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ABSTRACT
Transaction isolation is conventionally achieved by restricting ac-
cess to the physical items in a database. To maximize performance,
isolation functionality is often packaged with recovery, I/O, and
data access methods in a monolithic transactional storage manager.
While this design has historically afforded high performance in
online transaction processing systems, industry trends indicate a
growing need for a new approach in which intertwined compo-
nents of the transactional storage manager are disaggregated into
modular services. This paper presents a new method to modularize
the isolation component. Our work builds on predicate locking, an
isolation mechanism that enables this modularization by locking
logical rather than physical items in a database. Predicate lock-
ing is rarely used as the core isolation mechanism because of its
high theoretical complexity and perceived overhead. However, we
show that this overhead can be substantially reduced in practice by
optimizing for common predicate structures.

We present DIBS, a transaction scheduler that employs our pred-
icate locking optimizations to guarantee isolation as a modular
service. We evaluate the performance of DIBS as the sole isolation
mechanism in a data processing system. In this setting, DIBS scales
up to 10.5 million transactions per second on a TATP workload. We
also explore how DIBS can be applied to existing database systems
to increase transaction throughput. DIBS reduces per-transaction
file system writes by 90% on TATP in SQLite, resulting in a 3X
improvement in throughput. Finally, DIBS reduces row contention
on YCSB in MySQL, providing serializable isolation with a 1.4X
improvement in throughput.
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1 INTRODUCTION
In a conventional database system architecture, concurrency con-
trol is packaged with recovery, I/O, and data access methods in
a monolithic transactional storage manager [20]. Together, these
components of the storage manager provide the ACID properties
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on which applications rely. While each ACID property can be con-
ceptually regarded as a separate guarantee, the components that
provide these guarantees are often deeply intertwined. For exam-
ple, the recovery manager may depend on the concurrency control
mechanism to ensure that modifications to the database can be
safely undone when a transaction is rolled back.

While this design has historically afforded high performance in
online transaction processing (OLTP) systems, the interdependence
between components in the storage manager may result in complex
software that is difficult to maintain. This complexity may result
in subtle bugs that go undetected, even in rigorous testing. For ex-
ample, the Elle transaction isolation checker [24] recently detected
G2-item anomaly, a violation of serializability, in the serializable
isolation level of PostgreSQL 12.3 [23]. Moreover, the complexity of
intertwined system components may introduce unexpected and un-
desirable performance behavior. For example, for some workloads
on MySQL with InnoDB, switching the transaction isolation level
from serializable to read uncommitted decreases performance, con-
trary to expectations. We quantify this behavior in Figure 1. In this
experiment, a YCSB variant workload consisting of 50% select and
50% update was executed against a table of 10,000 rows, each con-
sisting of an integer primary key and one 100-character field. Each
request scans the entire table looking for a single row that satisfies
a predicate, then either updates or returns it. Surprisingly, read
uncommitted performance degrades more easily than serializable.
At 96 connections, read uncommitted isolation yields only 66% of
the throughput of serializable. The complexity of the concurrency
control mechanism makes it difficult to determine the reason for
this behavior. One possible explanation is that in read uncommit-
ted isolation, record locks are released for every nonmatching row
immediately after evaluating the WHERE condition. This may incur
additional overhead compared to serializable isolation, in which
record locks are held for the duration of the transaction.

The complexity of monolithic transactional storage management
also increases the development time necessary to add transactional
support to a new system. As noted in the “one size does not fit all”
approach [43], different applications may need very different query
processing and storage systems. To meet these varied demands,
there has recently been an explosion of new data processing plat-
forms that address a wide range of problems. Indeed, as of December
2020, 360 different database systems were tracked by DB-Engines
[9], and 5 out of the top 10 were not present at the turn of the
century. Developers of new systems may be dissuaded by the ef-
fort required to implement bundled concurrency control, recovery,
and other transactional functionality. A notable recent example is
RocksDB, in which transactions were initially unsupported. Trans-
actions with both pessimistic and optimistic concurrency control
protocols have since been added [39]. Furthermore, new systems
may initially compromise performance in favor of simplifying trans-
actional support. For example, prior to its 2.2 release, MongoDB
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used a global database lock to serialize modifications to the database
[32].

In this paper, we propose a new approach to extract transaction
isolation functionality from the other components of the transac-
tional storage manager. Our approach provides isolation guarantees
as a modular service that is agnostic to the contents of the database
and the implementation of the other data processing components.
This design reduces the complexity of transactional storagemanage-
ment and facilitates adding transactional support to new systems.
We refer to this design as isolation by scheduling. In this paradigm,
a transactional request is allowed to proceed only if it is guaranteed
not to conflict with a concurrent request, regardless of the state
of the database. The database system may then execute these re-
quests without additional isolation mechanisms, such as locking
and versioning.

To modularize isolation, we build on predicate locking [14], an
often overlooked isolation mechanism. Under the predicate locking
protocol, each lock is associated with a predicate. Predicates are
then analyzed to determine whether locks conflict. Each lock then
refers to a logical subset of the database. Contrast this to conven-
tional isolation mechanisms, which deal with physical items in a
database such as tables and rows. The distinction between logical
and physical isolation allows predicate locking to be implemented
as a modular component, while other isolation mechanisms are
usually intertwined with other components in the transactional
storage manager. Unfortunately, general predicate locking is NP-
complete as it can be reduced to the boolean satisfiability problem.
Consequently, it has received relatively little attention in the data-
base community. To the best of our knowledge, general predicate
locking is not used as the sole isolation mechanism in any main-
stream database system. However, in this paper, we present several
predicate locking optimizations that substantially improve its per-
formance and scalability, making it a viable isolation mechanism
for our approach.

Motivated by the need for modular isolation, in this paper we
propose a transaction scheduling system that uses optimized predi-
cate locking to provide isolation as a service. Specifically, this paper
makes the following contributions.

(1) A set of novel predicate locking optimizations that offer
reduced overhead and improved scalability compared to a
naive implementation of predicate locking.

(2) A transaction scheduling system, which we call Database
Isolation By Scheduling (DIBS), that combines these opti-
mizations with a transaction scheduler to provide serializable
isolation as a modular service.

(3) Multiple applications for DIBS that have the potential to re-
duce file system writes and increase concurrency, improving
throughput on transactional workloads.

(4) An evaluation of our approach on a variety of data settings
that demonstrates the effectiveness of our approach.

The remainder of this paper is organized as follows. In Section
2, we describe our predicate locking optimizations. In Section 3,
we present a transaction scheduling system that combines our
optimizations to provide modular isolation. In Section 4, we identify
and evaluate three key applications for our system. In Section 5, we
discuss the implications and assumptions associated with providing
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Figure 1: InnoDB read uncommitted performance can drop
below serializable for write-intensive YCSB.

transaction isolation as a service. Related work is presented in
Section 6, and our concluding remarks are in Section 7.

