
An Inquiry into Machine Learning-based
Automatic Configuration Tuning Services on
Real-World Database Management Systems
Dana Van Aken , Dongsheng Yang♦, Sebastien Brillard♠, Ari Fiorino

Bohan Zhang , Christian Bilien, Andrew Pavlo
Carnegie Mellon University, ♦Princeton University, ♠Société Générale, OtterTune

dvanaken@cs.cmu.edu

ABSTRACT
Modern database management systems (DBMS) expose dozens of
configurable knobs that control their runtime behavior. Setting
these knobs correctly for an application’s workload can improve
the performance and efficiency of the DBMS. But because of their
complexity, tuning a DBMS often requires considerable effort from
experienced database administrators (DBAs). Recent work on auto-
mated tuning methods using machine learning (ML) have shown to
achieve better performance compared with expert DBAs. These ML-
based methods, however, were evaluated on synthetic workloads
with limited tuning opportunities, and thus it is unknown whether
they provide the same benefit in a production environment.

To better understandML-based tuning, we conducted a thorough
evaluation of ML-based DBMS knob tuning methods on an enter-
prise database application. We use the OtterTune tuning service to
compare three state-of-the-art ML algorithms on an Oracle instal-
lation with a real workload trace. Our results with OtterTune show
that these algorithms generate knob configurations that improve
performance by 45% over enterprise-grade configurations. We also
identify deployment and measurement issues that were overlooked
by previous research in automated DBMS tuning services.

PVLDB Reference Format:
Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan
Zhang, Christian Bilien,Andrew Pavlo. An Inquiry into Machine
Learning-based Automatic Configuration Tuning Services on Real-World
Database Management Systems. PVLDB, 14(7): 1241-1253, 2021.
doi:10.14778/3450980.3450992

1 INTRODUCTION
Since the 1970s, there have been several efforts to automate the
tuning of database management systems (DBMSs). The first were
“self-adaptive” DBMSs that used recommendation tools to help with
physical database design (e.g., indexes [20], partitioning [21]). In
the early 2000s, “self-tuning” systems expanded the scope of the
problem to include automatic knob configuration. These knobs are
tunable options that control nearly all aspects of the DBMS’s run-
time behavior. Researchers began to explore this problem because

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.
doi:10.14778/3450980.3450992

DBMSs have hundreds of knobs, and a database administrator (DBA)
cannot reason about how to tune all of them for each application.

Unlike physical database design tools [11], knob configuration
tools cannot use the built-in cost models of the DBMS’s query op-
timizers. There are two ways that these tools automatically tune
knobs. The first is to use heuristics (i.e., static rules) that the tool de-
velopers manually create [1, 5, 14, 27, 42]. Previous evaluations with
open-source DBMSs (Postgres, MySQL) showed that these tools
improve their throughput by 2–5× over their default configuration
for OLTP workloads [38]. These are welcomed improvements, but
there are additional optimizations that the tools failed to achieve.
This is partly because they only target the 10–15 knobs that are
thought to have the most impact. It is also because the rules do not
capture the nuances of each workload that are difficult to codify.

The second way to tune a DBMS’s knobs is to use machine learn-
ing (ML) methods that devise strategies to configure knobs without
using hardcoded rules [17, 28, 38, 40]. In the same evaluation for
OLTP workloads from above [38], an ML-based tool achieves 15–
35% better throughput than static tools for Postgres and MySQL.
The reason for this improvement is twofold: first, the ML algorithms
consider more knobs during a tuning session than the rule-based
tools. Second, they also handle the dependencies between knobs
that are challenging for humans to reason about because their non-
linear relationships vary with the DBMS’s workload and hardware.

Recent results from ML-based approaches have demonstrated
that they achieve better performance compared to human DBAs
and other tuning tools on a variety of workloads and hardware
configurations [28, 40]. But these evaluations are limited to (1) open-
source DBMSs with limited tuning potential (e.g., Postgres, MySQL,
MongoDB) and (2) synthetic benchmarks with uniform workload
patterns. Additionally, although these evaluations used virtualized
environments for the target DBMSs, to the best of our knowledge,
they all used dedicated local storage (i.e., SSDs attached to the
VM). Many real-world DBMS deployments, however, use non-local,
shared-disk storage, such as on-premise SANs and cloud-based
block stores. These non-local storage devices have higher read/write
latencies and incur more variance in their performance than local
storage. It is unclear how these differences affect the efficacy of ML-
based tuning algorithms. Lastly, previous studies are vague about
how much of the tuning process was truly automated. For example,
they do not specify how they select the bounds of the knobs they
are tuning. This means that the quality of the configurations may
still depend on a human initializing it with the right parameters.

Given these issues, this paper presents a field study of automatic
knob configuration tuning on a commercial DBMSwith a real-world

1241

https://doi.org/10.14778/3450980.3450992
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450992

ControllerTarget DBMS

⑥ deploy knobs

② collect metrics

① run workload

③ upload metrics
④ process

Tuning Manager

⑤ recommend
knobs

Workloads Selectable Tuning Algorithms
DNNGPR DDPG

Critic
Actor

Data
Repository

Figure 1: OtterTune Architecture – The controller runs the workload on
the target DBMS, collects its knobs and metrics, and uploads them to the
tuning manager. The tuning manager processes the uploaded data and uses
the selected algorithm to generate the next knob configuration. Finally, the
controller installs the configuration on the target DBMS.

workload in a production environment. We provide an evaluation of
state-of-the-art ML-based methods for tuning an enterprise Oracle
DBMS (v12) instance running on virtualized computing infrastruc-
ture with non-local storage. We extended theOtterTune [3] tuning
service to support three ML tuning algorithms: (1) Gaussian Process
Regression (GPR) from OtterTune [38], (2) Deep Neural Networks
(DNN) [4, 39], and (3) Deep Deterministic Policy Gradient (DDPG)
from CDBTune [40]. We also present optimizations for OtterTune
and its ML algorithms that were needed to support this study.

Our results show that ML-based tools generate knob config-
urations that achieve better performance than enterprise-grade
configurations. We also found that the quality of the configurations
from the ML algorithms (GPR, DDPG, DNN) are about the same
on higher knob counts, but vary in their convergence times.

