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ABSTRACT

For applications in which small-sized random accesses frequently

occur for datasets that exceed DRAM capacity, placing the datasets

on SSD can result in poor application performance. For the read-

intensive case we focus on in this paper, low latency flash memory

with microsecond read latency is a promising solution. However,

when they are used in large numbers to achieve high IOPS (In-

put/Output operations Per Second), the CPU processing involved

in IO requests is an overhead. To tackle the problem, we propose

a new access method combining two approaches: 1) optimizing is-

suance and completion of the IO requests to reduce the CPU over-

head. 2) utilizing many contexts with lightweight context switches

by stackless coroutines. These reduce the CPU overhead per re-

quest to less than 10 ns, enabling read access with DRAM-like

overhead, while the access latency longer than DRAM can be hid-

den by the context switches. We apply the proposed method to

graph algorithms such as BFS (Breadth First Search), which in-

volves many small-sized random read accesses. In our evaluation,

the large graph data is placed on microsecond-latency flash mem-

ories within prototype boards, and it is accessed by the proposed

method. As a result, for the synthetic and real-world graphs, the

execution times of the graph algorithms are 88-141% of those when

all the data are placed in DRAM.
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1 INTRODUCTION

In data-intensive applications, accessing data often limits the per-

formance of the entire application. Applications with data size ex-

ceeding DRAM capacity need to put the data outside of DRAM

such as SSD, but access to such data is slower than DRAM. For

example, the load latency of DRAM is tens of nanoseconds, while

the read latency of a standard SSD is tens of microseconds. It is
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several hundred times longer than DRAM, which can negatively

affect the application performance. If the access to the data is se-

quential, it is relatively easy to achieve high performance even by

using SSD thanks to prefetching and adequate bandwidth. Since

the access pattern is known, the prefetching and buffering in large

units works well to hide the read latency. In addition, bandwidth

of several GB/s to tens of GB/s can be provided by using multiple

modern SSDs. In some cases, even if the data is placed on SSDs, it

is possible to achieve the application performance close to that of

in-memory in which all the data are placed on DRAM [35, 48].

Small-sized random accesses to SSD can degrade the application

performance compared to in-memory. As the locality of accesses

decreases, caching mechanism becomes less effective and random

IOPS performance is more likely to have a direct impact on ex-

ecution time. Existing SSDs have much lower random IOPS per-

formance than DRAM. By using low latency flash memory such

as [15], IOPS performance can be improved by an order of mag-

nitude. By deploying a lot of low latency flash memories, random

read access performance about 100 MIOPS can be provided at the

hardware level. Although this is not comparable to the peak ran-

dom IOPS performance of DRAM, applications with an IOPS re-

quirement of tens of MIOPS may achieve the execution time close

to that of DRAM. However, when flash memory is used, CPU pro-

cessing to access thememory can degrade application performance

in this IOPS range as shown below. Due to the small-sized ran-

dom access, it is necessary to issue a request every time to read

a small piece of data such as several to several tens of bytes, but

this request itself incurs an overhead for CPU. Although the CPU

overhead can be small by using direct access from user space such

as SPDK [9], it still requires about 100 ns of CPU time per re-

quest [14]. Furthermore, it is often difficult to hide the SSD’s la-

tency by prefetching due to random accesses. Context switch is a

conventional technique for hiding the latency. However, context

switch by OS takes a few microseconds [34], and tens of nanosec-

onds even in user space [21]. In order to achieve performance close

to that of DRAM, the total time of processing for issuing requests,

context switches, and other overheads must be close to the stall

time waiting for DRAM response.

Recently, SCM (Storage Class Memory) has been used as a so-

lution for the dataset that exceeds DRAM capacity. In this paper,

SCM refers only to byte-addressable memory. The Intel® Optane™

DC Persistent Memory Module (DCPMM) [5] is one of the cur-

rently commercialized SCMs. The DCPMM has a random load ac-

cess latency over 300 ns [25], which is shorter than SSD but longer
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than DRAM. Due to out-of-order execution by CPU, a load in-

struction to the DCPMM and other instructions can be executed in

an overlapping manner, but it is often difficult to completely hide

the latency. Therefore, simply placing data in DCPMM instead of

DRAM and using load instructions to access it may degrade appli-

cation performance [42]. Software level efforts may be required to

optimize for near DRAM performance using SCM.

In this paper, we present a new solution for small-sized random

read access using flashmemory rather than byte-addressable SCM.

Although the access latency of flash memory is longer than that of

typical SCMs and microsecond-level even when low latency flash

memory is used, we show that performance close to in-memory

can be achieved. In this paper we focus on read-intensive work-

loads, which includes important applications such as graph ana-

lytics or KVS (Key Value Store). We have developed an efficient

access method for the read accesses that is different from existing

methods of accessing SSDs. We present the following two points

about the new access method. (1) We propose a new hardware in-

terface that reduces the CPU overhead of read request issuance

and completion compared to existing SSDs (NVMe™ SSDs). The

CPU processing time per request is in less than 10 ns, which may

be shorter than CPU stall cycles for DRAM access. (2) Hundreds

of contexts are used per core to hide microsecond latency. In order

to make the CPU overhead of switching between contexts neg-

ligible, we utilize stackless coroutines. Using multiple prototype

boards, XL-FLASH™ Demo Drive (XLFDD) [46], equipped with

low latency flash memories and implementing the new interface,

we show in actual system that 99 MIOPS can be achieved with sin-

gle core while hiding microsecond read latency.

We apply the proposed method to BFS-like graph algorithms

such as BFS, BC (Betweenness Centrality) and SSSP (Single Source

Shortest Path). These algorithms share a commonality that they

start from a given set of vertices and then recursively traverse

their neighboring vertices, whose characteristics are called BFS-

like in [32]. They tend to have many small-sized random accesses

and poor locality. The required random IOPS for the algorithms

is in the range of a several MIOPS to 200 MIOPS (estimated from

the results of in-memory executions), depending on the graph al-

gorithm and the input graph. The existing out-of-DRAM solutions

cannot handle them efficiently [35]. In this paper, we show that

when using XLFDD, these graph algorithms can be processed in

the execution time close to that of using DRAM. To compare the

performance with in-memory and XLFDD, we use the existing in-

memory graph processing implementation, GAP benchmark [18].

We put the large portion of the graph data on XLFDD instead of

DRAM, and measure the execution time. Note that in our evalu-

ation the graph algorithms include read-only random accesses to

XLFDDs. As a result, the execution times of BFS, BC and SSSP us-

ing XLFDD are 88% to 141% of in-memory. If the required IOPS

exceeds what XLFDDs can provide, or if there is data locality such

that the CPU cache works effectively, DRAM is more advanta-

geous. Otherwise, XLFDD can run faster than in-memory, which

implies that, on average, the overhead to access the flash memo-

ries is less than the stall time for DRAM access. Also, the execution

time using XLFDD scales as expected up to the range beyond the

capacity of DRAM. Thus, XLFDD enables BFS-like processing of

large graph inputs that don’t fit into the DRAM capacity with ex-

ecution times within 141% of in-memory, and in some cases faster

than in-memory. Furthermore, we show that hiding access latency

with stackless coroutines is effective not only for low latency flash

memory but also for SCM and even DRAM. By hiding the latency

with low CPU overhead, we show that even if the memory latency

increases from tens of nanoseconds to several microseconds, the

application performance does not degrade significantly as long as

the IOPS are sufficient. We believe these results are the first exam-

ple of how microsecond-latency memory can be used to achieve

performance comparable to or better than DRAM on workloads

with many small-sized random read accesses.

