

93%
0.94
51%

6.52
95%

6.67
93%

NYC 15.3 1.39
84%

389
99%

31.4
99%

389
99% 75.6 4.19

94%
153
99%

55.6
99%

153
99% 229.8 1.69

93%
11.05
93%

7.53
95%

13.3
96%

Skin 0.56 1.30
79%

2.54
87%

2.40
88%

2.54
87% 2.92 2.35

92%
2.60
56%

4.09
96%

4.13
96% 21.41 2.70

93%
1.38
27%

3.28
94%

3.54
95%

Power 6.38 1.43
78%

0.77
53%

0.87
82%

1.43
78% 32.9 2.39

91%
1.02
18%

2.53
93%

2.60
91% 223.9 2.17

92%
0.96
2%

2.26
92%

2.5
92%

Road 6.02 1.36
84%

8.64
96%

8.19
98%

8.64
96% 21.2 2.57

93%
3.68
69%

4.60
93%

4.93
97% 132.8 2.40

94%
1.58
27%

2.69
93%

2.87
95%

Census 11.9 1.31
62%

0.82
26%

1.14
67%

1.55
69% 94.7 3.65

84%
1.14
15%

3.51
85%

3.67
84% 791 5.85

91%
1.05
9%

5.87
91%

5.87
91%

Mnist 7.44 1.13
1%

0.91
0%

0.98
1%

1.36
27% 67.3 1.21

17%
0.98
15%

1.22
18%

3.94
77% 709 1.69

37%
1.04
2%

1.54
38%

5.13
83%

Spam 0.12 1.13 1.42 1.15 1.62 0.69 5.80 2.12 12.59 12.59 4.87 4.35 2.87 8.87 8.87
Shuttle 0.20 3.65 0.72 0.57 3.65 1.15 5.62 3.67 5.47 6.53 4.61 4.85 1.94 5.17 5.17
MSD 8.93 1.17 0.72 0.92 1.17 21.2 2.04 1.21 2.17 2.17 592 2.33 1.17 2.57 2.57

[17]. The results are consistent with our earlier nding, i.e., UTune
beats other methods in most times, and is always in the leaderboard.
This con rms a good generalization capability of our ML model.

7.3.3 Summary of Lessons Learned. Through an evaluation on
multiple learning models for auto-con guration, we further learn:

• Automatic algorithm selection for fast k-means is feasible by
using a meta-learning model. Through UTune, we can predict an
algorithm con guration that leads to better performance than
state-of-the-art methods which we have reported in last section,
also including our UniK. Moreover, the learning cost is low if
using the o ine evaluation logs.

• There are several ways to improve the precision of models. Firstly,
our selective running based on evaluation can save much time to
generate more logs for training. Secondly, building indexes can
provide more features that help improve the prediction accuracy.

• By using very basic machine learningmodels without ne-tuning,
our algorithm selection approach already achieves 92% prediction

accuracy. Note that nding the best choice of learning models is
orthogonal to this work, though.

8 CONCLUSIONS
We evaluated existing accelerating algorithms for fast k -means, in a
uni ed framework which enables a ne-grained performance break-
down. To auto-con gure the pipeline for the optimal performance,
we trained a meta-model to predict the optimal con guration. Ex-
periments on real datasets showed that our uni ed framework with
autotuning can accelerate k-means e ectively. In the future, we
will work on learning with a rank-aware loss function like MRR,
i.e., designing speci c machine learning models to further improve
precision. Recalling the parameter settings in Section 7.1, it will
also be interesting to study the tuning of three sequential methods’
parameters. More discussions on these future opportunities can be
found in our technical report [68] (see Section A.5).
Acknowledgment. Zhifeng Bao is supported by ARC
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