2 BACKGROUND
We first provide an overview of how an automated tuning service
works using OtterTune as an example [3]. We then discuss the
limitations of previous evaluations of such services and why a more
robust assessment is needed to understand their capabilities.

2.1 OtterTune Overview
OtterTune is a tuning service that finds good settings for a DBMS’s
knob configuration [38]. It maintains a repository of data collected
from previous tuning sessions and uses it to build models of how
the DBMS responds to different knob configurations. It uses these
models to guide experimentation and recommend new settings.
Each recommendation provides the service with more data in a
feedback loop for refining and improving the accuracy of its models.

OtterTune is made up of a controller and a tuning manager. The
controller acts as an intermediary between the target DBMS and the
tuning manager. It collects runtime data from the target DBMS and
installs configurations recommended by the tuning manager. The
tuning manager updates its repository and internal ML models with
the information provided by the controller and then recommends a
new configuration for the user to try.

At the start of a tuning session, the user specifies which metric
should be the target objective for the service to optimize. The service
retrieves these metrics either from (1) the DBMS itself via its query
API, (2) a third-party monitoring service (e.g., Prometheus, Druid),
or (3) a benchmarking framework [16].

The service then begins the first tuning iteration. As shown in
Figure 1, the controller 1○ executes the target workload on the
DBMS. After the workload finishes, the controller 2○ collects the

runtime metrics and configuration knobs from the DBMS and 3○
uploads them to the tuning manager. OtterTune’s tuning manager
4○ receives the latest result from the controller and stores it in
its repository. Next, the tuning manager 5○ uses its ML models to
generate the next knob configuration and returns it to the controller.
The controller 6○ applies the knob configuration to the DBMS and
starts the next tuning iteration. This loop continues until the user
is satisfied with the improvements over the original configuration.

2.2 Motivation
Recent studies on automated DBMS tuning services show that
they can generate configurations that are equivalent to or exceed
those created by expert DBAs [38, 40]. Despite these measurable
benefits, we observe a mismatch between aspects of the evaluations
of previous research on ML-based tuning approaches versus what
we see in real-world DBMS deployments [28, 38, 40]. The three
facets of this discrepancy are the (1) workload, (2) DBMS, and (3)
operating environment. We now discuss them in further detail.

Workload Complexity: Gaining access to production work-
loads to evaluate new research ideas is non-trivial due to privacy
constraints and other restrictions. Prior studies evaluate their tech-
niques using synthetic benchmarks; the most complex benchmark
used to evaluate ML-based tuning techniques to date is the TPC-C
OLTP benchmark from the early 1990s. But previous studies have
found that some characteristics of TPC-C are not representative of
real-world database applications [23, 25]. Many of the unrealistic
aspects of TPC-C are due to its simplistic database schema and
query complexity. Another notable difference is the existence of
temporary and large objects in production databases. Some DBMSs
provide knobs for tuning these objects (e.g., Postgres, Oracle), which
have not been considered in prior work.

System Complexity: The simplistic nature of workloads like
TPC-C means that there are fewer tuning opportunities in some
DBMSs, especially for the two most common DBMSs evaluated
in previous studies (i.e., MySQL, Postgres). For these two DBMSs,
one can achieve a substantial portion of the performance gain
from configurations generated by ML-based tuning algorithms by
setting two knobs according to the DBMS’s documentation. These
two knobs control the amount of RAM for the buffer pool cache
and the size of the redo log file on disk.1, 2

To illustrate this issue, we ran a series of experiments on multiple
versions of MySQL (v5.6, v5.7, v8.0) and Postgres (v9.3, v10.1, v12.3)
using the TPC-C workload. We deployed the DBMSs on a machine
running Ubuntu 18.04 with an Intel Core i7-8650U CPU (8 cores
@ 1.90GHz, 2× HT) and 32 GB RAM. For each DBMS version, we
measure the system’s throughput under four knob configurations:
(1) the OS’s default configuration, (2) the recommended settings
from the DBMS’s documentation for the two knobs that control the
buffer pool and redo log file sizes, (3) the configuration generated
by OtterTune using GPR, and (4) the configuration generated by
OtterTune usingDDPG. We allowed OtterTune to tune 10 knobs for
both DBMSs as selected by the tuning manager’s ranking algorithm.
We discuss the details of these algorithms in Section 4.

1Postgres Knobs – SHARED_BUFFERS, MAX_WAL_SIZE
2MySQL Knobs – INNODB_BUFFER_POOL_SIZE, INNODB_LOG_FILE_SIZE

1242

Default BufferPool+RedoLog GPR DDPG

v5.6 v5.7 v8.0
0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

113 115 80

1514
1259

1062

1495
1309

1111
1426 1316

1136

(a) MySQL
v9.3 v10.1 v12.3

0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

514 477

996
1203

1512

1929

1315

1901 2011

1329

1739

2134

(b) Postgres
Figure 2: DBMS Tuning Comparison – Throughput measurements for the TPC-C benchmark running on three versions of MySQL (v5.6, v5.7, v8.0) and
Postgres (v9.3, v10.1, v12.3) using the (1) default configuration, (2) buffer pool & redo log configuration, (3) GPR configuration, and (4) DDPG configuration.

Local Storage Non-Local Storage

1d 2d 3d
0

5

10

15

I/O
La

te
nc

y
(m

s)

(a) Sequential Reads
1d 2d 3d

0

5

10

15

I/O
La

te
nc

y
(m

s)

(b) Sequential Writes
1d 2d 3d

0

5

10

15

I/O
La

te
nc

y
(m

s)

(c) Random Reads
1d 2d 3d

0

5

10

15

I/O
La

te
nc

y
(m

s)

(d) Random Writes
Figure 3: Operating Environment – I/O latency of local versus non-local storage for four different I/O workloads over a three-day period.

Figure 2 shows that the two-knob configuration and OtterTune-
generated configurations improve the performance for TPC-C over
the DBMS’s default settings. This is expected since the default con-
figurations for MySQL and Postgres are based on their minimal
hardware requirements. More importantly, however, the configu-
rations generated by ML algorithms achieve only 5–25% higher
throughput than the two-knob configuration across the different
versions of MySQL and Postgres. That is, one can achieve 75–95%
of the performance obtained by ML-generated configurations by
tuning only two knobs for the TPC-C benchmark.