2 OPTIMIZED PREDICATE LOCKING
Predicate locking has the potential to provide the benefits of mod-
ularity and simplicity described in Section 1, but has received rel-
atively little attention due to its high computational complexity.
To build on the potential of predicate locking, we propose several
optimizations that reduce its overhead and improve its scalability.
In this section, we provide a brief overview of the predicate locking
task. We then present our optimizations and describe how each
addresses a specific source of overhead in naive predicate locking.

2.1 Naive predicate locking
Predicate locking is a form of transaction isolation that was orig-
inally proposed as a solution to the phantom read problem [14].
It is well-known that the locking of physical data items provides
serializability only if the set of data items is fixed. Data items that
do not yet exist cannot be locked. Hence, concurrent scan and insert
operations may lead to a violation of serializability. In contrast, a
predicate locking system locks a logical rather than physical sub-
set of the database. This prevents the insertion of phantom data
items into the set accessed by a transaction, and thus provides full
serializability. While prior work has discussed predicate locking
as a solution to the phantom read problem, we focus on an addi-
tional benefit in this paper: its ability to provide isolation as an
independent service.

Under the predicate locking protocol, the system maintains a list
of active predicate locks associated with in-progress transactions. A
predicate lock is defined as a tuple 𝐿 = (𝑅, 𝑃, 𝑎) where 𝑅 is a relation,
𝑃 is a predicate that can be evaluated on a tuple 𝑡 in 𝑅, and 𝑎 is the
access mode (𝑟𝑒𝑎𝑑 or𝑤𝑟𝑖𝑡𝑒). Two predicate locks 𝐿 = (𝑅, 𝑃, 𝑎) and
𝐿′ = (𝑅′, 𝑃 ′, 𝑎′) are said to conflict if all of the following conditions
are true.

(1) 𝑅 = 𝑅′

(2) 𝑎 = 𝑤𝑟𝑖𝑡𝑒 or 𝑎′ = 𝑤𝑟𝑖𝑡𝑒

(3) There exists some feasible tuple 𝑡 such that 𝑃 (𝑡) ∧ 𝑃 ′(𝑡) =
𝑇𝑅𝑈𝐸.

While (1) and (2) can be determined in constant time, (3) equates to
the boolean satisfiability problem which is generally NP-complete.

Using this definition of conflict, in Algorithm 1 we propose a
naive algorithm to acquire a predicate lock.
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The naive algorithm solves satisfiability of 𝑃 ∧ 𝑃 ′ by converting
to disjunctive normal form (DNF) in line with prior work [14]. The
conjunction 𝑃 ∧ 𝑃 ′ is unsatisfiable if and only if each term of its
equivalent DNF predicate is a contradiction. Because each term
is a conjunction, these contradictions can be easily identified. For
example, suppose we have the predicates 𝑃 ≡ (𝑎 = 1 ∨ 𝑏 > 2) and
𝑃 ′ ≡ (𝑎 = 3 ∧ 𝑏 = 4). Converting to DNF, 𝑃 ∧ 𝑃 ′ is equivalent to
the predicate

(𝑎 = 1 ∧ 𝑎 = 3 ∧ 𝑏 = 4) ∨ (𝑏 > 2 ∧ 𝑎 = 3 ∧ 𝑏 = 4).
Clearly, the first term is unsatisfiable as no single tuple can satisfy
both 𝑎 = 1 and 𝑎 = 3. However, the second term contains no such
contradiction. Therefore, 𝑃 ∧ 𝑃 ′ is satisfiable. While conceptually
straightforward, converting an arbitrary formula to DNF can lead
to worst-case exponential blowup in time and space.

Furthermore, in the naive algorithm, a thread that wishes to
acquire a new predicate lock must check for conflict against all
predicate locks held by other transactions in the system. In a critical
section, the thread must save a snapshot of the active predicate lock
set, then insert the new predicate lock into the set. This operation is
denoted by the FetchInsert function call in Algorithm 1, where 𝑆 ′ is
the snapshot. Then, for each active predicate lock in the snapshot,
the thread tests all the conditions described above. If any of them
are true, the thread waits until the active predicate lock is released.

To summarize, in the naive algorithm, the complexity of acquir-
ing a new predicate lock depends on both the number of existing
predicate locks in the system and the size of the predicates in the
predicate locks. For these reasons, the overhead of general predicate
locking is deemed too high, and to the best of our knowledge it
is not used as the sole isolation mechanism in high-performance
database systems.

Algorithm 1: AcquirePredicateLock
Input: A desired predicate lock 𝐿 and a set 𝑆 of existing

predicate locks
𝐿𝐷𝑁𝐹 ← ToDNF(𝐿)
𝑆 ′ ← FetchInsert(𝑆, 𝐿𝐷𝑁𝐹 )
for 𝐿′ ∈ 𝑆 ′ do

if 𝐿 and 𝐿′ conflict then
wait until 𝐿′ is released

end
end

2.2 Optimized Predicate Locking
We now present our optimizations to the naive predicate locking
algorithm and describe how each improves its performance and
scalability.

2.2.1 Conjunct grouping. As stated earlier, converting an arbitrary
boolean formula to DNF can result in exponential blowup in time
and space. The conjunct grouping optimization aims to reduce the
overhead of converting to DNF. Observe that each term of a DNF
predicate must contain at least two references to the same column
to be a possible contradiction. For example, the predicate (𝑎 =

𝑣1∧𝑎 = 𝑣2) is a contradiction if 𝑣1 ≠ 𝑣2, whereas the predicate (𝑎 =

𝑣1∧𝑏 = 𝑣2) is satisfiable for all 𝑣1 and 𝑣2. Hence, we can avoid some
unnecessary work by distributing the conjunction operator only
over conjuncts that share common columns. The conjunct grouping
optimization separates the conjuncts of 𝑃 and 𝑃 ′ into groups that
access disjoint sets of columns. This can be accomplished in close
to linear time with the use of a disjoint-set data structure [46].
Each group is then converted to DNF individually and tested for
conflict as described in Section 2.1. If there are many such groups,
the exponential blowup of the conversion to DNF may be greatly
reduced. For example, consider the predicates

𝑃 ≡ ((𝑎 = 1 ∨ 𝑎 = 2) ∧ (𝑏 = 1 ∨ 𝑏 = 2))
𝑃 ′ ≡ ((𝑎 = 3 ∨ 𝑎 = 4) ∧ (𝑏 = 3 ∨ 𝑏 = 4)) .

Converting 𝑃 ∧ 𝑃 ′ to DNF results in a disjunction with 16 terms.
By first applying conjunct grouping, we need only consider 2 dis-
junctions, each with 4 terms.

As a caveat, we note that in OLTP workloads, predicates are
often already in DNF. In fact, three of the most widely used OLTP
benchmarks, TPC-C [7], TATP [34], and YCSB [6], do not include
any predicates with disjunctions. Rather, they include only predi-
cates that are conjunctions of comparisons. For these predicates,
we can test for conflict in linear time with respect to the number
of conjuncts. In such OLTP workloads, the NP-completeness of
boolean satisfiability is unlikely to be a significant performance
consideration.