2 BACKGROUND

2.1 Flash memory and SSD

Flash memory is a memory element that composes SSD. A die of

flash memory is composed of multiple planes, each plane is com-

posed of multiple blocks, each block is composed of multiple pages,

and each page is composed of memory cells. Reading from flash

memory is done in page units, and the page size is usually a few

KB to tens of KB. The time required to read one page is denoted

tR. In normal flash memory, tR is tens of microseconds. In recent

years, low latency flash memories have been announced [12, 15].

For example, in XL-FLASH [15], tR is shorter than 5 `s. SSD inte-

grates multiple packages of flash memory and a controller. A pack-

age usually contains multiple dies. In order to achieve high perfor-

mance, many outstanding requests are interleaved to the multiple

dies in parallel. The random access performance is about 1 MIOPS

for the latest enterprise high-performance SSD [16].

2.2 Load access or DMA access

Generally, DRAM is accessed by load instructions, while disk such

as SSD is accessed by DMA (Direct Memory Access). However, for

devices such as SCM or low latency flash memory, which has a

latency between DRAM and SSD, it is hard to determine which

access method is better in general. The load instruction can re-

quest data with only single instruction, but CPU execution may

be stalled while accessing memory. The access latency can be hid-

den by the cache mechanism in the CPU or out-of-order execution.

However, it is difficult to completely hide latency of more than

hundreds of nanoseconds by the out-of-order execution. Further

hiding is possible by using the prefetch instruction appropriately,

but if the memory latency is at the microsecond level, there may

not be enough outstanding requests that CPU can issue [21]. On

the other hand, in the case of DMA, for example, when reading

data, the source data position, destination memory address, data

size, etc. are specified and a read request is issued. The read execu-

tion and data transfer are performed independently of CPU execu-

tion. The CPU can use the read data after confirming the comple-

tion of the data transfer. Generally, DRAM is specified as the trans-

fer destination, but in some processors, the transferred data can be

placed in the CPU cache. In case of DDIO [4] in Intel® Xeon®,

write back and write allocate strategy can be used for the writ-

ten data incoming from PCIe® interface. This allows the CPU to

acquire the read data fast from the CPU cache. The disadvantages
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Figure 1: (a) Read operation of NVMe SSD. Access from the

CPU or SSD to the DRAM is served faster in case of cache

hit. Otherwise, theDRAMaccess depicted by the broken line

occurs. (b) Read operation using the proposed lightweight

interface. This is the case for checking the completion of

the read operation by changing the value in the Data Buffer.

compared to the load instruction are that many instructions are re-

quired for issuing and completing requests. Furthermore, it is not

possible to check at the hardware level if the data that is about to

be read is already in the CPU cache. For devices such as SCM or

low latency flash memory, DMA with a deep request queue can be

effective to cover the long latency. However, it has been pointed

out in [21] that handling the software queue by CPU incurs an

overhead and the performance does not improve as expected.

2.3 NVMe interface

NVMe [8] is an efficient host interface for SSD. The NVMe inter-

face is a DMA-based access protocol that runs on PCIe. Read op-

eration of NVMe SSD is shown in Figure 1 (a). (N1) CPU writes a

read request to SSD in Submission Queue (SQ). (N2) CPU writes

a value to SQ doorbell register on SSD to notify that the request

has been added to the SQ. (N3) SSD reads the SQ entry and (N4)

executes the request command. The specified page in flash die is

read and the read data is transferred to location specified in the

request. (N5) SSD writes the completion of the request to Comple-

tion Queue (CQ). (N6) CPU detects that the entry in CQ has been

added via an interrupt (or polling the CQ) and reads the CQ en-

try to knowwhich request has been completed. Note that the CPU

needs to read the CQ entry because the order of entries in the SQ

and CQ can be different due to the internal processing of SSD. (N7)

CPU writes a value to CQ doorbell register to notify SSD that the

CQ entry has been consumed. (N8) CPU use the read data.

NVMe specification supports a deep SQ to drive many internal

dies in parallel. The tR of a standard flash memory is tens of mi-

croseconds, but since multiple issued requests can be processed in

parallel, large IOPS can be achieved. NVMe protocol is lightweight,

but it takes about 100 ns CPU time per request [14]. As pointed out

in [14], writing to the doorbell register is a large overhead. The

doorbell is a register in PCIe MMIO space, and the write from CPU

to the doorbell causes an access to uncached area. Furthermore, the

memory fence instruction is inserted in order to ensure that N2 is

executed later than N1, which can incur another large overhead.

3 PROPOSED ACCESS METHOD

3.1 Lightweight interface

We propose a new interface to reduce CPU overhead. The main

strategies to reduce the overhead involved in NVMe protocol are

the removal of doorbell and the improvement of the cache hit rate.

On the SQ side, flash memory drive polls the SQ entry to elimi-

nate writes to the doorbell register in N2. The polling (referred to

SQ polling in this paper) is done by PCIe read transactions from the

drive to the SQ inDRAM. Periodic polling allows the drive to detect

SQ entries without the doorbell write. The polling operation con-

sumes PCIe bandwidth to some extent, but the performance impact

is not significant, especially for read intensive workloads. Because

PCIe connection is full-duplex, reading SQ entry and writing data

from flash memory drive are in opposite directions, and there is

little conflict for PCIe traffic. Even if the impact of the polling on

application performance may be small, SQ polling is still not en-

ergy efficient and should be reduced if possible. Instead of always

polling, instructions from the host to the device can be used to re-

duce unneeded polling. In our implementation, the CPU can spec-

ify the polling interval. Also, it can stop polling when there is no

read request. By using a cache coherent protocol such as CXL [2]

instead of PCIe in the near future, the drive may be able to detect

the write to the SQ entry by the cache snooping message without

polling. As a further modification regarding SQ, some fields in the

SQ entry can be deleted to reduce the used CPU cache area and the

CPU instructions for preparing the entry. In our implementation,

the number of required fields is reduced by informing the drive in

advance about fixed values that do not change on a per-request

basis, instead of having a field for each entry.

On the CQ side, the queue structure itself is completely elimi-

nated. This not only reduces doorbell write, but also contributes to

improving the cache hit rate by eliminating access to CQ entries.

The completion is notified by writing it to the location specified

by the corresponding to each SQ entry, rather than being written

into CQ. The CPU can detect the completion notification by polling

(referred to CN polling in this paper) the memory location corre-

sponding to each request. The CPU can suppress the number of

CN polling by doing it after a sufficient amount of time has passed

since the request was issued.

The memory locationwhere the completion notification is writ-

ten can have several options. In order to improve cache usage, the

completion entry can be written at a position contiguous with the

read data in Data Buffer. Note that the area for the completion en-

try in Data Buffer will be overwritten. To avoid it, the completion

entry can be written at another location, for example, in the field

in the corresponding SQ entry. Furthermore, the completion entry

itself can be completely eliminated in the case of a read request.

The CPU can detect whether the read operation is complete by

polling the location in Data Buffer where the read data is placed. If

part of the bytes in the Data Buffer have changed from the prewrit-

ten bytes, it means that read data has been delivered and the read
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Figure 2: (a) Execution on one core with XLFDD and context

switch. (b) In-memory execution on one core highlighting

the access to data, which is stored on XLFDD in case (a).

operation is complete. This sequence can only be used if it is guar-

anteed that the prewritten data are different from the data to be

read (e.g., set some bits in read data that are not used by the ap-

plication as fixed values). Otherwise, the completion entry must

be written explicitly. We have implemented all of the above com-

pletion notifications and allow users to choose. We use completion

by the change of the prewritten bytes for graph processing in Sec-

tion 4. When an exception such as a read error occurs, it can be

notified separately from completion through an interrupt to the

CPU, which has not yet been implemented in our experiments.