Operating Environment: Disk speed is often the most impor-
tant factor in a DBMS’s performance. Although the previous studies
used virtualized environments to evaluate their methods, to our
knowledge, they deploy the DBMS on ephemeral storage that is
physically attached to the hostmachine. Butmany real-world DBMS
deployments use durable, non-local storage for data and logs, such
as on-premise SANs and cloud-based block/object stores. The prob-
lem with these non-local storage devices is that their performance
can vary substantially in a multi-tenant cloud environment [32].

To demonstrate this point, we measured the I/O latency on both
local and non-local storage devices every 30 minutes over three
days using Fio [2]. We conducted the local storage experiments
on a machine with a Samsung 960EVO M.2 SSD. We ran the non-
local storage experiments on a VM with virtual storage deployed
on an enterprise private cloud. The results in Figure 3 show that
the read/write latencies for the local storage are stable across all
workloads. In contrast, the read/write latencies for the non-local
storage are higher and more variable. The spike on the third day
also demonstrates the unpredictable nature of non-local storage.

3 AUTOMATED TUNING FIELD STUDY
The above issues highlight the limitations in recent evaluations of
configuration tuning approaches. These examples argue the need
for a more rigorous analysis to understand whether real-world

DBMS deployments can benefit from automated tuning frameworks.
If automated tuning proves to be viable in these deployments, we
seek to identify the trade-offs of ML-based algorithms and the
extent to which human-guidance makes a difference.

We conducted an evaluation of the OtterTune framework at the
Société Générale (SG) multi-national bank in 2020 [6]. SG runs
most of their database applications on Oracle on private cloud
infrastructure. They provide self-service provisioning for DBMS
deployments that use a pre-tuned configuration based on the ex-
pected workload (e.g., OLTP vs. OLAP). These Oracle deployments
are managed by a team of skilled DBAs with experience in knob
tuning. Thus, the goal of our field study is to see whether automated
tuning could improve a DBMS’s performance beyond what their
DBAs achieve through manual tuning.

In this section, we provide the details of our deployment of
OtterTune at SG. We begin with a description of the target database
workload and how it differs from synthetic benchmarks. We then
describe SG’s operating environment and the challenges we had to
overcome with running an automated tuning service.

3.1 Target Database Application
The data and workload trace that we use in our study came from
an internal issue tracking application (TicketTracker) for SG’s IT
infrastructure. The core functionality of TicketTracker is similar to
other widely used project management software, such as Atlassian
Jira and Mozilla Bugzilla. This application keeps track of work
tickets submitted across the entire organization. SG has ∼140,000
employees spread across the globe [6], and thus TicketTracker’s
workload patterns and query arrival rate are mostly uniform 24-
hours a day during the work week. SG currently runs TicketTracker
on Oracle v12.1. We developed custom reporting tools to summarize
the contents of the database and query trace. We now provide a
high-level description of TicketTracker from this analysis.

1243

Operator Type % of Queries

TABLE ACCESS BY INDEX ROWID 31%
INDEX RANGE SCAN 23%
INDEX UNIQUE SCAN 16%
SORT ORDER BY 8%
TABLE ACCESS FULL 5%
All Others 17%

Table 1: Query Plan Operators – The percentage of queries in the Tick-
etTracker workload that contain each operator type.

Database:We created a snapshot of the TicketTracker database
from its production server using the Oracle Recovery Manager tool.
The total uncompressed size of the database on disk is ∼1.1 TB,
of which 27% is table data, 19% is table indexes, and 54% is large
objects (LOBs). This LOB data is notable because Oracle exposes
knobs that control how it manages LOBs, and previous work has
not explored this aspect of DBMS tuning.

The TicketTracker database contains 1226 tables, but 773 of
them are empty tables from previous staging and testing efforts.
We exclude them from our analysis here as no query accesses them.
For the remaining 453 tables with data, the database contains 1647
indexes based on them. The charts in Figure 4 provide breakdowns
of the number of tuples, columns, and indexes per table. Figure 4b
shows that most of the tables have 20 or fewer columns. There is
also a large percentage of tables that only have a single index; these
are mostly tables with a small number of tuples (i.e., <10k).

Workload:We collected the TicketTracker workload trace us-
ing Oracle’s Real Application Testing (RAT) tool. RAT captures
the queries that the application executes on the production DBMS
instance starting at the snapshot. It then supports replaying those
queries multiple times on a test database with the exact timing,
concurrency, and transaction characteristics of the original work-
load [19]. Our trace is from a two-hour period during regular busi-
ness hours and contains over 3.6m query invocations.

The majority of the queries (90.7%) that TicketTracker executes
are read-only SELECT statements. They are short queries that access
a small number of tuples. Figure 5a shows that the average execution
time of SELECT queries with SG’s default configuration is 25 ms.
The application executes some longer-running queries, but these
are rare. The 99th-tile latency for SELECT queries is only 370 ms.

We also counted the number of times that a SELECT query ac-
cesses each table. Only 2% of the queries perform a join between
two or more tables; the remaining 98% only access a single table.
The histogram in Figure 5b shows the top 10 most accessed tables
in the workload. The remaining tables are accessed by 1% or less of
the queries. These results indicate that there is no single table that
queries touch significantly more than others.

Since the workload trace includes query plans, we extracted the
operators for each SELECT query to characterize their behavior. This
analysis helped us understand whether the configurations selected
by the algorithms in our experiments would even affect the queries.
Table 1 provides a ranked list of the five most common operators.
We see that almost all the queries perform index look-ups and
scans. The most common operator (TABLE ACCESS BY INDEX ROWID)
is when the query uses a non-covering index to get a pointer to the
tuple. Only 5% of the queries execute a sequential scan on a table.

1-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M >10M
0

50

100

150

200

#
of

Ta
bl

es 134

62 61 48
68 66

14

(a) Number of Rows Per Table

2-5 5-10 10-20 20-30 30-50 50-100 >100
0

50

100

150

200

#
of

Ta
bl

es

191

118
80

22 17 10 15

(b) Number of Columns Per Table

1 2 3 4 5-10 10-20 >20
0

50
100
150
200
250

#
of

Ta
bl

es

222

80
45

19
58

16 13

(c) Number of Indexes Per Table
Figure 4: Database Contents Analysis – The number of tuples, columns,
and indexes per table for the TicketTracker database.