2.2.2 Prepared predicates. Applications commonly use prepared
statements, which are parameterized declarative statements submit-
ted to the data platform for parsing and optimization. The compiled
statements can be later executed with values provided by the client.
An application’s use of prepared statements, as opposed to ad hoc
statements, has two main advantages. First, the overhead of parsing
a statement is incurred only once, rather than each time the state-
ment is executed. If the query plan does not change depending on
the parameter values, the same is true for the overhead of optimiz-
ing the statement. Second, prepared statements provide protection
against SQL injection attacks, assuming that parameter values are
passed safely to the statement [3].

In a similar manner, we analyze the predicates of prepared state-
ments, which we refer to as prepared predicates, to reduce the over-
head of determining whether two predicate locks conflict. The
analysis makes use of a graph data structure, which we refer to as
the conflict graph. For each prepared predicate, we include a vertex
in the conflict graph. We connect vertices whose predicates satisfy
both conditions (1) and (2) in Section 2.1, that is, they access the
same relation and at least one is a write. At each edge, we store
a conflict predicate that, when evaluated on the parameter values
of the two prepared predicates, evaluates to true if the prepared
predicates are satisfiable. For example, consider parameterized ver-
sions of the previously described predicates 𝑃 ≡ (𝑎 = 𝑣1 ∨ 𝑏 > 𝑣2)
and 𝑃 ′ ≡ (𝑎 = 𝑣3 ∧ 𝑏 = 𝑣4). At the edge connecting 𝑃 and 𝑃 ′ in the
conflict graph, we store the conflict predicate

(𝑣1 = 𝑣3 ∧ 𝑣2 < 𝑣4) .

To solve satisfiability between two prepared predicates, we then
evaluate the conflict predicate at the corresponding edge with the
provided parameter values. Offline computation and simplification
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of these conflict predicates shortens critical code paths and reduces
overhead during online processing.

2.2.3 Column filtering. Notice that in Algorithm 1, there is a poten-
tial scalability bottleneck caused by concurrent access to a central-
ized set of predicate locks. As shown in the algorithm, the FetchIn-
sert operation must atomically insert a predicate lock into the active
set and return a snapshot of the set before the insertion. In prac-
tice, the active set of predicate locks is protected by a mutex to
ensure correct behavior. Each thread must compete for ownership
of this mutex, limiting scalability. As we will show later in a naive
implementation of predicate locking, contention for the active set
of predicate locks may lead to a degradation in overall throughput
as more threads are added.

This bottleneck is especially pronounced in main-memory OLTP
applications, where the relative overhead of concurrency control is
greater compared to IO-bound OLTP or analytical applications [38].
Main-memory OLTP applications are characterized by statements
that access only a small subset of the database, typically using fast
index lookups. Because these statements can often be executed
quickly, the system spends a greater portion of time ensuring iso-
lation. Accordingly, high-performance OLTP systems take great
care to avoid centralized scalability bottlenecks. Furthermore, we
observe that in OLTP workloads, it is common for requests to in-
clude predicates on primary keys. In a typical OLTP system, the
query planner analyzes each predicate to determine which indexes,
if any, can be used to evaluate the predicate. The indexes are then
used to find tuples that satisfy the predicate, avoiding the need for
a full table scan. We use an analogous approach to test predicate
lock conflicts.

The column filtering optimization aims to alleviate this bottle-
neck. Rather than maintain a single set of active predicate locks,
we instead construct 𝑁 buckets of active predicate locks, where 𝑁
is a configurable parameter. We then define a function 𝑓 mapping
each predicate’s values to a subset of the buckets such that, if two
predicates conflict, there must exist some bucket to which both of
them are mapped. To acquire some predicate lock 𝐿 = (𝑅, 𝑃, 𝑎), we
then call Algorithm 1 for each bucket in the mapping 𝑓 (𝑃). The
advantage of this approach is twofold. First, it may be possible to
map two predicates to different buckets by only examining a small
portion of each predicate, avoiding the need for a full comparison
as before. Second, this mapping is done in parallel: each thread
computes the mapping for its current predicate and then examines
the corresponding buckets for other predicates that may conflict.
For typical OLTP workloads, this optimization reduces contention
for centralized resources and improves scalability.

2.2.4 Additional optimizations. Lastly, we describe two additional
optimizations for naive predicate locking. First, we propose amodifi-
cation to conditions (1) and (2) above. Rather than test whether two
predicate locks access the same relation, we instead test whether
two predicate locks access the same column, and at least one of
them is a write. This optimization provides higher concurrency by
allowing rows to be shared more freely among concurrent trans-
actions, while maintaining serializability by ensuring data that is
accessed by multiple transactions is only read and never written. As
we will show in our results, this optimization increases throughput
for workloads that access different columns of contended rows.

The assumptions about database system behavior that enable this
optimization are discussed in Section 5.

Second, we present a simple mechanism to avoid the rare worst-
case scenario in which the time required to test whether two predi-
cate locks conflict is greater than the time required to execute the
two requests serially. Before converting to DNF, we first compute
the number of terms in the result. This calculation can be carried out
in linear time with respect to the size of the predicates using integer
multiplication and addition. If the number of terms is greater than
some threshold 𝑘 , we fall back on full column locks. The threshold
𝑘 can be specified on a per-request basis or as a global parameter.
Conceivably, the system could tune 𝑘 dynamically based on the
latency of previous requests, though we leave this optimization to
future work.

3 DATABASE ISOLATION BY SCHEDULING
(DIBS)

Building on our predicate locking optimizations, we now present a
scalable transaction scheduler that uses efficient predicate locking
to provide isolation as a service. We refer to this system as Database
Isolation By Scheduling (DIBS). We begin with an overview of the
core modules of DIBS and how they interact, followed by a discus-
sion of how DIBS combines each predicate locking optimization
together.

3.1 Architecture
DIBS is designed to be a modular abstraction for a data platform,
with respect to the discussion in Section 1. It is implemented as a
pluggable layer between one ormore client applications and a target
data platform or query processing engine. The DIBS system consists
of the modules shown in Figure 2. In this section, we describe each
of these modules in detail.

The client connector and database connector modules are the in-
terface between DIBS, client applications, and target data platforms.
These modules expose the API functions shown in Figure 2 that
can be implemented to provide isolation in a variety of contexts.
The client connector API can be implemented to accept requests
from a new application, such as a command line interface or a web
application. Internally, client connectors maintain a queue of client
requests to be processed by the DIBS system. The database connec-
tor API can be implemented to schedule requests on a new target
data platform. Transactional control statements such as begin() and
commit() are included in the database connector API so that the
data platform can manage transaction context and provide atom-
icity and durability guarantees if desired. The data platform need
not track transaction context for isolation between transactions, as
the requests scheduled by DIBS are already isolated.