The flow of a read operation using proposed lightweight inter-

face is shown in Figure 1 (b). This is the sequence for checking

the completion of the read execution by changing the value in the

Data Buffer. (L1) CPU writes different data to Data Buffer from the

data transferred from flash memory drive. (L2) CPU writes a re-

quest to drive in SQ. Note that the SQ entry will be reusable as

soon as the drive retrieves it in our evaluation. Therefore, if the

depth of the SQ is larger than the number of outstanding requests,

new requests will not overwrite requests that the drive has not yet

retrieved. (L3) Drive polls the SQ entry (SQ polling). The polling

may have been being done since before L1. (L4) Drive executes the

request command. The specified page in flash die is read and the

read data is transferred to location specified by the request. (L5)

CPU polls Data Buffer (CN polling). If the data written to Data

Buffer in L1 has changed, the read operation is completed and the

data in the Data Buffer can be used. If not, CPU polls later again.

The proposed interface is lightweight due to the above modi-

fications. However, in order to achieve higher performance using

the interface, it is still important that the rate of cache hit for ac-

cesses to SQ or Data Buffer is improved as much as possible. In

addition, L5 should be performed once at the appropriate timing

to avoid unnecessary CN polling. These are related to the num-

ber of contexts (described in detail later) in application level. Its

experimental results are shown in Section 5.3.2.

Hardware implementation.Wehave implemented the proposed

interface on prototype board, XLFDD [46]. The XLFDD has a 2.5-

inch form factor equipped with eight XL-FLASH packages and an

FPGA. We have implemented FPGA logic so that the XLFDD can

act as a prototype of a flash memory drive such as an SSD with

limited functionality. The FPGA handles the proposed lightweight

interface, controls the XL-FLASH dies, and corrects errors in the

data read from the dies. XLFDD communicates with the host via

PCIe Gen3 4 lanes. The minimum read size of XLFDD is 16 bytes,

while that of a general NVMe SSD is 512 bytes. The page size of

XL-FLASH die is 4KB. For small-sized read, not full page but the re-

quired part of data is transferred to the FPGA controller and host,

which reduces cache pollution in the CPU. XLFDD is accessed by

specifying a physical address from the host. Therefore, software

running on the CPU is responsible for conversion from a logical

address to a physical address. While tR of XL-FLASH is in less than

5 `s, the read latency of single 64-byte read fromCPU is about 9 `s.

By reading multiple dies in parallel, the peak performance of one

board reaches 11MIOPSwhen reading less than 64 bytes. Although

the details are not discussed in this paper, write access is possible

as well. In addition, the conventional doorbell access without SQ

polling is also implemented. It may be possible to use the proposed

interface together with NVMe commands using a different SQ, al-

though we have not implemented it yet.

Here’s a short summary of this section: doorbell is gone, SQ

now relies on SQ polling, and completion is no longer notified by

queue. Also, the cache hit rate is improved by the following factors

(1) Field reduction in SQ (2) No CQ (3) Only necessary data is sent

to Data Buffer. (4) Selection of appropriate number of contexts.

3.2 Hiding latency using stackless coroutines

Although the latency of reading from XLFDD is several microsec-

onds, the CPU can overlap other processes during read operation

due to DMA-based access. In order to achieve high IOPS perfor-

mance, it is necessary to issue thousands of outstanding requests

and operate many dies in parallel. To realize this, hundreds of con-

texts operate in parallel and are switched on one CPU core, as

shown in Figure 2 (a). (A1) While executing context A, (A2) a read

request is issued when it needs to access the data on XLFDD. (A3)

Context switch is performed, and (B1) another context B is pro-

cessed on the core. During the processing of context B, a read re-

quest to XLFDD is issued if necessary, and another context switch

is executed in the samemanner as context A. (A4)When execution

returns to context A, it is checked if the read request is completed,

and (A5) processing of context A restarts if completed. Otherwise,

switch to another context is performed again. In Figure 2 (a), only

three contexts are shown, but hundreds of contexts are used per

core to hide several-microsecond latency.

Although the latency can be hidden by themethod of Figure 2 (a),

it is important to reduce the overhead such as A2, A3 and A4. For

comparison, Figure 2 (b) shows an example of in-memory execu-

tion. All data is located on DRAM, including the data located on

XLFDD in case of Figure 2 (a). Note that the in-memory execu-

tion can be executed without context switch. I1 is the same as A1.

I2 highlights the access to the data on DRAM, which is stored on

XLFDD in case of Figure 2 (a). If this is a random access to a large

memory space, the cache in the CPUmay not hit, and thus load ac-

cess to the DRAM occurs. Although typical DRAM access latency

is about 90 ns [25], the CPU stall cycles for the load access can be

shorter than 90 ns since the latency is partially or completely hid-

den by out-of-order execution. On the other hand, in Figure 2 (a),

the random access to DRAM is replaced by reading from XLFDD.

As shown in Section 5.2, the total of A2 and A4 can be reduced to

about 6.7 ns by using the new interface proposed in Section 3.1.
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Figure 3: An example of a graph expressed in CSR format.

The remaining overhead A3 is the cost of context switch. A con-

ventional context switch has a large overhead, taking several mi-

croseconds for OS-based ones [34] and several tens of nanoseconds

for user-space ones [21]. We will reduce it to a few nanoseconds

by using stackless coroutines.

A coroutine can describe the behavior of suspending a func-

tion and resuming the suspended function after executing another

function [26]. The coroutine is classified into stackful coroutine

and stackless coroutine. In a stackful coroutine, each execution

context has a stack, and, the register values in the CPU are saved in

the stack when the context is switched. On the other hand, stack-

less coroutine does not have stack for each context. Therefore, it

is necessary for the user to program the saving of data that will

be needed later when the execution is suspended. If the amount

of data to be saved is small, fast context switch is possible. In the

best case, only the program counter can be changed. The stackless

coroutine is standardized in C++20 and is expected to be widely

used in the near future.

By using the stackless coroutine, a load instruction in in-memory

execution can be replacedwith a read access to XLFDD as shown in

Listing 1. read_req performs L1 and L2, and check_completion

performs L5 in Figure 1 (b), which are user-space library functions.

context_id is used to identify the Data Buffer corresponding to

the coroutine context. Note that there is no performance degrada-

tion by checking completion when there is no read request since

check_completion is only executed after read_req.

Listing 1: Access to XLFDD with coroutine

XLFDD.read_req(context_id, read_address, size)

do {

yield() // suspend

} while (XLFDD.check_completion(context_id))

Coroutine makes it easy to implement XLFDD applications with

hiding latency like [26]. In general, it is possible to achieve large

IOPSwithout using coroutine, but the implementation can be com-

plicated and difficult to understand. By using coroutines, there is

little changes from the original algorithm and the structure can

be kept easy to understand. Note that it is currently necessary to

manually partition the data into a fast tier (DRAM) and a slow

tier (XLFDD), and optimization of the partitioning is not the fo-

cus of this paper. In the following sections, we apply the stackless

coroutines to actual workloads and evaluate the performance in

application level.