The rest of the TicketTracker workload contains UPDATE (5.2%),
INSERT (3.4%), and DELETE (0.7%) queries. The average execution
times of these queries are 18 ms, 97 ms, and 49 ms, respectively. For
INSERTs, Figure 5a shows that some queries take 1260 ms to run.
Our analysis also shows that a large portion of the modification
queries are on tables with over 100k tuples. Some of the largest
tables (i.e., >10m tuples) are never used in SELECT queries.

There are important differences in the TicketTracker application
compared to the TPC-C benchmark used in previous ML tuning
evaluations. Foremost is that the TicketTracker database has hun-
dreds of tables and the TPC-C database only has nine. TPC-C also
has a much higher write ratio for queries (46%) than the Ticket-
Tracker workload (10%). This finding is consistent with previous
work that has compared TPC-C with real-world workloads [23, 25].
Prior to our study, it was unknown whether these differences affect
the efficacy of ML-based tuning algorithms.

3.2 Deployment
Wedeployed five copies of the TicketTracker database andworkload
on separate Oracle v12.2 installations in SG’s private cloud.We used
the same hardware configuration as the production instance. Each
DBMS instance runs on a VM with 12 vCPUs (Intel Xeon CPU
E5-2697v4 at 2.30 GHz) and 64 GB RAM. We configured the VMs
to write to a NAS shared-disk running in the same data center. As
shown in our previous experiment in Figure 3, the average read and
write latencies for this storage are∼6.7 ms and∼8.3 ms, respectively.

The initial knob configuration for each Oracle instance is selected
from a set of pre-tuned configurations that SG uses for their entire
fleet. The SG IT team provides their employees with a self-service
web interface for provisioning new DBMSs. In addition to selecting
the hardware configuration of a new DBMS (e.g., CPU cores, mem-
ory), a user must also specify the expected workload that the DBMS
will support (e.g., OLTP, OLAP, HTAP). The provisioning system
installs the knob configuration that has been pre-tuned by the SG

1244

SELECT UPDATE INSERT DELETE
10−3

10−2

10−1

10 0

10 1

Ti
m

e
(s

)

0.025 0.018
0.097 0.049

0.370 0.425
1.260 0.793

Average Time (s) 99th %-tile Time (s)

(a) Execution Time of Query Types (Log Scale)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Table ID

0

1

2

3

%
of

Q
ue

rie
s 2.74% 2.50% 2.38% 2.32% 2.16%

1.67% 1.62% 1.48% 1.37% 1.28%

(b) Top 10 Tables Accessed by Queries (%)
Figure 5: TicketTracker Workload Analysis – Execution information
for the TicketTracker queries extracted from the workload trace.

administrators for the selected workload type. Although these con-
figurations outperform Oracle’s default settings, they only modify
4–6 knobs and are still not tailored to the individual applications’
workloads. As such, for the TicketTracker workload, the DBA fur-
ther customized some of the knobs in the pre-tuned configuration,
including one that improves the performance of LOBs.3

We set up multiple of OtterTune’s tuning managers and con-
trollers in the same data center as the Oracle DBMSs. We ran each
component in a Docker container with eight vCPUs and 16 GB
RAM. Each DBMS instance has a dedicated OtterTune tuning man-
ager assigned to it. This separation prevents one session from using
training data collected in another session, which will affect the
convergence rate and efficacy of the algorithms.

3.3 Tuning
At the beginning of each iteration in a tuning session, the controller
first restarts its target DBMS instance. Restarting ensures that the
knob changes that OtterTune made to the DBMS in the last iter-
ation take effect. Some knobs in Oracle do not require restarting
the DBMS, but changing them is not instantaneous and requires
additional monitoring to determine when their updated values have
been fully applied. To avoid issues with incomplete or inconsistent
configurations, we restart the DBMS each time.

Another issue is that Oracle could refuse to start if one of its
knobs has an invalid setting. For example, if one sets the knob
that controls the buffer pool size4 to be larger than the amount of
physical memory on the underlying machine, then Oracle will not
start and prints an error message in the log. If the controller detects
this failure, it halts the tuning iteration, reports the failure to the
tuning manager, and then starts a new iteration with the next con-
figuration. This failure is still useful for the tuning algorithms; we
discuss how to handle this and other failure scenarios in Section 6.

Once the DBMS is online and accepting connections, the con-
troller resets the database back to what it was at the beginning of
the workload trace (i.e., any tuple modified during the workload
replay is reverted to its original state). Although the TicketTracker
database is over 1 TB in size, this step takes on average five minutes
3Oracle Knob – DB_32K_CACHE_SIZE
4Oracle Knob – DB_CACHE_SIZE

per iteration because Oracle’s snapshot tool only resets the pages
modified since in the last iteration.

After resetting the DBMS, the controller executes a Fio [2] mi-
crobenchmark on the DBMS’s VM to collect the current perfor-
mance measurements for its shared disk. This step is not necessary
for tuning, and none of the algorithms use this data in their models.
Instead, we use these metrics to explain the DBMSs’ performance
in noisy cloud environments (see Section 6).

Now the controller begins the execution step on the target DBMS
using the current configuration. It first retrieves the current val-
ues for DBMS’s metrics through Oracle-specific SQL commands.
Oracle generates over 3900 metrics that are a mix of counters and
aggregates. We only collect global metrics from the DBMS (i.e.,
there are no table- or index-specific metrics). We set the tuning
algorithm’s target objective function to DB Time [15, 18]. This is
an Oracle-specific metric that measures the total time spent by the
database in processing user requests. A key feature of DB Time is
that it provides a “common currency” to measure the impact of
any component in the system. It is the SG DBAs’ preferred metric
because it allows them to reason about the interactions between
DBMS components to diagnose problems.

OtterTune’s controller executes TicketTracker’s workload trace
using Oracle RAT. We use RAT’s automatic setup option to deter-
mine the number of client threads that it needs to replicate the
same concurrency as the original application. We configure RAT to
execute a 10-minute segment (230k queries) from the original trace.
We limit the replay time for two reasons. First, the segment’s times-
pan is based on the wall clock of when the trace was collected on
the production DBMS. This means that when the trace executes on
a DBMS with a sub-optimal configuration (which is often the case
at the beginning of a tuning session), the 10-minute segment could
take several hours to complete. We halt replays that run longer
than 45 minutes. The second reason is specific to Oracle: RAT is
unstable on large traces for our DBMS version. Oracle’s engineers
did provide SG with a fix, but only several months after we started
our study, and therefore it was too late to restart our experiments.