The predicate lock manager (PLM) maintains the set of active
predicate locks in the system. Though analogous to a lock manager
in a traditional database system, the PLM is distinct in that it stores
predicate locks rather than references to physical data items in
the database. This design allows it to remain independent of any
abstraction and data structures used in the data platform. The goals
of the PLM are to determine which predicate locks must to be
acquired for a given request, and to acquire those locks with as little
overhead as possible. To achieve these goals, the PLM employs each
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Figure 2: Architecture of the DIBS system.

of the predicate locking optimizations described earlier. Section 3.2
discusses how the PLM combines these optimizations.

The PLM is also responsible for managing deadlock. Our design
offers the flexibility to choose the deadlock avoidance or detec-
tion method that best suits the workload. In our implementation
and subsequent experiments, we use a timeout with random jitter
when waiting for a predicate lock to be acquired. If the timeout
expires, DIBS rolls back and restarts the current transaction. This
strategy was chosen for its simplicity and its performance under
high contention [5].

The worker is the main driver of the DIBS system and the mecha-
nism bywhichDIBS scales up to provide higher transaction through-
put. Each worker occupies a thread and executes the following
operations in a loop. First, the worker calls the client connector API
to receive a new transaction from the client connector’s internal
queue. Transactions include a list of requests, which can be sub-
mitted dynamically and are typically in the form of prepared SQL
statements. Requests that are not prepared are parsed into their
object representations. For each request, the worker calls the PLM
to acquire the predicate locks that are needed to isolate the request
from concurrent transactions. The worker thread may block as it
waits for conflicting predicate locks to be released. The worker’s
attempt to acquire predicate locks results in one of the following
two scenarios.

(1) The predicate locks are successfully acquired. The worker
then calls the database connector API to execute the request
on the target data platform.

(2) The predicate locks could not be acquired due to potential
deadlock or another exception. In this case, the worker in-
structs the data platform to rollback the current transaction
through the database connector API. We limit the scope of
DIBS to isolation and leave the specific rollback implemen-
tation to the data platform or other modular components
(e.g., approach outlined in [4]). The worker then calls the
predicate manager to release all locks associated with the
current transaction and restarts the transaction from the
beginning.

After all requests have been completed, the worker instructs
the data platform to commit the transaction. The data platform
may use this commit hook to clean up transaction context and
flush database changes to stable storage. The worker then calls
the PLM to release all predicate locks associated with the current
transaction. Both read and write predicate locks are released only
after the commit hook is completed by the data platform to comply

with the strong strict two-phase locking (SS2PL) protocol. Finally,
the worker notifies the client application of the transaction commit.

3.2 Combining predicate locking optimizations
The DIBS PLM combines our predicate locking optimizations into a
single service that efficiently acquires and releases predicate locks,
allowing DIBS to provide low-overhead modular isolation. In this
section, we describe how the PLM layers each of these optimizations
together. We structure this discussion into two phases: initialization
and online processing.

The input to the PLM during the initialization phase is a list of
request templates. Request templates are comprised of a set of IDs
representing the columns that the request reads, an additional set
of IDs for the columns that the request writes, and a prepared (pa-
rameterized) predicate. This list may be a subset of the requests to
be executed during online processing, or it may be empty. However,
predicates that are not included in this list will be evaluated ad
hoc and will not benefit from the prepared predicates optimization.
The PLM iterates through the request templates, constructing the
conflict graph described in Section 2.2.2. It also queries the target
database schema to determine which columns to use for the column
filtering optimization described in Section 2.2.3. In our evaluation,
we empirically choose 𝑁 , the number of buckets of predicate locks
for each relation, to maximize throughput. We define the mapping
function 𝑓 to be a hash of the primary key of each relation modulo
𝑁 .

During online processing, the PLM accepts both prepared and
ad hoc predicate lock requests. For either type of request, the PLM
attempts to compute the mapping 𝑓 of the request’s predicate. If
the predicate cannot be mapped (i.e., it does not reference the
primary key of the relation or requires a full scan), a new predicate
lock is inserted into each of the 𝑁 buckets. Otherwise, a predicate
lock is only inserted into the buckets specified by the mapping. In
both cases, the PLM uses calls to AcquirePredicateLock described
in Algorithm 1 to insert predicate locks into buckets. Up to this
point, prepared and ad hoc requests are handled similarly. However,
the PLM uses different methods for each case to check whether
two predicate locks conflict, which are discussed in the following
paragraphs.

Prepared requests consist of an ID, which corresponds to a re-
quest template provided during initialization, and a list of parameter
values. For each other predicate lock in the snapshot 𝑆 ′ returned by
FetchInsert in Algorithm 1, if the predicate lock originated from a
prepared request, the PLM examines the edge in the conflict graph
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connecting the two prepared predicates. The conflict predicate at
that edge is then evaluated with the provided parameter values to
determine whether the two predicate locks conflict. If the other
predicate lock originated from an ad hoc request, the PLM treats
both predicates as ad hoc, and uses the conjunct grouping optimiza-
tion to determine whether they conflict.

Ad hoc requests consist of a request template (distinct from the
request templates provided during the initialization phase) and a
list of parameter values. For each other predicate lock in 𝑆 ′, the
PLM treats both predicates as ad hoc, regardless of whether the
other predicate lock originated from a prepared request, and uses
the conjunct grouping optimization to determine whether they
conflict.

Eventually, predicate locks must be released due to transaction
commit or rollback. To aid in the releasing of predicate locks, DIBS
associates a context with each transaction. When the PLM inserts
a predicate lock into a bucket using Algorithm 1, it also stores
a reference to that bucket and a unique ID associated with the
predicate lock in the transaction context. Then, when a worker
instructs the PLM to release the predicate locks associated with
a transaction, the PLM uses the transaction context to determine
which predicate locks must be removed from which buckets.

3.3 Extensions to More Complex Predicates
Up to this point, we have only considered predicates of the form
column comparison value, where column is a reference to a column
in the database, comparison is any of the comparison operators in
{<, ≤, >, ≥,=,≠}, and value is a scalar literal. Here, we discuss how
DIBS can be extended to support predicates with more complex
expressions.

It is straightforward to add support for predicates of the form
column comparison expression, where expression is an expression
tree that may include arithmetic operators or functions that oper-
ate on scalar values, but does not include any column references.
Predicates in this form are often called “sargable”, because they can
potentially take advantage of a database index to speed up search
[41]. To acquire a predicate lock for a predicate in this form, DIBS
would first issue a query to evaluate the expression in the data plat-
form. Because the expression does not access any physical data, the
data platform may evaluate the expression without concurrency
control. The scalar result of the expression can then be used to
acquire a predicate lock as before. To avoid redundant computa-
tion in the data platform, DIBS may internally rewrite the request,
substituting the scalar result for the expression in the predicate.

DIBS could also be extended to support predicate locking for
some join predicates. For example, consider the following query.

SELECT *

FROM T, U

WHERE T.a = 1 AND T.a = U.a;

Conceptually, this query could be restructured into two queries
that access relations T and U separately with the predicate a = 1,
followed by a cartesian product between the two resulting sets of
tuples. This eliminates the join predicate, allowing DIBS to acquire
two predicate locks as before. Importantly, the restructured query

returns the same rows as the original query. Hence, the restructur-
ing can be an internal DIBS operation and require no modification
to the data platform’s query plan.