4 APPLICATION : LARGE-SCALE GRAPH
PROCESSING

4.1 In-memory graph processing

Applying the access method proposed in Section 3 to graph pro-

cessing, we partially replace DRAM with XLFDD in this section.

Large-scale graph processing is an application inwhich small-sized

random access frequently occurs to a large dataset. The CSR (Com-

pressed Sparse Row) format is a data structure often used to rep-

resent graph structure. Figure 3 shows an example of a graph rep-

resented in CSR format. The CSR format consists of two arrays,

offset_data and edge_data. Each element of the offset_data

corresponds to a vertex and is a pointer to the start position in

the edge_data where the edge data of that vertex is stored. The

edge_data holds all edge data, and the contents are stored for each

vertex. In order to obtain the edge information connected to a cer-

tain vertex, the element of the offset_data is obtained with the

vertex identifier as the index, and the elements of the edge_data is

obtained by dereferencing the pointer. In graph processing, espe-

cially BFS-like algorithms, when processing the adjacent vertices

by traversing the edges connected to active vertices (called fron-

tier later) on the graph, access patterns to both offset_data and

edge_data tend to be random. Note that in this paper, the focus is

on static graphs, so access to the offset_data and edge_data is

read only in the processing after graph initialization.

Several in-memory graph processing frameworks have been pro-

posed for fast graph processing [18, 41, 47]. However, in large-scale

graphs, there are cases where the offset_data and edge_data are

too large to fit in DRAM. Since the edge_data is generally several

to several tens of times larger than the offset_data, we put the

edge_data outside the DRAM, that is, in the XLFDD in our eval-

uation. In this paper, we use the GAP benchmark suite [18] as a

baseline for implementing graph processing. GAP is a benchmark

suite that includes several in-memory parallel graph algorithms. It

is implemented in C++ and uses OpenMP for parallelization. We

choose GAP because it is a pure C++ implementation rather than

a DSL (Domain Specific Language), which can be easily rewritten

for XLFDD, and it is one of highly optimized implementations.

4.2 Replacing DRAM with XLFDD

Listing 2 is a pseudo code abstracted from implementation of BFS-

like graph algorithms in GAP.

Listing 2: Abstracted code of original GAP implementations

X1: #pragma omp parallel for schedule(dynamic, 64)

X2: foreach u in frontier

X3: offset = offset_data[u]

X4: deg = offset_data[u+1] - offset_data[u]

X5: foreach i in [0, deg]

X6: v = edge_data[offset + i]

X7: do_calculations(v, u, ...)

The frontier of Line X2 holds the set of vertices that are cur-

rently active. For each vertex u in the frontier, offset_data and

edge_data are accessed, and each v that is an adjacent vertex of

u is enumerated. Line X7 updates the data for vertex v depending

on the actual graph processing (e.g. updates visiting state in BFS).
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Usually, the next frontier is also updated in Line X7. In GAP,

the for-loop in Line X2 is parallelized by OpenMP and executed by

multiple threads.

When using XLFDD for the application code in Listing 2, it is

necessary to rewrite the code as in Listing 3. Here, edge_data

is placed on the XLFDD. In the pseudo code, sched_coro starts

hundreds of coroutines per core, resumes coroutine suspended by

yield(), and repeats until return().

Listing 3: Modified code for XLFDD

Y1 : coro_func(sub_frontier, page_idx) {

Y2 : if sub_frontier.empty()

Y3 : if frontier.empty()

Y4 : return()

Y5 : sub_frontier = get_next(frontier, N)

Y6 : u = sub_frontier.pop()

Y7 : offset = offset_data[u]

Y8 : deg = offset_data[u+1] - offset_data[u]

Y9 : edge_size = conv_to_edge_size(deg)

Y10 : XLFDD.read_req(ctx_id, offset, edge_size)

Y11 : // save data if necessary such as u or deg

Y12 : do {

Y13 : yield()

Y14 : } while (XLFDD.check_completion(ctx_id))

Y15 : // restore the saved data

Y16 : foreach i in [0, deg]

Y17 : v = data_buffer[ctx_id][i]

Y18 : do_calculations(v, u, ...)

Y19 : }

Y20 :

Y21 : #pragma omp parallel // for each core

Y22 : foreach j in [0, num_core]

Y23 : sub_frontier = [], page_idx = 0

Y24 : sched_coro(coro_func, sub_frontier, page_idx)

Y7 to Y18 is the main part corresponding to X3 to X7 in Listing 2.

In the CSR format, the data of the vertices adjacent to the vertex

u are placed in a contiguous area, so they can be obtained with

one read request as long as it fits in one page. Therefore, instead

of replacing the access to edge_data of Line X6 with the access

to XLFDD every time, we access XLFDD once outside the loop of

LineX5. A data_buffer is statically prepared for each context, and

the data read from XLFDD is transferred to the data_buffer by

DMA. Note that the total size of data_buffer is several MBytes.

The loop annotated by OpenMP macro in Line X2 is processed

in parallel by combining multithreads and coroutines. In GAP im-

plementation, a directive schedule(dynamic, 64) is specified for

load balancing among threads. This means that each thread will

process the every specified number of entries, here 64. A thread

that has finished processing 64 entries acquires 64 new ones from

frontier and processes them. Similarly, we obtain the specified

N entries for each thread from frontier (Y5). The acquired entry

group is sub_frontier. In the sub_frontier, each coroutine se-

quentially acquires and processes vertices from the front (Y6). This

is the best of all we have tried with parallelization strategies. Note

that threads are created for the number of cores to be used, and

each thread is fixed to the corresponding core in our evaluation.

4.3 Implementation details

4.3.1 Physical addressing. As shown in Section 3.1, XLFDD is ac-

cessed by specifying a physical address. By storing the physical

address location of the corresponding edge data in offset_data,

it is possible to issue a request to the edge data without converting

the logical to physical address every time it is accessed. The phys-

ical address in XLFDD is not a linear address space because there

may be unusable memory blocks in the middle like missing teeth.

The edge_data should be placed allowing gaps to avoid the un-

usable memory blocks. However, in this case, the number of edge

data of a certain vertex u (called degree) cannot be calculated by the

difference between the physical addresses of u and u+1 like Line

Y8. Instead, the degree is stored separately in the array deg_data

on DRAM. By placing offset_data[u] and deg_data[u] on the

same cache line, access overhead to deg_data[u] can be negligi-

ble. Note that deg_datamay consume additional DRAM space, but

is an order of magnitude smaller than edge_data.

4.3.2 Page boundary. In general, most of the edge data per vertex

is much smaller than the page size of flash memory. Also, as de-

scribed above, it is possible to place edge_data in non-contiguous

physical memory address spaces. Therefore, by arranging the edge

data per vertex so as not to span multiple pages as much as pos-

sible, most of the access to edge data per vertex can be done by

reading one page from XLFDD. If the size of edge data per ver-

tex exceeds one page, it is necessary to read multiple pages. When

dealing with a graph in which the distribution of degrees follows

power-law as shown in Figure 4 (b) and (c), there are few vertices

with very large edge data size. We handle the large edge data in

multiple coroutine contexts. Listing 4 shows the final version of

the code snippet that replaces Y6 to Y18 part of Listing 3.