After the workload execution completes, the controller collects
the DBMS’s metrics again, computes the delta for the counters from
the start of the iteration, and then sends the results to the tuning
manager. The controller then polls the tuning manager for the next
configuration to install and repeats the above steps.

4 TUNING ALGORITHMS
Our goal is to understand how the DBMS configuration tuning
algorithms proposed in recent years behave in a real-world setting
and under what conditions one performs better than others. To this
end, we extended OtterTune to support multiple algorithms in its
tuning manager. This allows us to deploy a single platform without
making major changes to the tuning pipeline.

We now describe the three algorithms that we evaluated: (1)
Gaussian Process Regression (GPR), (2) DeepNeural Network (DNN),
and (3) Deep Deterministic Policy Gradient (DDPG). Although
there are other algorithms that use query data to guide the search
process [28], they are not usable at SG because of privacy con-
cerns since the queries contain user-identifiable data. Methods to
anonymize this data are outside the scope of this paper.

1245

knobs

predicted metric
Data Repository

DNN

GPR

Workload Processing

Q-value

metrics pruning knob ranking

Workload Mapping Knob Recommandation

build

fit and compare
target

workload

most similar

workload

previous

workloads

gradiant

descend

recommended

knobs

knobs

predicted metric

Data Repository

DNN

GPR

Data Pre-Processing

metrics pruning

knob ranking

Knob Recommandation

build

compare
target

workload
most similar

workload

previous
workloads

knob
setting

optimizeraw data

metrics

Q-value

Actor

Critic

training tuples

Replay Memory

*ranked by error

training batch

fetch top

knobs

train

predict

Data Repository

raw data

[knobs, metrics]

metrics

DDPG Neural Networks

[state, action, reward]

process

update ranking

knob
setting

Figure 6: GPR/DNN Tuning Pipeline – The raw data for each previous workload is aggregated and compared with the target workload. Data from the most
similar previous workload is then merged with the target workload data to build a machine learning model (DNN or GPR). Finally, the algorithm recommends
the next configuration to run by optimizing the model.

knobs

predicted metric
Data Repository

DNN

GPR

Workload Processing

Q-value

metrics pruning knob ranking

Workload Mapping Knob Recommandation

build

fit and compare
target

workload

most similar

workload

previous

workloads

gradiant

descend

recommended

knobs

knobs

predicted metric

Data Repository

DNN

GPR

Data Pre-Processing

metrics pruning

knob ranking

Knob Recommandation

build

compare
target

workload
most similar

workload

previous
workloads

knob
setting

optimizeraw data

metrics

Q-value

Actor

Critic

training tuples

Replay Memory

*ranked by error

training batch

fetch top

knobs

train

predict

Data Repository

raw data

[knobs, metrics]

metrics

DDPG Neural Networks

[state, action, reward]

process

update ranking

knob
setting

Figure 7: DDPG Tuning Pipeline – The raw data is converted to states, actions, and rewards and then inserted into the replay memory. The tuples in the
replay memory are ranked by the error of the predicted Q-value. In the training process, the critic and actor are updated with a batch of the top tuples. After
training, the prediction error in the replay memory is updated, and the actor recommends the next configuration to run.

4.1 GPR — OtterTune (2017)
Our implementation of GPR is based on the original algorithm
supported by OtterTune [3]. It employs a Gaussian process as a
prior over functions to calculate the distance between the test point
and all the training points [31]. The algorithm uses the kernel
functions to predict the value of the test point and the uncertainty.
Figure 6 shows that OtterTune’s GPR pipeline is comprised of two
stages. The first is the Data Pre-Processing stage that prepares the
knob and metric data in OtterTune’s data repository. The second is
the Knob Recommendation stage that selects values for the knobs.

Data Pre-Processing: This stage aims to reduce the dimension-
ality of the metrics and determine the most important knobs to
tune. The service uses the output of this stage to generate knob
configurations for the target DBMS. OtterTune runs this stage peri-
odically in the background. Each invocation takes up to an hour,
depending on the number of samples and DBMS metrics.

The Data Pre-Processing stage first identifies a subset of DBMS
metrics that best capture the variability in performance and the
distinguishing characteristics of a given workload. The algorithm
uses a dimensionality reduction technique, factor analysis, to reduce
the metrics to a smaller set of factors that capture the correlation
patterns of the original variables. Each factor is a linear combination
of the original variables, and their coefficients can be interpreted in
the same way as the coefficients in linear regression. This means
that one can order the factors by how much of the variability in the
original data they explain. The algorithm then groups the factors
with similar correlation patterns using k-means clustering. Lastly,
the algorithm selects one representative metric from each group.

The stage then computes a ranked list of the knobs that have the
greatest impact on the target objective function. It uses a feature
selection method called Lasso [37], where the knob data is the input
𝑋 , and the output 𝑦 is the target objective data combined with the
pruned metrics. Lasso identifies the most important knobs during
the regression between 𝑋 and 𝑦. To do this, it starts with a high
penalty setting where all weights are zero, and thus no features
are selected in the regression model. It then decreases the penalty

in small increments, recomputes the regression, and tracks what
features are added back to the model at each step. The order in
which the knobs first appear in the regression determines how
much impact they have on the target metric.

Knob Recommendation: This stage is responsible for gener-
ating a new configuration recommendation at the end of each iter-
ation in the tuning session. The first step is to determine which of
the workloads that OtterTune tuned in the past is the most similar
to the current workload. It uses this previous data to “bootstrap”
the new session. To do this, the algorithm uses the output data from
the first stage to predict the metric values of the target DBMS’s
workload given the ranked listing of knobs.

The service then builds a GPR model with the data from both
the target workload and the most similar workload. For the given
array of knobs (𝑥) as its input, the model outputs the pair (𝑦,𝑢) of
the target objective value (𝑦) and the uncertainty value (𝑢). The
algorithm calculates the upper confidence bounds (UCB) as the sum
of 𝑦 and 𝑢. It then performs gradient ascent on the UCB to find
the knob settings expected to lead to a good objective value. It
searches from random knob settings as starting points, performs
gradient descent to find the local optimum from each starting point,
and recommends the highest one among those local optima as the
recommended knob configuration for the target DBMS.