For other operations such as natural joins without filter pred-
icates, DIBS can always fall back on coarse granularity locks. In
the worst case, an entire relation may be locked for the duration
of a transaction. However, this may be the case for any isolation
mechanism and, as we have shown, DIBS supports fine-granularity
predicate locking for a broad range of predicate structures.

4 EVALUATION
In this section, we present an evaluation of DIBS in a variety of ap-
plications. Our evaluation is structured into two sections. First, we
evaluate DIBS as the sole isolation mechanism for a prototype data
processing engine built on Apache Arrow [16]. We cumulatively ap-
ply each predicate locking optimization and measure performance
relative to naive predicate locking. Second, we demonstrate how
fully-optimized DIBS can improve performance of OLTP workloads
as an augmentation to existing database systems.

4.1 Workloads and Applications
We characterize the performance of our system on four bench-
marks: TATP [34], SEATS [44], SubscriberScan (a benchmark that
we developed specifically for this paper), and YCSB [6].

The TATP benchmark is designed to measure the performance of
a transaction manager in a typical telecommunications application.
We selected TATP because it has been extensively used in prior
work in this area [21, 22, 25, 29, 35–37] and thoroughly compared
to other transaction benchmarks [12]. In all TATP experiments,
we use a database containing 1 million subscriber records and the
recommended key distribution.

The SEATS benchmark models an airline ticketing system where
customers search for flights and make reservations. The ticketing
system is designed to allow customers to access the database us-
ing various credentials, such as frequent flyer number, customer
account number, or login name. Thus, many of the transactions in
SEATS use foreign-key joins and secondary indexes to identify a
customer. The benchmark consists of a relatively write-intensive
mix of 60 % read only transactions and 40 % transactions that up-
date, insert, or delete records in the database. Compared to TATP,
SEATS includes more complex predicates involving range searches
and set membership. We used the benchmark driver provided by
the developers of the OLTP-Bench framework [12].

SubscriberScan is a benchmark that we developed specifically
to test the ability of DIBS to handle complex predicates. As noted
earlier, TPC-C, TATP, and YCSB do not include predicates with
disjunctions, but rather only predicates that are conjunctions of
comparisons [6, 7, 34]. Because these predicates can be converted to
DNF in linear time, these benchmarks are insufficient to fully evalu-
ate our predicate locking optimizations. In contrast, SubscriberScan
includes complex predicates with disjunctions and inequalities. Sub-
scriberScan involves two transaction types, both of which involve
a scan on the Subscriber table from TATP with 100 K rows. The
transactions are executed in an 80%/20% mix. The first transaction
type reads the data from each row that satisfies the predicate. The
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second transaction type updates the vlr_location field to a ran-
dom value for each row that satisfies the predicate. The predicate
for both transaction types is of the following form.

WHERE (( byte2_1 BETWEEN ? AND ?)

OR (byte2_1 BETWEEN ? AND ?))

AND (( byte2_2 BETWEEN ? AND ?)

OR (byte2_2 BETWEEN ? AND ?))

AND ...;

Each BETWEEN interval is 16-wide and randomly chosen from the in-
terval [0, 255]. In our experiments, we vary the number of conjuncts
in the predicate from 1 to 8.

YCSB is commonly used for evaluating key-value systems, but
has been adapted to transactional databases as well [28, 48]. We
selected YCSB because it exposes configurable parameters that
allow measurement of specific sources of overhead. In our YCSB
evaluation, we varied the number of requests per transaction, the
proportion of read requests to write requests, and the skew factor
of the requested keys. Borrowing from existing work [28], we refer
to the 95% select/5% update mix as read-intensive, and the 50%
select/50% update mix as write-intensive. All YCSB experiments
were run against a database containing 1 million records, each
with an integer primary key and 10 fixed-width character fields
of 100 bytes, for a total of about 1 GB of user data. Each YCSB
request either queries one of these fields for a desired primary key,
or updates the field with a new character string.

For TATP and YCSB, we choose 𝑁 = 1024 buckets of predicate
locks per relation. For SEATS, we use𝑁 = 8. For SubscriberScan, we
use 𝑁 = 1. These choices maximize throughput for each workload
based on empirical tests. We omit the exponential blowup threshold
𝑘 to demonstrate the overhead of converting the predicates in
SubscriberScan to DNF.

We execute these benchmarks for three applications, which will
be discussed in detail in the following sections. We provide config-
uration details for each application here. The first application uses
a lock-free in-memory database engine developed with the Rust
library of Apache Arrow version 3.0.0. As a baseline for the Arrow
engine, we compare with SQL Server optimized for in-memory
OLTP, often referred to as Hekaton [11]. All tables were set to
memory-optimized and durability was set to SCHEMA_ONLY. When-
ever supported, natively compiled stored procedures were used.
Where appropriate, columnstore indexes were used. The second ap-
plication uses SQLite version 3.33.0. We set SQLite to multithreaded
mode and disabled the collection of memory allocation statistics.
We also set the cache size to 8 GB, the journal mode toWAL, and the
synchronization of the journal to FULL. All other SQLite settings
were left as default. The third application uses MySQL version 8.0
with InnoDB backend. We set the buffer size to 8 GB and vary the
isolation level depending on the experiment. All other MySQL and
InnoDB settings were left as default.

4.2 Testing Setup
All experiments were run on a single machine with two Intel Xeon
Silver 4114 processors with a clock speed of 2.2 GHz. Each processor
has 10 cores each for a total of 20 cores. Each core has its own 32 KB
L1 cache and 1024 KB L2 cache, with a 13.75 MB L3 cache shared

between cores on a single processor. The machine has 192 GB of
DDR4 SDRAM with 96 GB on each socket and one 480 GB Intel DC
S3500 SATA SSD.We pinned DIBS worker threads to cores, utilizing
the second socket only when greater than 10 workers were needed.
The machine was provisioned using the CloudLab platform [13].

In all experiments, DIBS was run on the same machine as the
client application and the target database engine. Workload gener-
ators were implemented as DIBS client connectors and included in
the main event loop of each worker thread. In embedded settings,
DIBS worker threads also perform the work of the requests using
the API of the target database engines. In client-server settings,
workers simply send requests to the database server for processing.
In most experiments, we vary the number of worker threads from
1 to 20. In experiments that involve SQLite, we use up to 10 worker
threads as system behavior generally remains steady beyond this
point.

For each experimental configuration, we run five independent
trials and plot the mean value, with the standard error of the mean
shown as error bars. Each trial was run with a warmup duration of
10 seconds followed by a measurement duration of 60 seconds. We
quantify throughput in transactions per second (tps). We quantify
file system writes in SQLite by counting the number of calls to
fdatasync, which SQLite uses to flush the binary log to stable
storage, divided by the total number of transactions committed
during the measurement duration.