Listing 4: Final version of code for XLFDD (to replace Y6 to

Y18 with Z1 to Z15)

Z1 : u = sub_frontier.first()

Z2 : offset = offset_data[u]

Z3 : deg = deg_data[u]

Z4 : edge_size = conv_to_edge_size(deg)

Z5 : if edge_size < 1page

Z6 : XLFDD.read_req(ctx_id, offset, edge_size)

Z7 : /* do Y11 to Y18 */

Z8 : sub_frontier.pop()

Z9 : else

Z10: XLFDD.read_req(ctx_id, offset+page_idx, 1page)

Z11: page_idx += offset_for_1page

Z12: /* do Y11 to Y18 */

Z13: if (all edge data of u are consumed)

Z14: sub_frontier.pop()

Z15: page_idx = 0

5 EVALUATION

5.1 Experimental Setup

We focus on the following BFS-like graph algorithms in our eval-

uation. The caching mechanism tends to be less effective for these

algorithms due to the poor locality. Note that howmuch the actual

access pattern has locality depends on the input graph.
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Figure 4: The degree distributions of urand30, kron30 and

gsh-2015. The horizontal axis is degree.

Table 1: Graph datasets used for evaluation. (B stands for

billion in # of vertices/edges.)

# of vertices # of edges edge data size

urand30 1B 32B 128GB

kron30 1B 32B 128GB

sk-2005 51M 1.9B 7.8GB

twitter-2010 42M 1.5B 5.9GB

gsh-2015 988M 33B 135GB

wdc12 3.6B 128B 1TB

Breadth First Search (BFS) repeats updating the active vertex set

by visiting unvisited vertices adjacent to each vertex in the cur-

rently active vertex set. The active vertex set starts from a (ran-

domly selected) vertex and repeats this process until all the reach-

able vertices are visited. GAP optimizes switching between top-

down and bottom-up BFS [17]. However, we focus on evaluating

random access performance in this paper, so we always use top-

down BFS. OpenMP parallelization of GAP top-down BFS has no

schedule directive. Adding schedule directive allows appropriate

load balancing among threads and enables faster execution even if

it is in-memory execution. Therefore, we add schedule(dynamic,

64) for top-down BFS.

Betweenness Centrality (BC) counts the shortest path through

each vertex. After performing a top-down BFS starting from a ver-

tex as a forward processing, each vertex on the graph is visited

in reverse order and the amount of contribution is accumulated

according to the number of shortest paths through that vertex as

a backward processing. In our evaluation, forward and backward

processing are performed once from a random starting point.

Single Source Shortest Path (SSSP) finds the shortest path from

a starting point to each vertex in weighted graph. The weighted

edge is stored as a pair of adjacent vertex data and its weight as

edge data. Therefore, the size of edge_data is twice as large as

that of the unweighted graph. GAP implements a delta-stepping

algorithm suitable for multithreading. The parameter Δ for delta-

stepping does not significantly affect performance in our experi-

ments, so we keep the default value Δ = 1.

The graph datasets used for evaluation are shown in Table 1.

Note that in GAP, if the number of vertex is more than 231, the

data size doubles because it uses 64-bits per vertex instead of 32-

bits. There are synthetic graphs and real-world graphs. Synthetic

graphs are uniform random graphs (urand) and Kronecker graphs

(kron) [33] implemented in GAP. The parameters of kron follows

Graph500 [3] specifications. The log of the number of vertices is

called scale in synthetic graphs. For example, if scale is 26, the

graph has 64M vertices. In this paper, urand graph with scale 26 is

referred to as urand26. The average degree of all synthetic graphs

is fixed to 32 in our experiments. As shown in Figure 4 (a), the de-

gree distribution of urand is narrow, centered on 32. On the other

hand, kron follows power-law distribution. In general, kron has a

distribution of degrees similar to those of real-world graphs com-

pared to urand. The Table 1 shows the case of scale 30 as an ex-

ample, but our evaluation covers up to scale 32. As the real-world

graphs, we use sk-2005, twitter-2010 and gsh-2015 in the webgraph

dataset [10, 19, 20] and wdc12 [1]. As an example of the degree

distribution of the real-world graph, that of gsh-2015 is shown in

Figure 4 (c). The evaluated real-world graphs have power-law or

power-law-like distribution. There are a large number of small de-

gree vertices smaller than 100 bytes, but also a few very large de-

grees. Note that the real-world graphs are directed while the syn-

thetic graphs are undirected in our experiments.

We conduct all experiments on a non-uniform memory archi-

tecture machine with two Xeon Gold 5218 processors running at

2.3 GHz. Each processor has 16 physical cores and 6 memory chan-

nels, each ofwhich is connected to 32GBDRAMofDDR4-2933 and

Optane DCPMM 128 GB. Nine XLFDDs are connected to one pro-

cessor via a 16-lane PCIe switch. Note that 16 lanes have sufficient

bandwidth for large IOPS accesses smaller than 100 bytes. At the

time of execution, only the processor and the memory connected

to XLFDDs are used by the affinity setting and numactl command

unless otherwise noted. It runs with 16 cores. Ubuntu 18.04.4 and

kernel 5.3.0 are used. As the compile option, g++ -std=c++11 -O3

-march=native is used.

We compare the performances by placing edge_data onDRAM,

XLFDD, and DCPMM. DCPMM is used in AppDirect Mode to ac-

cess the edge_data through dev-dax unless otherwise noted. In

all three configurations, large arrays such as offset_data are al-

located on hugepages in heap. It reduces TLB miss and contributes

to performance improvement in all configurations.

5.2 CPU overhead per request

In order to measure the actual CPU overhead of making requests

with the lightweight interface, we perform simple random read

accesses to XLFDDs. Since nine XLFDDs are used, each provid-

ing up to 11 MIOPS, the peak potential performance is 99 MIOPS.

Table 2 (a) shows the performance result when read requests are

issued to nine XLFDDs using a simple loop by single CPU core.

Note that the loop can be realized with only a few instructions

including compare and branch, and the CPU overhead for control-

ling loop is negligibly small. The requests are ideally issued for all

the dies without biasing to a specific die. By using the lightweight

interface, it is possible to issue read requests at a sufficient speed

even if only one CPU core is used, and it is possible to achieve

99 MIOPS. This means that the CPU core can process each request

in less than 10.1 ns. Since the result is limited by the IOPS up-

per limit of XLFDD, the net CPU processing time per request is

not accurately measured. Therefore, as a further measurement, by
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Table 2: Performance results when read requests are issued

without biasing to a specific die using one CPU core. CPU

overhead per request is calculated by the reciprocal of IOPS.

IOPS
CPU overhead

per request

(a) 9 XLFDDs 99M 10.1 ns

(b) 9 XLFDDs without waiting tR 150M 6.7 ns

(c) NVMe SSDs 12.1M 82 ns

(d) 9 XLFDDs + stackless coroutines 99M 10.1 ns

(e) 9 XLFDDs + stackless
150M 6.7 ns

coroutines without waiting tR

Table 3: The execution time and its ratio to DRAM case at

the largest comparable scale where all data fits in DRAM in

Figure 5.

Dataset

Execution time (s)

and its ratio to DRAM case

XLFDD DRAM DCPMM

BFS urand30 42.2 (0.95) 44.5 (1.00) 71.6 (1.61)

BFS kron30 30.8 (0.98) 31.4 (1.00) 42.6 (1.36)

BC urand29 42.0 (0.93) 45.1 (1.00) 68.8 (1.52)

BC kron29 30.4 (1.10) 27.6 (1.00) 35.2 (1.27)

SSSP urand29 25.1 (0.88) 28.4 (1.00) 43.7 (1.54)

SSSP kron29 17.0 (0.99) 17.2 (1.00) 26.4 (1.53)

returning the data from the buffer in die without waiting for tR,

the CPU processing time per request is measured under the condi-

tion that IOPS is not the bottleneck. Table 2 (b) shows the results.