An important issue in this process is how the algorithm manages
the trade-off between exploration (i.e., collecting new information
to improve the model) and exploitation (i.e., greedily trying to do
well on the objective). OtterTune adjusts the weight of the uncer-
tainty in UCB to control exploration and exploitation.

4.2 DNN — OtterTune (2019)
Previous research has argued that Gaussian process models do not
perform well on larger data sets and high-dimensional feature vec-
tors [26]. Given this, we modified OtterTune’s original GPR-based
algorithm described above to use a deep neural network (DNN)
instead of the Gaussian models. As shown in Figure 6, OtterTune’s
DNN algorithm follows the same ML pipeline as GPR.

1246

DNN relies on a deep learning algorithm that applies linear com-
binations and non-linear activations to the input. The network
structure of the DNN model has two hidden layers with 64 neu-
rons each. All of the layers are fully connected with rectified linear
units (ReLU) as the activation function. We implemented a popular
technique called dropout regularization to avoid overfitting the mod-
els and improve their generalization [35]. It uses a dropout layer
between the two hidden layers with a dropout rate of 0.5. DNN
also adds Gaussian noise to the parameters of the neural network
during the knob recommendation step [30] to control the amount
of exploration versus exploitation. OtterTune increases exploitation
throughout the tuning session by reducing the scale of the noise.

4.3 DDPG — CDBTune (2019)
This method was first proposed by CDBTune [40]. DDPG is a deep
reinforcement learning algorithm that searches for the optimal
policy in a continuous action space environment. The ability to
work on a continuous action space means thatDDPG can set a knob
to any value within a range, whereas other reinforcement learning
algorithms, such as Deep-Q learning, are limited to setting a knob
from a finite set of predefined values. We first describe CDBTune’s
DDPG, and then we present an extension to it that we developed
to improve its convergence rate.

As shown in Figure 7, DDPG consists of three components: (1)
actor, (2) critic, and (3) replay memory. The actor is a neural network
that chooses an action (i.e., what value to use for a knob) based on
the given states. The critic is a second neural network that evaluates
the selected action based on the states. In other words, the actor
decides how to set a knob, and then the critic provides feedback
on this choice to guide the actor. In CDBTune, the critic takes the
previous metrics and the recommended knobs as the input and
outputs a Q-value, which is an accumulation of the future rewards.
The actor takes the previous metrics as its input and outputs the
recommended knobs. The replay memory stores the training data
tuples ranked by the prediction error in descending order.

Upon receiving a new data point, CDBTune first calculates the
reward by comparing the current, previous, and initial target objec-
tive values. For each knob 𝑘 , DDPG constructs a tuple that contains
(1) the array of previous metrics 𝑚𝑝𝑟𝑒𝑣 , (2) the array of current
metrics𝑚, and (3) the current reward value. The algorithm stores
this tuple in its replay memory. It next fetches a mini-batch of the
top-ranked tuples from the memory and updates the actor and critic
weights via backpropagation. Lastly, it feeds the current metrics𝑚
into the actor to get the recommendation of the knobs 𝑘𝑛𝑒𝑥𝑡 , and
adds noise to 𝑘𝑛𝑒𝑥𝑡 to encourage exploration.

We identified a few optimizations to CDBTune’s DDPG algo-
rithm that reduce the amount of training data needed to learn
the representation of the Q-value. We call this enhanced version
DDPG++. There are three core differences between these algo-
rithms. First, DDPG++ uses the immediate reward instead of the
accumulated future reward as the Q-value. The assumption is that
each knob setting is only responsible for the DBMS’s performance
in the current tuning iteration and has no relationship to the perfor-
mance in future iterations. Second, DDPG++ uses a simpler reward
function that does not consider the previous or base target objective
values. Thus, each reward is independent of the previous one. Lastly,

Apr May Jun Jul Aug Sep

5000

10000

15000

20000

D
B

Ti
m

e
(s

ec
) VM01

VM02

VM03

VM04

VM05

Figure 8: Performance Variability – Performance for the TicketTracker
workload using the default configuration on multiple VMs over six months.

upon getting a new result, DDPG++ fetches multiple mini-batches
from the replay memory to train the networks to converge faster.

5 EVALUATION
We now present the results from our comparison of the above
tuning algorithms for SG’s Oracle installation on TicketTracker.

Random sampling methods serve as competitive baselines for
judging optimization algorithms because they are simple yet sur-
prisingly effective [9]. In our evaluation, we use a random sampling
method called Latin Hypercube Sampling (LHS) [22] as a base-
line. LHS is a space-filling technique that attempts to distribute
sample points evenly across all possible values. Such techniques
are generally more effective than naïve random sampling in high-
dimensional spaces, especially when collecting a small number of
samples relative to the total number of possible values.

We begin with an initial evaluation of the variability in the per-
formance measurements for SG’s environment. This discussion is
necessary to explain how we conduct our experiments and analyze
their results in the subsequent sections.

5.1 Performance Variability
Because each tuning session in our experiments takes multiple days
to complete, we deployed the Oracle DBMS on multiple VMs to
run the sessions in parallel. Our VMs run on the same physical
machines during this time, but the other tenants on these machines
or in the same rackmay change. As discussed in Section 2.2, running
a DBMS in virtualized environments with shared storage can lead to
unexplained changes in the system’s performance across instances
with the same hardware allocations and even on the same instance.

To better understand the extent of this variability in SG’s data
center, we measured the performance of our VMs once a week over
six months. We run the 10-minute segment of the TicketTracker
workload using SG’s default configuration. The results in Figure 8
show the DB Time metric for each VM instance over time. The first
observation from this data is that the DBMS’s performance on the
same VM can fluctuate by as much as 4× even though the DBMS’s
configuration and workload are the same. For example, VM02’s
DB Time in July is higher than what we measured in the previous
month. The next observation is that the relative performance of
VMs can vary as well, even within a short time window.