4.3 Isolation in a Lock-Free Database
To demonstrate how DIBS provides serializable isolation as a ser-
vice for new systems, we developed a lightweight, in-memory data
processing engine that operates on Apache Arrow data [16]. Ar-
row is a cross-language data format specification that has enjoyed
a recent surge in popularity due to its usefulness as an interface
between query processing systems. In our implementation, tab-
ular data is stored as a collection of Arrow arrays. We use Rust
standard library data structures, such as HashMap and BTreeMap
for indexing and Mutex for synchronization. The engine does not
provide concurrency control beyond latching to protect data struc-
tures. Instead, DIBS ensures that any request admitted to the data
processing engine does not violate a serializable schedule. This ef-
fectively decouples transaction isolation control flow from request
execution, removing isolation overhead from the consideration of
how best to execute a given request. We cumulatively apply each
of our predicate locking optimizations and measure throughput
relative to both naive predicate locking and SQL Server optimized
for in-memory OLTP.

Column filtering provides the most significant performance im-
provement for TATP as shown in Figure 3a. The throughput re-
sulting from the first two optimizations, conjunct grouping and
prepared predicates, is nearly indiscernible from the naive imple-
mentation for this workload. This is due to the simplicity of TATP’s
predicates: each is a small conjunction of comparisons, or even a
single comparison. Because the predicates do not include disjunc-
tions, conjunct grouping has no effect. Additionally, because the
predicates are small, ad hoc conflict evaluation is comparable to the
evaluation of prepared predicates. However, due to contention for
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Figure 3: Throughput on OLTP benchmarks in the Arrow engine for each cumulative predicate locking optimization.
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Figure 4: Throughput on SubscriberScan in the Arrow en-
gine with 20 worker threads, varying number of conjuncts
per predicate.

the centralized set of active predicate locks, the naive implementa-
tion does not scale. By removing this bottleneck, column filtering
provides a substantial improvement in scalability. At 20 worker
threads, fully-optimized DIBS executes 10.5 M tps, an approximate
10X improvement over the maximum throughput of the naive im-
plementation. Memory-optimized SQL Server achieves a maximum
of 58 K tps on this workload. We observed similar behavior for
YCSB, but omit these results for brevity.

Both column filtering and prepared predicates provide modest
improvements over naive on SEATS as shown in Figure 3b. Conjunct
grouping incurs a slight performance penalty from the separation
of predicates into groups. However, this penalty is countered by
the benefit of the additional optimizations. At maximum, fully-
optimized DIBS executes 220 K tps, an approximate 14% improve-
ment over the maximum throughput of the naive implementation.
The SEATS benchmark driver involves significant client-side pro-
cessing, such as caching the results of a transaction for use in a
later transaction and accessing latch-protected data structures. CPU
profiling reveals that the majority of execution time is spent on
client-side code, with fully-optimized DIBS incurring less than 5%

overhead. Memory-optimized SQL Server achieves a maximum of
900 tps on this workload.

Conjunct grouping provides the most significant performance
improvement for SubscriberScan. In Figure 3c, we fix the number of
conjuncts per predicate at 6 and vary the number of worker threads.
The naive implementation scales modestly, but tapers off quickly,
achieving a maximum throughput of approximately 3700 tps. The
optimized implementation scales much more rapidly, achieving a
maximum throughput of approximately 15 K tps, a 4X improvement
over the naive implementation. Figure 4 offers an explanation of this
behavior. In this experiment, we fix the number of worker threads
at 20 and vary the number of conjuncts per predicate. The naive
implementation offers comparable performance to the optimized
implementation up to about 4 conjuncts per predicate. After this
point, the exponential complexity of converting to DNF begins to
dominate the running time of the worker threads, which results
in a substantial decrease in throughput. Note that as we increase
the number of conjuncts, the predicate becomes more selective and
hence less likely to conflict with other predicates, explaining the
upward trend in throughput. At 6 conjuncts per predicate, memory-
optimized SQL Server achieves a maximum throughput of 3 K tps.

4.4 Transaction Merging
SQLite is the most widely deployed database engine to date [42].
As an embedded system, SQLite allows unlimited concurrent read
transactions across multiple processes, but serializes write transac-
tions through file-level locking. A new write transaction may not
begin until the changes caused by the previous write transaction
are flushed to persistent storage. This design becomes a significant
bottleneck and limits scaleup even in read-intensive workloads.

Here, we apply DIBS to increase transaction throughput on
SQLite by reducing the number of file system calls per transac-
tion. The modularity of DIBS allows us to achieve this with little
effort: we make a small modification to the DIBS worker loop, de-
laying the commit() command on the database until the requests
from several client transactions have been issued to the SQLite
database engine or a timeout expires. SQLite has no knowledge
of which requests belong to which client transactions and hence
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Figure 5: Transaction merging with DIBS increases throughput on TATP workloads by reducing the number of file system
calls per client transaction in SQLite.
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Figure 6: Transaction merging increases single-threaded performance and multi-threaded scalability on YCSB in SQLite.

provides no isolation between them. DIBS is then necessary to en-
force a serial ordering. Clients are notified of a successful commit
only when the outer transaction commits. Savepoints are placed
at the end of each inner transaction to minimize the undoing of
useful work in the event of an abort. As a result, SQLite can often
flush the changes of multiple client transactions with a single file
system call. This application of DIBS provides the same isolation
at considerably higher performance without having to rewrite the
core SQLite transaction processing components.

This technique is analogous to group commit, in which changes
to the database are flushed from memory to persistent storage as a
batch, rather than at the end of each transaction. However, the key
difference between group commit and transaction merging with
DIBS is that group commit is implemented in the storage manager
of a database engine, whereas our technique can be applied as a
modular layer over an existing database engine without modifying
the source code or restarting the server. In addition, transaction
merging with DIBS does not require a centralized buffer manager
to coordinate the flushing of changes.

Figure 5 shows results from the evaluation of transaction merg-
ing with DIBS for the TATP benchmark on SQLite. SQLite’s inte-
grated individual commit mechanism does not scale well on TATP’s
80% read, 20% write workload mix as the cost of writing to the file
system dominates transaction processing. However, with the addi-
tion of transaction merging with DIBS, the system scales up to 57
K tps at 6 threads, an approximate 3X improvement over SQLite’s
individual commit. The driving factor behind this improvement is
a reduction in file system writes per client transaction, as shown in
Figure 5b. This reduction increases the throughput of write trans-
actions, allowing the system to benefit from the addition of more
threads to execute read-only transactions. Regardless of the number
of threads, SQLite’s individual commit mechanism averages just
above 0.2 calls to fdatasync per client transaction. This behavior is
expected, as TATP consists of 20% write transactions, each typically
requiring one fdatasync call. In contrast, DIBS allows multiple
write transactions to be committed in a group, often with just one
fdatasync call per group. As the system scales up to 6 threads,
the number of file system writes per client transaction is further
reduced in all group sizes except individual commit.
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Figure 7: DIBS scales better than MySQL integrated serializable isolation on YCSB when accessing different columns of con-
tended rows.