150 MIOPS with single core is obtained, that is, each request can

be processed in about 6.7 ns, which is less than 1/10 of CPU over-

head for NVMe interface. In our environment, NVMe SSD requires

82 ns per request as shown in Table 2 (c). This value is calculated

from the IOPS when a total of 12 NVMe SSDs are used. Optane

Memory [11] and Optane 800P [13] are used as NVMe SSDs. Since

they provide about 1.4 MIOPS at 512B random access with a single

unit, 12 units are capable of providing 16.8 MIOPS. However, it is

limited to 12.1 MIOPS because of the CPU overhead.

Table 2 (d) and (e) show the results when a sufficiently large

number of contexts are operated using stackless coroutines. In this

case, a read request and its completion is handled by the same con-

text as shown in Listing 1. Also, a read request is not issued until

the completion for the previous request is confirmed in a context.

Hence, the maximum number of outstanding requests is the num-

ber of contexts. In the normal case of waiting for tR, 99 MIOPS is

obtained, and in the special mode of not waiting for tR, 150 MIOPS

is obtained, by single core. As mentioned in Section 3.2 stackless

coroutine context switches have a small overhead, which has also

been experimentally shown as (d) and (e) can achieve the similar

performance as (a) and (b).

5.3 Evaluation results for synthetic graphs

Figure 5 shows the execution time of graph algorithms with 16

threads on urand and kron. There are some scales that cannot be

executed due to insufficient memory capacity. Since the time com-

plexity of these algorithms is proportional to the number of ver-

tices or edges, it is expected that if the scale is increased by 1, the

number of vertices or edges to be processed will double and the ex-

ecution time will also double. The results in Figure 5 are roughly

in line as expected.

The Table 3 also shows the execution time and its ratio to DRAM

case at the largest comparable scale where all data fits in DRAM in

Figure 5. When XLFDD is used, the algorithms can be executed in

88% to 110% of the in-memory execution time. It implies that read

access to XLFDD and context switch is faster than random access

to DRAM in some cases. The execution time of DCPMM case is

about 127% to 161% of that of DRAM. Simply replacing DRAMs

with DCPMM can result in performance degradation. According

to the cycle_activity.stalls_mem_any counter in Linux perf com-

mand, the increase in execution time of DCPMM is due to the in-

crease in stalls for memory access. Waiting for random access to

the DCPMM is likely the reason for the increased execution time.

Software optimizations may be needed to hide the access latency.

5.3.1 IOPS performance. If IOPS performance provided byXLFDD

is sufficient, XLFDD will deliver good performance. When com-

paring urand with kron, the performance ratio of XLFDD to in-

memory is better for urand. This is mainly because the required

peak IOPS of kron is higher than that of urand, and nine XLFDDs

are not sufficient for the peak IOPS of kron. The required IOPS per-

formance depends on the ratio of IO to computation. Also, there

can be a time variation of the required IOPS within an execution.

In urand, the degree is almost around 32, which means that edge

data per vertex is always read in units of around 128 bytes. On the

other hand, in kron, a large number of 4-byte accesses occur. Af-

ter reading 4 bytes of data, the CPU time required to process the

data is shorter than that of 128 bytes, and the next read request for

the next edge data is issued relatively early. As shown below, the
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Table 4: Results of BFS on kron30 using DRAM and using XLFDD while changing the number of contexts.

XLFDD DRAM

# of contexts per thread 1 2 16 32 64 128 256 512 N/A

Execution time (s) 321 168 42.4 35.4 31.7 30.8 32.2 35.1 31.4

LLC-load miss rate 72.3% 72.3% 72.4% 72.8% 73.8% 75.1% 76.3% 77.4% 75.8%

DTLB-load miss rate 0.03% 0.16% 1.5% 2.5% 3.6% 4.9% 5.8% 6.9% 6.0%

# of yield() (×109) 8400 710 70 27 15 7.0 3.5 0.49 N/A
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Figure 6: The measured IOPS values when BFS is executed

on urand30 and kron30. 128 and 256 contextsmean the num-

ber of coroutine contexts per thread in XLFDD case, respec-

tively.Required shows IOPS requirement estimated from in-

memory execution results.

required IOPS is likely to be high during the period when 4-byte

reads occur frequently in kron, and the IOPS provided by XLFDDs

may be insufficient in such period.

Figure 6 shows the measured IOPS values when BFS is executed

on urand30 and kron30. The solid lines show the total IOPS value of

nine XLFDDs actually measured. Figure 6 also shows the estimated

IOPS value required to achieve the same speed as when executing

in-memory by the dashed line. For urand30, the required IOPS is

almost constant at about 30 MIOPS, and XLFDD provides suffi-

cient IOPS. Using XLFDD with 128 contexts per thread is faster

than in-memory, which implies that the CPU overhead for read

accesses is shorter than DRAM stall cycles. For kron30, XLFDD

is faster than in-memory up to about 25 seconds after the start.

During this period, IOPS provided XLFDDs are sufficient. Espe-

cially in the range of tens of MIOPS, it can be seen that access to

XLFDD has a substantial advantage over frequent DRAM accesses.

In the final iterations of kron30, the required IOPS has increased

significantly, eventually reaching over 200 MIOPS. This is because

the ratio of IO to computation tends to be large as below. In the

latter half of BFS, vertices with a small degree are likely to re-

main unvisited. Furthermore, the number of the unvisited vertices

within the acquired edge data is small, which reduces the amount

of CPU processing. In the final step, XLFDD with 128 contexts per

thread peaks at around 66MIOPS. Therefore, in-memory execution
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Figure 7: Comparison on kron29 and kron31. +opt. denotes

applying the optimization using prefetch instruction and

yield(). X denotes Out Of Memory.

is faster in the final iterations. As the whole BFS, using XLFDD is

slightly faster than in-memory.

As described in Section 5.2, peak performance of nine XLFDDs

is 99 MIOPS. The main reason why only 66 MIOPS can be obtained

here is that the number of requests are not sufficient to demon-

strate 99 MIOPS. The access pattern is different from the ideal case

in Table 2. If the number of requests is not enough, not all dies will

work since the request may be slightly biased to some dies. By us-

ing 256 contexts per thread, the measured IOPS is improved up to

82 MIOPS, but BFS execution time is longer than when using 128

contexts. If the number of contexts is increased too much, the per-

formance degrades in our evaluation as described in Section 5.3.2.

5.3.2 Impact of the number of contexts. We show that good per-

formance can be obtained by selecting an appropriate number of

coroutine contexts. Table 4 shows the execution time, the LLC-load

miss rate, the DTLB-load miss rate, and the number of yield()

when executing BFS on kron30 using DRAM and using XLFDD

with 1, 2 and 16 to 512 contexts per thread. LLC-load and DTLB-

load miss rate are measured using perf command. According to

Table 4, the smaller the number of contexts, the lower the LLC-

load and DTLB-load miss rate. Since contexts are operated on CPU

core concurrently, if there are many contexts, they can compete

caches and TLBs causing more misses. On the other hand, as the

number of contexts increases, the number of yield() decreases.