We believe that these inconsistent results are due to latency
spikes in the shared-disk storage. Figure 9 shows the DBMS’s per-
formance for one VM during a tuning session, along with its CPU
busy time and I/O latency. These results show a correlation be-
tween spikes in the I/O latency (three highlighted regions) and
degradation in the DBMS’s performance. In this example, the al-
gorithm had converged at this point of the tuning session, so the

1247

5000
10000
15000
20000

D
B

Ti
m

e
(s

)

2000
3000
4000
5000

C
P

U
bu

sy
Ti

m
e

(s
)

Tuning iterations

6
9

12
15

I/O
La

te
nc

y
(m

s)

Figure 9: Effect of I/O Latency Spikes – Runtimemeasurements of DBMS
performance with CPU utilization and I/O latency.

configuration was stable. Thus, it is likely that these latency spikes
are due to external causes outside of the DBMS’s control.

These fluctuations make our evaluation challenging since we
cannot reliably compare tuning sessions that run on different VMs,
or even the same VM but at different times. Given this, we made a
substantial effort to conduct our experiments in such a way that we
can provide meaningful analysis. We use the same procedure in all
of our experiments in this paper. Each tuning session is comprised
of 150 iterations. Every iteration can take up to one hour depending
on the quality of the DBMS’s configuration. As such, each session
took three to five days to complete.

For a given experiment, we run three tuning sessions per al-
gorithm under each condition being evaluated. We then collect
the optimized configurations from all the sessions, along with the
SG default configuration, and run them consecutively, three times
each, on three different VMs. That is, we run each configuration
a total of nine times – thrice per VM. Running the configurations
sequentially in the same time period is necessary since a VM’s
performance varies over time. It also lets us use the same DB Time
measurement for the SG default configuration to calculate their rel-
ative improvements. Running the configurations on three different
VMs guards against one VM being especially noisy.

We select the performance of each configuration on a given
VM as the median of the three runs. The overall performance of
each configuration is the average across the three VMs. We report
the minimum and maximum performance measurements from the
three optimized configurations for each algorithm.

5.2 Tuning Knobs Selected by DBA
This first experiment evaluates the quality of the configurations
that the tuning algorithms generate when increasing the number of
knobs that they tune. Although Oracle exposes over 400 knobs, we
limit the maximum number of knobs tuned to 40 for two reasons.
First, we want to evaluate how much better the ML algorithms are
at ranking the importance of knobs versus a DBA-selected ranking.
Asking a human to select more than 40 knobs to tune is unrealistic
and will produce random results. The second reason is to reduce
the time that the algorithms need to converge because the more
knobs there are, the harder it is to tune. Since each iteration of the
TicketTracker workload takes up to 45 minutes, it would poten-
tially take weeks for the models to converge. Hence, we consider a
maximum of 40 knobs that the DBA selected and ordered based on
their expected impact on the DBMS’s performance.

Knob Name Default Best Observed

DB_CACHE_SIZE 4 GB 20–30 GB
DB_32K_CACHE_SIZE 10 GB 15 GB

OPTIMIZER_FEATURES_ENABLE v11.2.0.4 v12.2.0.1

Table 2: Most Important Knobs – The three most important knobs for
the TicketTracker workload with their default and best observed values.

For these experiments, the ML-based algorithms do not reuse
data from previous tuning sessions. We instead bootstrap their
models by executing 10 configurations generated by LHS.

Figure 10 shows the improvement in DB Time over the SG default
configuration achieved by the best (i.e., highest-performing) of three
configurations generated per algorithm when optimizing 10, 20,
and 40 knobs by VM. Although the absolute measurements vary,
the algorithms’ relative performance rankings are consistent across
the VMs. Figure 11 shows the average performance improvement
over the three VMs for the optimized configurations generated by
the algorithms. The dark and light portions of each bar represent
minimum and maximum performance per algorithm, respectively.

To understand why the configurations perform differently, we
manually examined each configuration and identified three Oracle
knobs that have the most impact when the algorithms fail to set
them correctly. Table 2 shows the knobs’ value in the SG default con-
figuration and their best-observed value(s) from our experiments.
The first two control the size of the DBMSs’ main buffer caches.
One of these caches is for the DBMS’s 8 KB buffers for regular table
data, and the other is for 32 KB buffers that the DBMS uses for LOB
data. The third knob enables optimizer features based on an Oracle
release; this is a categorical variable with seven possible values.

Figure 11 shows that the configurations recommended by DNN
and DDPG++ that tune 10 knobs improve the DB Time by 45% and
43% over the default settings, respectively. Although LHS, GPR,
and DDPG achieve over 35% better DB Time, they do not perform
as well as DNN and DDPG++ because they select a sub-optimal
version of the optimizer features to enable.

For the 20-knob configurations, Figure 11 shows that all the
algorithms improve the DBMS’s performance by 33–40% over the
default configuration. Each algorithm, however, sets at least one
of the important knobs in Table 2 incorrectly. This is because the
tuning complexity increases with the number of knobs. We also see
that DNN has the largest gap between its minimum and maximum
optimized configurations. This is generally due to the randomness
in the exploration of the algorithms and the amount of noise on
the VM during a given tuning session.

As shown in Figure 11, the configurations from DNN and GPR
achieve 40% better DB Time than the default configuration. DDPG
and DDPG++ only achieve 18% and 32% improvement, respectively.
The reason is that neither of them can fully optimize the 40 knobs
within 150 iterations. DDPG++ outperforms DDPG because of the
optimizations that help it converge more quickly (see Section 4.3).
With more iterations, DDPG would likely achieve similar perfor-
mance to the other ML-based algorithms. But due to computing
costs and labor time, it was not practical to run a session for more
than 150 iterations in our evaluation. The LHS configuration per-
forms the worst of all, achieving only 10% improvement over the

1248

GPR DNN DDPG DDPG++ LHS

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) 10 Knobs
VM #1 VM #2 VM #3

0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(b) 20 Knobs
VM #1 VM #2 VM #3

0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(c) 40 Knobs
Figure 10: Tuning Knobs Selected by DBA (Per VM) – The performance improvement of the best configuration per algorithm running on separate VMs
relative to the performance of the SG default configuration measured at the beginning of the tuning session.

10 Knobs 20 Knobs 40 Knobs
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

Figure 11: Tuning Knobs Selected by DBA – Performance measure-
ments for 10, 20, and 40 knob configurations for the TicketTracker workload.
The shading on each bar indicates the minimum and maximum performance
of the optimized configurations from three tuning sessions.

default. This shows how sampling techniques like LHS can be inef-
ficient for high-dimensional spaces.