Transaction latency is an important consideration in this setting
because each transaction may not complete until the final trans-
action in its group is committed. We show the effect of group size
on transaction latency in Figure 5c. As expected, the transaction
latency increases as the number of transactions per group increases.
However, at maximum throughput, 99% of transactions complete
in less than 0.5 ms. As mentioned earlier, for latency-sensitive ap-
plications, DIBS may trigger the commit of a group when a timeout
expires, rather than wait for additional transactions to arrive.

Figure 6 shows the results from an evaluation of transaction
merging with DIBS on a suite of YCSB configurations. We include
these results to highlight the workload characteristics for which
transaction merging with DIBS provides substantial performance
gains. For read-intensive YCSB, we observe only modest improve-
ments from transaction merging on a single thread because most
transactions do not write to the file system. However, throughput
improves dramatically with the addition of more worker threads,
reaching up to 160 K tps with 1 request per client transaction at
group size 8, a 2.5X speedup compared to individual commit as
shown in Figure 6a. For write-intensive YCSB with 1 request per
client transaction shown in Figure 6b, transaction merging with
DIBS achieves higher performance gains on a single thread. With
group size 8 on a single thread, throughput reaches about 17 K tps,
a 2.4X speedup from individual commit. At maximum, transaction
merging with DIBS achieves 23 K tps, a 3X speedup from individ-
ual commit. For write-intensive YCSB with 8 requests per client
transaction shown in Figure 6c, increasing the group size provides
a modest performance improvement across all worker thread con-
figurations. Additional experiments show that further increasing
group size to 16 or more yields small performance improvements,
but we omit these results for brevity.

These results indicate that transaction merging with DIBS im-
proves throughput under a wide variety of workload characteristics,
but has the greatest multithreaded scaleup for read-intensive work-
loads and the most single-threaded improvement for workloads
with many small write transactions.

4.5 Fine-Granularity Locking
For some transaction workloads, DIBS provides higher concurrency
than a traditional locking isolation mechanism with a resource hier-
archy that terminates at the row level. This behavior occurs when
transactions reference different columns within the same row. In
traditional locking mechanisms, an entire row is generally locked,
and hence cannot be shared. While it is known that this isn’t al-
ways necessary [49], it is a common simplification. In contrast,
DIBS locks at the finest granularity possible given the declarative
information in transaction requests. Hence, a row can be shared
freely among write transactions, provided that accesses to inter-
secting columns are read-only. This benefit is most apparent in
workloads consisting of transactions that tend to access different
columns of highly contended rows. Assumptions about database
system behavior that allow this are further discussed in Section 5.

We characterize the performance gains of fine-granularity lock-
ing with DIBS on MySQL, which uses a row-level locking isolation
mechanism. While MySQL provides no default isolation level that
would allow transactions to concurrently write to the same row, its
read uncommitted isolation level allows an unlimited number of
readers and one writer per row. For high-contention, read-intensive
transaction workloads, read uncommitted isolation can provide sub-
stantial performance gains compared to serializable isolation. We
developed a system consisting of DIBS, which provides serializable
isolation by default, on top of MySQL set to read uncommitted
isolation level. We compare this system to MySQL without DIBS
set to both serializable and read uncommitted isolation levels. We
evaluate these configurations on a read-intensive YCSB workload
consisting of 1 request per transaction. Each request uniformly
accesses one of 10 fields in a row that is chosen at random from
a Zipf distribution. We vary the skew of the row distribution to
modulate contention.

Figure 7 shows the results of this evaluation. In Figure 7a, we fix
the Zipf skew to 2.0 and vary the number of worker threads. As we
scale beyond a single thread, MySQL’s read uncommitted isolation
provides substantially better throughput compared to MySQL’s se-
rializable isolation. Serializable isolation with DIBS scales between
read uncommitted and integrated serializable. At 20 worker threads,
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DIBS provides serializable isolation with 1.4X higher throughput
compared to MySQL’s integrated mechanism and achieves approx-
imately 70% of the performance gain of switching from serializable
to read uncommitted isolation. In Figure 7b, we fix the number of
worker threads at 20 and vary the Zipf skew between 0.0 and 2.0.
Beyond Zipf skew of 0.5, the throughput of MySQL’s integrated
serializable isolation begins to degrade. Although MySQL’s read
uncommitted isolation mechanism shows a similar degradation, it
retains higher performance at all values of Zipf skew beyond 0.5.
Serializable isolation with DIBS falls between MySQL’s read un-
committed and serializable isolation levels and is able to maintain
high throughput despite the row contention. Lastly, in Figure 7c, we
measure the 99th percentile transaction latency across thread con-
figurations for Zipf skew 2.0. As the system scales, transactions run
with serializable isolation provided by DIBS have slightly higher
latency than those run with MySQL’s integrated mechanism. In-
terestingly, DIBS serializable transactions have considerably lower
latency compared to MySQL read uncommitted transactions. With
DIBS as a layer above MySQL, conflicting transactions are detected
by optimized predicate locking in DIBS, lessening the burden on
the concurrency control mechanism in MySQL. These experiments
show that DIBS provides high-throughput isolation when imple-
mented as a layer above an existing transactional database system
and scales better than MySQL’s integrated serializable isolation
mechanism for high-contention workloads.

5 DISCUSSION
5.1 Database System Assumptions
To move the isolation mechanism outside of the database system,
we must make some specific assumptions about how the database
system handles reads and writes. These assumptions allow us to
provide isolation based on predicates rather than physical tuples. In
existing database systems, we generally find that these assumptions
are covered by existing mechanisms such as latches and concurrent
data structures. However, for new database systems that rely solely
on DIBS as an external isolation provider, such as ours described in
Section 4.3, it is useful to describe the minimal responsibilities that
such a system must retain to guarantee correctness.

First, physical writes and reads must enforce ACID properties to
individual values within a tuple. Our system only provides isolation
across transactions, and hence it assumes that the database system
itself will read and save individual values correctly. Second, the
database system must synchronize data structures that are used to
fulfill a request but not explicitly referenced in the request. For ex-
ample, if there is a global transaction counter that every transaction
increments without being referenced in a request, the DIBS mecha-
nism would be unaware of it and hence not lock it appropriately.
For such cases, additional synchronization may be necessary to en-
sure correctness. For example, the global transaction counter may
be updated using an atomic operation. Third, transactions should
not access values within a tuple outside of the columns the request
indicates are necessary. In some systems, this may be an issue if
they update entire tuples in place: read entire tuples, make changes
locally, and then write over the entire tuple [17]. This could cause
two transactions to overwrite each other’s data by re-writing an
old value in a column they did not actually update.

We make no further assumptions about abort, rollback, or other
database functionality as long as our base assumptions are met
within that functionality as well. For example, transaction rollback
during an abort would be expected to roll back individual fields
rather than a snapshot of the entire tuple. We note that DIBS does
not attempt to provide guarantees of atomicity, consistency, or
durability. Providing these guarantees as modular services is a
related set of active research topics. There is promising work in this
direction, particularly focused on transaction recovery methods [4],
that could be leveraged to develop companion services to DIBS that
manage other aspects of transaction processing. An exploration of
this design space is part of future work.