When the number of contexts is large, it takes a long time to return

to the own context after suspending all other contexts. It tends to

be the case that the read completion has already arrived when re-

turning to its own context. By choosing the appropriate number

of contexts, we can choose the optimal point for the trade-off be-

tween cache contention and the number of yield(). In the case

of Table 4, 128 contexts is the best. Although the optimal number

of contexts varies depending on the algorithm and input graph, it

lies between 64 and 256 for the range of workload we have exper-

imented with. Basically, 256 contexts are suitable when there are
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many small-sized accesses such as 4 bytes, and 128 or 64 contexts

are suitable when many accesses are several tens of bytes or more.

It is a future work to adaptively change the number of contexts

during graph processing.

One of the important points to note in Table 4 is that the LLC-

load and DTLB-load miss rate will be lower than when executing

on DRAM if an appropriate number of contexts is selected. When

accessing edge_data, the access by the load instruction is a ran-

dom access to a huge memory space and tends to cause both LLC-

load miss and DTLB-load miss. On the other hand, in the case of

access by DMA, the data is accessed by the load instruction after

transferred to the Data Buffer. The cache hit rate can be improved

by accessing the transferred data before it is evicted from the cache.

Also, since the size of the Data Buffer is relatively small, there are

few DTLB misses caused by access to the edge data.

5.3.3 Hiding latency for DRAM/DCPMM. Context switching with

stackless coroutines is so fast that it can also hide DCPMM and

even DRAM access latency. Figure 7 shows the result of optimiza-

tion using the prefetch instruction and yield() in a similar man-

ner to Listing 4. In DCPMM+opt. case, CPU stall due to memory

accesses has been reduced, and performance is approaching that

of DRAM. Moreover, some DRAM cases can be improved by the

optimization. This figure is the case for kron29, but the similar

trend can be found for urand and other scales, (as well as in the

real-world graphs in Section 5.4). By using fast context switches,

memories with read latency of a fewhundred nanoseconds or a few

microseconds can bring the performance close to that of DRAM.

Figure 7 also includes results using DCPMMMemoryMode, which

uses DRAM as a cache for DCPMM. As shown in the result of

kron29, as long as the cache hit occurs, the latency of DCPMM

can be hidden and the performance is equivalent to that of DRAM.

On the other hand, in kron31, DRAM cache misses often occur, re-

sulting in poor performance. Due to space limitations we have not

included results other than BFS on kron31, but we observed similar

performance degradation for graphs larger than DRAM capacity.

5.3.4 Applying our method for sequential read accesses. For se-

quential reads, the existing interface such as NVMe interface is

enough to read in large units and buffering them in DRAM as de-

scribed in Section 1. However, if the IOPS is sufficient, our pro-

posed method to issue small-sized accesses every time performs

well even for sequential access since the CPU overhead for each

access is very small. As a simple experiment, we use PageRank

(PR) and Connected Components (CC), which contain a lot of se-

quential accesses to edge_data. We execute those in GAP bench-

mark with read accesses to edge_data on XLFDDs for each vertex

u like Listing 4. The execution time is 1.17 times and 1.66 times

slower than in-memory on kron26, respectively. In the case of PR,

IOPS is sufficient even if read requests are issued for each vertex,

but it is insufficient in CC. For the better performance, read re-

quests should be issued in large units utilizing the characteristic

of sequential access. It should be noted that our proposed inter-

face can be used with read requests in large units, such as NVMe

commands, although this has not yet been implemented.

5.4 Evaluation results for real-world graphs

Figure 8 shows the results on the real-world graphs. Each bar in

the figure is the relative time to the execution time when XLFDD

is used. According to Figure 8, some graph algorithms, especially

on twitter-2010, can be executed in about 110% of in-memory ex-

ecution time. That is, the performance close to that of in-memory

execution is obtained when XLFDD is used. However, other results

such as BFS on sk-2005 take up to 141% longer than in-memory ex-

ecution. This is mainly because the real-world graphs have higher

locality or lower randomness in the graph than synthetic graphs.

In these cases, high locality means that adjacent vertices have close

identifiers and are close together in memory.

In order to investigate the impact of data locality, the following

experiment is conducted. For the graph data obtained from the we-

bgraph dataset, the graph identifier is reordered at random while

the graph structure is maintained. The results on those graphs are

shown in Figure 9. The bars are also relative time to the execu-

tion time of XLFDD in Figure 8. When using XLFDD, there is not

much difference in execution time between Figure 8 and Figure 9.

On the other hand, when using DRAM or DCPMM, there are many

cases in which the execution time increases due to lowered local-

ity through the randomization. The execution result of Figure 9

is similar to that of the synthetic graph. It indicates that our pro-

posed method achieves performance close to that of in-memory

when there are many random accesses, while if there is some lo-

cality in data access, the current implementation using XLFDD is

likely to be lower in performance than the one using DRAM. High

locality favors in-memory over XLFDD for two factors. First, load

access to the edge_data is likely to cause a CPU cache hit. When

access to the edge_data is less random, XLFDD, in which a read

request is always issued without checking whether the requested

data is in the CPU cache, is disadvantageous. The other factor is

that the required IOPS tends to be high, and the IOPS provided by
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Figure 10: The results on wdc12. (*) is executed on our ma-

chine with 16 threads and 1.5TB memory in Memory Mode.

X denotes Out Of Memory and NA denotes Not Available

in [28].

XLFDD may be insufficient compared to DRAM case in a certain

period. When locality increases, CPU cache hit rate of not only

edge_data but also offset_data and other data on DRAM neces-

sary for graph processing increases. These cache hits reduce com-

putation time and increase the frequency of accessing edge_data.

Therefore, the required IOPS tends to be high. Further optimiza-

tions in XLFDD case for applications that have some locality, such

as utilizing the cache, is future work.

5.5 Comparison with existing works

There are existing works for processing graphs of sizes that do not

fit in DRAM, such as [24] using SCM and [28] using flash memory.

In [24], several in-memory graph processing is executed on Mem-

ory Mode of DCPMM, which allows large graphs to be treated as if

they are on DRAM. However, for graphs where a large number of

accesses to the DCPMM occur, performance may be degraded as

shown in Section 5.3.3.We compare the existing workwith XLFDD

on a very large graph, wdc12, and the results are shown in Fig-

ure 10. We execute Galois [41], which appeared to be the fastest

in [24], using DCPMM Memory Mode. Note that the capacity of

the DCPMM of one processor is not enough to hold wdc12, so the

DCPMM of both processors with a total capacity of 1.5TB is used.

On our machine, Galois and GAP on Memory Mode are slower

than XLFDD, suggesting that frequent accesses to DCPMM might

cause performance degradation as shown in Section 5.3.3. [28] is

a system using flash memory that can handle very large graphs

by putting all the data, including vertex data as well as edge data,

on flash memory. However, a large amount of reading and writ-

ing of flash memory occurs, which hinders the performance. Since

[28] uses special hardware and we cannot experiment with it in

our environment, the values reported in [28] are included in Fig-

ure 10 for reference. [28] is much slower than the execution on

XLFDD or DCPMM. We believe it is because of the large amount

of read/write to flashmemory, and furthermore, it does not use low

latency flash, and access to edge data is not fast. Note that, [28] is

complementary to XLFDD, and there is a possibility that further

speedup can be achieved by combining the two. The main focus of

[28] is sequentialization of vertex updates so that it is suitable for

writing in flash memory, while XLFDD can provide fast random

read accesses, for example, to CSR format.

6 DISCUSSIONS

Measures to improve IOPS. While we have achieved 99 MIOPS

with nine XLFDDs in this paper, some applications may require

more IOPS as exemplified by BFS on kron30 shown in Figure 6.

A simple way to increase IOPS is to use more XLFDDs: for ex-

ample, 24 XLFDDs can be connected via PCIe Switch in a single

server. Another possibility is to increase the number of dies on

XLFDD. These measures do not improve IOPS per capacity. That

is, they may not be suitable for cases where very large capacity is

not required, in which case we can take an approach of operating

multiple planes simultaneously [45]. This is feasible with a small

increase in die cost and is also applicable to low latency flashmem-

ory such as XL-FLASH. Therefore, there is a possibility that a flash

memory drive with several to several tens of times higher IOPS can

be introduced in the near future without significantly increasing

capacity or cost.

Switching top-down/bottom-up. For some graph processing al-

gorithms, optimizations have been proposed that switch the pro-

cessing strategy when the active vertex set is sparse and when it is

dense [17, 23, 47]. This also applies to the switching between top-

down BFS and bottom-up BFS mentioned in Section 5.1. We focus

on speeding up the processing of random accesses with XLFDD,

so we fix it to top-down BFS, but there is a possibility that perfor-

mance will be improved even when using flash memory by switch-

ing top-down and bottom-up. In bottom-up processing, sequential

access to edge_data may be effective. As described in Section 1,

sequential access can be performed fast enough using flash mem-

ory. Therefore, it is possible to optimize access pattern to the flash

memory according to top-down phase and bottom-up phase.

Workloads with sequential and/or write access. In this paper,

we show some cases where performance close to that of DRAM can

be achieved even with microsecond-level random read accesses for

flash memories. However, for a practical system, it is necessary to

deal with sequential and write access as well as random read. For

sequential reads, existing interfaces such as NVMe provide suf-

ficient performance. On the other hand, for workloads with write
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access, such high performance is difficult to achieve. There are two

drawbacks for performance. First, the write latency of flash mem-

ory is much longer than that of read. Second, because write must

be done in block unit of several MBytes in flash memory, small-

sized write results in read-modify-write. In addition to the reduced

overhead by the proposed method, workloads with write accesses

may require changes tomake themmore suitable for flashmemory.

Since sequential write or bulk write are suitable for flash memory,

it is possible that a combination of sequential/bulk writes and ran-

dom reads may provide better performance. We leave these studies

for future work.

Logical-to-physical conversion.XLFDD is a prototype and does

not have logical-to-physical address conversion. Therefore, phys-

ical addressing is necessary and the implementation efforts de-

scribed in Section 4.3.1 are effective to reduce CPU overhead. How-

ever, these are not necessary if XLFDDs are equipped with logical-

to-physical conversion on the drive, like normal SSDs. Even in this

case, we believe that application performance is not much differ-

ent from our experimental results. This is because even if there is

a hardware-level conversion, there will be little difference in CPU

overhead from our results, and while the conversion may increase

read latency a bit, it can be small enough compared to microsecond

latency.

Advantages of low latency flash memory over SCM. This pa-

per introduced a method for approaching in-memory execution

times with memories having latencies of up to microseconds. In

terms of application performance, either SCM or low latency flash

memory is fine to use, but flash memory has the advantage of be-

ing able to handle a larger capacity than SCM. While the currently

available SCM,OptaneDCPMM, has amaximum capacity of 4.5 TB

per socket [6], PCIe connected devices using flash memory can ex-

pand to tens of TB.With the proposedmethod, we believe that low-

latency flash memory can be a high-capacity alternative to SCM.

7 RELATEDWORK

Emergingmemories andhiding access latency.There is a great

deal of research onmemorywith performance betweenDRAMand

conventional flash memory. These include PCM, MRAM and low

latency flash memory, for example. Among them, Optane DCP-

MM/SSD series [7] and XL-FLASH [15] are the commercialized

ones with large capacity. These have a read latency of several hun-

dreds of nanoseconds to several microseconds. Several methods

have been proposed to perform efficient access while hiding the

latency. [30] shows an implementation of KVS to achieve near in-

memory performance with user-level context switches and low la-

tency NVMe SSDs. However, its target is several MIOPS, which is

an order of magnitude less than our work. In [21], the access by

DMA and the access by load or prefetch instruction are compared,

which concludes that accesses by load instructions are promis-

ing because DMA requires a heavy queue operation. However, the

current CPU has an upper limit on the number of in-flight mem-

ory accesses issued by the load instruction, resulting in saturated

performance for microsecond-latency devices. In order to hide the

microsecond-level latency, [40] proposes a new processor archi-

tecture that can switch multiple contexts at the hardware level.

In terms of hiding access latency, [26] proposes to use stackless

coroutine to hide the latency in DRAM case. Also, [29] utilizes

coroutines to hide the DRAM latency for in-memory graph pro-

cessing.

Graph Processing. If the graph fits in the DRAM capacity, it can

be processed in-memory like Galois [41], GAP [18], and so on [23,

47]. However, if the graph does not fit in the DRAM capacity, it

must be placed on disks, or placed onDRAMs of multiple machines

for distributed processing [38]. However, it is reported that the per-

formance of distributed processing deteriorates due to the com-

munication overhead [22, 39]. For this reason, a number of meth-

ods have been proposed in which graph data is placed on disks

such as SSDs and processed by a single machine (Graphene [35],

flashgraph [48], Mosaic [37], BigSparse [27] and GraFBoost [28],

X-stream [43], GraphChi [31]). Graphene achieves the excellent

performance close to that of in-memory using SSDs in workloads

with many sequential accesses (e.g. PageRank). However, it is sig-

nificantly slower than in-memory for workloads with many small

random accesses such as BFS [35]. In [32], it is shown that the

performance can be improved even in a workload such as BFS by

preprocessing the graph so that the edge data cached in DRAM is

easy to hit. However, significant improvements in the performance

of disk-based BFS-like algorithms would require a large DRAM.

There are also attempts to process large-scale graphs while sup-

pressing performance degradation from DRAM by using SCM [36,

44] or Optane DCPMM [24, 42].

8 CONCLUSION

In this paper, we show that microsecond-level latency flash mem-

ory can be used to achieve performance close to that of in-memory

in some read-intensive and small-sized random access workloads.

Instead of existing NVMe interface, we propose a new lightweight

interface to reduce CPU overhead. A read request can be processed

with a CPU overhead of 6.7 ns. In addition, to hide the latency of

flash memory, we operate hundreds of contexts per CPU core by

using stackless coroutines. The cost of context switches among the

stackless coroutines are negligible. Combining the new interface

and the coroutines enables the performance 99 MIOPS per CPU

core, which is demonstrated on PCIe-connected prototype boards,

XLFDD, with the microsecond-latency flash. We apply the pro-

posedmethod to large-scale graph processing in which small-sized

random accesses frequently occur. We use GAP benchmark suite

which is one of the existing in-memory graph processing frame-

works as a baseline. Note that the DRAM replacement by XLFDD

can be applied to other in-memory graph processing implementa-

tions as well. BFS, BC and SSSP are executed with XLFDD. The

execution time with XLFDD is about 88% to 141% of in-memory.

Our proposal has an advantage over DRAM for BFS-like graph pro-

cessing with required IOPS in the range of tens of MIOPS and low

access locality. This will be the first example of how flash mem-

ory can be used to achieve the same or better performance as in-

memory in applications that involve a large number of small-sized

random read accesses. We believe that the proposed method can

be applied to other applications that require many small-sized ran-

dom read accesses to large memory spaces such as databases.
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