5.2 Supporting additional isolation levels
While DIBS is designed to provide fully serializable transaction
isolation by default, it is straightforward to add support for ad-
ditional isolation levels such as repeatable read, read committed,
and read uncommitted. As described in Section 2.1, two predicate
locks are said to conflict if they access the same relation, at least
one is a write, and the conjunction of their predicates is satisfiable.
To support each additional isolation level, we allow certain types
of conflicting locks that would otherwise be prohibited under the
serializable isolation level or make small modifications to how locks
are acquired and released.

To support the repeatable read isolation level, we allow inserts
and deletes that conflict with predicate locks over ranges. All other
conflicts, including those between inserts/deletes and equality predi-
cate locks, are still prohibited as before. This modification effectively
allows phantom reads to occur. To support the read committed iso-
lation level, we acquire predicate locks for SELECT statements as
before, but rather than hold the predicate locks for the duration of
the transaction, we release them as soon as the SELECT statement
has completed. This modification effectively allows non-repeatable
reads to occur. All predicate lock conflicts are handled in the same
manner as repeatable read. Lastly, to support the read uncommit-
ted isolation level, we do not acquire predicate locks for SELECT
statements at all. This modification effectively allows dirty reads to
occur, in which uncommitted modifications to the database are visi-
ble to external transactions. All predicate lock conflicts are handled
in the same manner as repeatable read.

5.3 Transaction Isolation-as-a-Service
The DIBS system demonstrated in this paper can be implemented
directly in a data platform or as a standalone service. We argue that
the same advantages we see in microservice architectures [1] apply
to splitting transaction isolation into an external service. As noted
in Section 1, DIBS reduces the complexity of transactional storage
management and shortens the time required to add transactional
support to a new system. However, some additional benefits may
result from providing transaction isolation as a service. We describe
these benefits here.

Making the isolation mechanism its own service allows it to be
scaled independent of the database. This approach has a distinct
advantage since the amount of work done to provide isolation guar-
antees can vary by task. Conventional database systems typically
follow a monolithic design for concurrency control, logging, and
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query processing [20]. With these database systems increasingly
deployed onto cloud architectures and accessed as a service [2, 33],
dynamic scaling of these databases is a problem [19]. DIBS can be
scaled as necessary independent of the database. Most importantly,
it can be scaled quickly with very little state to store. Minimizing
the stored state is important because scaling dynamically is more
difficult in a distributed or mostly main memory database since
both transferring data between nodes and loading data back into
memory from persistent storage is slow.

Isolation-as-a-service also has the advantage of making one set
of isolation logic accessible to many different data platforms. This
approach also allows the possibility of using multiple isolation
mechanisms within the same database. Prior work has studied the
problem of dynamically selecting the best performing isolation
mechanism for a given workload [45]. Transaction isolation that is
provided as an external service allows the possibility of swapping
isolation functionality in and out as needed.

6 RELATEDWORK
A number of recent publications have explored separating isolation
mechanisms from transaction execution in database systems. Lomet
et al. [30], building on previous work by Sears and Brewer [40],
propose a design in which transaction component (TC) is disag-
gregated from the data component (DC). This design is evolved in
[31] and later implemented in the Deuteronomy system [26, 27].
While Deuteronomy emphasizes separation of concerns between
the TC and the DC, there are two key contrasts with our work. First,
Deuteronomy uses timestamp ordering multi-version concurrency
control as an isolation mechanism. The TC acts as a cache that
associates timestamps with data items from the DC. This mech-
anism requires that data be transferred between the DC and the
TC. In contrast, DIBS uses predicate analysis to provide isolation
and hence requires no data movement to and from the target data
platform, allowing it to be implemented as a completely indepen-
dent service. Second, the TC in Deuteronomy is designed only for
key-value data stores. DIBS places no restriction on the data model
of the target data platform.

Das et al. [8] propose a “Key Group” abstraction and an associ-
ated transactional protocol, which enable multi-key transactional
operations in a key-value store. The authors also present G-Store,
an implementation of the protocol as a layer above a key-value
store, and demonstrate its scalability onmulti-key access workloads.
Similar to the transaction component in Deuteronomy, G-Store is
restricted to key-value stores, whereas DIBS has no such restriction.

Calvin [47] is another example of independent transaction isola-
tion because it provides a transaction scheduling layer decoupled
from its execution layer to provide isolation between transactions.
Calvin transactions are defined for specific data store operations
on logical resources. It prevents conflicts by maintaining a lock
table at the scheduling layer and only admits operations to exe-
cute when there are no conflicting operations running. However,
Calvin’s scheduling algorithm still depends on the contents and
operations of the data store. This means that within a declarative
database management system, it would require knowledge of the
logical query execution plan, which in most systems is optimized
using details from the data store.

Similar to Calvin, Bohm [15] achieves state-of-the-art multi-
version concurrency control by performing transaction ordering
and data versioning prior to processing. This allows the actual pro-
cessing to proceed without isolation control. This makes execution
considerably simpler and more efficient. However, threads in Bohm
require knowledge of the contents of the database to determine
whether they should apply concurrency control logic to a transac-
tion. In addition, the read and write sets of transactions must be
available in advance. DIBS has no such restriction.

There has also been work focused on specific aspects of transac-
tion functionality in the database kernel. For example, Arulraj et
al. [4] evaluate how storage and transaction recovery methods will
fare in a changing hardware landscape that includes non-volatile
memory devices. Our work in modular transaction isolation is com-
plementary to this research because modularity enables individual
components to independently evolve to meet changing application
demands and hardware capabilities. With DIBS, we take a first step
in a broader design refactoring for all transactional components.

A great deal of literature is available on concurrent schedul-
ing that could be leveraged for designing a stronger scheduling
mechanism. However, most existing work focuses on scheduling
operations within a single transaction efficiently, or optimizing
the performance across operations in the database [10, 18]. Some
work has focused on applying scheduling principles within the
database to reduce conflicts and optimize performance. However,
these approaches enhance the performance of existing isolation
mechanisms, whereas DIBS provides complete isolation guarantees
without external concurrency control.

Finally, there has been recent work on optimizing entire trans-
action flows from an application perspective [50, 51]. This work
is closely aligned with our observations that how requests are ad-
mitted to the database system is very important. A key practical
difference between previous work and ours is that they focused
on optimizing transactions from the application side, whereas our
work focuses on an application-agnostic database solution.

7 CONCLUSION
Industry trends indicate a growing demand for microservice-based
data processing components [30]. This is at odds with popular
isolation mechanisms such as locking and multi-versioning, which
are generally tightly coupledwith the database storagemanager and
intertwined with data processing code. In this paper, we developed
and evaluated DIBS, a novel transaction scheduling system that uses
optimized predicate locking to provide isolation as a service. We
demonstrated that DIBS can provide high-throughput serializable
isolation on a transaction-agnostic data processing system. We also
identified key applications where DIBS improves throughput on
established database systems. We hope that this work prompts new
developments in modular transaction services.
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