In summary, we find that the configurations generated by all
of the algorithms that tune 10, 20, and 40 knobs can improve the
DBMS’s performance over the default configuration. GPR always
converges quickly, even when optimizing 40 knobs. But GPR is
prone to getting stuck in local minima, and once it converges, it
stops exploring and thus does not continue to improve after that
point. The performance of GPR, therefore, depends on whether it
explores the best-observed ranges of the impactful knobs from Ta-
ble 2. We also observe that its performance is influenced by the
initial samples executed at the start of the tuning session. This is
consistent with findings from previous studies [26]. In contrast,
DNN, DDPG, and DDPG++ require more data to converge and
carry out more exploration. The configurations that tune 10 knobs
perform the best overall. This is because the lower complexity of
the configuration space enables DNN and DDPG++ to find good
settings for the impactful knobs in Table 2.

5.3 Tuning Knobs Ranked by OtterTune
Our comparison in the previous experiment used DBA-selected
knobs. We next measure the quality of the configurations when
we remove the human entirely from the tuning process and use
OtterTune’s Lasso algorithm described in Section 4.1 to select the
knobs to tune for all the algorithms. This arrangement is pertinent
because, in real-world deployments, a DBA may not be available
to choose what knobs to tune or may not be able to rank them
correctly. To generate this list of knobs, we train Lasso on the data
collected from the experiments in Section 5.2. We then use Lasso
to rank the knobs based on their estimated influence on the target
objective function [38] and split this list into two sets of 10 and 20
for the algorithms to tune. We again initialize the ML models by
executing 10 configurations generated by LHS.

When comparing the knob rankings selected by OtterTune and
the DBA, we find that five of the top 10 knobs selected by OtterTune
also appear in the DBA’s top 10 knobs. For the top 20 OtterTune-
selected knobs, 11 of them overlap with the ones chosen by the
DBA. Crucially, OtterTune’s top 10 knobs include the three most
important knobs from Table 2.

Figure 12 shows the performance improvement of the best con-
figuration over the SG default for each algorithm by VM. For 10
knobs, the results show that the DB Time measurements from VM
#1 are lower than the other VMs, but that the performance trends
of the algorithms are similar. Figure 12b shows that for the 20-knob
configurations, the improvements achieved by the algorithms are
mostly stable across the three VMs. The exception is DNN, which
performs the best on VMs #2 and #3 but then the worst on VM #1.

Figure 13 shows the average performance improvement for 10
and 20 knob configurations. The 10-knob configurations from LHS
and DNN perform the best, achieving ∼40% better DB Time over
the default configuration. GPR, DDPG, and DDPG++ have improve-
ments of 26%, 19%, and 17% for 10 knobs, respectively. Only LHS
and DNN generate configurations with the ideal settings for the
three most important knobs in Table 2, whereas the other algo-
rithms have incorrect settings for at least one of them. We could
not identify any knob in LHS’s configuration that explains the 5%
improvement over the best configuration in Figure 11.

For 20 knobs, the results in Figure 13 show that the optimized
configuration for GPR achieves 27% better DB Time than the SG
default configuration. DNN performs the next best, improving the
DB Time by 15%. The configurations generated by DDPG++ and
LHS improve the performance by less than 10%. For DDPG, none
of its optimized configurations that tune 20 knobs improved the
DB Time over the default settings. Likewise, none of the worst-
performing 20-knob configurations outperformed the default. We
believe the overall poor performance of the 20-knob configurations
is partly due to more shared storage noise at the beginning of
August 2020 when we ran these experiments. The variability in the
performance measurements at that time supports this explanation
(see Figure 8). All the ML-based algorithms take longer to converge
when the performance of the VM is unstable. This especially impacts
DDPG and DDPG++ since they take longer to converge in general.

The improvements when tuning the top 10 knobs ranked by
OtterTune are comparable to the DBA-ranked knobs shown in
Figure 11. This is partly because the Lasso algorithm correctly
identified the importance of the three knobs in Table 2. Operating
in a cloud environment makes it difficult to determine which set is
superior since smaller improvements likely due to noise.

1249

GPR DNN DDPG DDPG++ LHS

VM #1 VM #2 VM #3
-50

-25

0

25

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) 10 Knobs
VM #1 VM #2 VM #3

-50

-25

0

25

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(b) 20 Knobs
Figure 12: Tuning Knobs Ranked by OtterTune (Per VM) – The performance improvement of the best configuration per algorithm running on separate
VMs relative to the performance of the SG default configuration measured at the beginning of the tuning session.

10 Knobs 20 Knobs
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

-8.5%

Figure 13: Tuning Knobs Ranked by OtterTune – Performance mea-
surements for the ML algorithm configurations using 10 and 20 knobs
selected by OtterTune’s Lasso ranking algorithm. The shading on each
bar indicates the minimum and maximum performance of the optimized
configurations from three tuning sessions.

5.4 Adaptability to Different Workload
We next analyze the quality of ML-generated configurations when
we train their models on oneworkload and then use them to tune an-
other workload. The ability to reuse training data across workloads
potentially reduces the number of iterations that the algorithms
need for their models to converge.

We first train models for each algorithm using a TPC-C workload
executed by OLTP-Bench [16]. We configured the benchmark to
use 200 warehouses (∼20 GB) with 50 terminals. We then ran the
workload for 10 minutes and captured the queries using Oracle’s
RAT tool. Next, we tune the top 20 knobs selected by the DBA and
train each TPC-C model for 150 iterations. We then use the TPC-C
model to tune the TicketTracker workload for 20 iterations.

Figure 14a shows the performance improvement over the SG
default configuration achieved by the algorithms per VM. Although
the algorithms’ rankings based on performance are similar for the
three VMs, the performance gains on VM #3 are much larger than
the other VMs. The reason is that we calculate the improvement
of each algorithm relative to the performance of the SG default
configuration, which is particularly bad on VM #3.

Figure 14b shows the DBMS’s average performance for the best
configurations selected by each algorithm. DNN’s configuration
performs the best, improving the DB Time by 23% over the default
configuration. DDPG and GPR perform nearly as well and achieve
21% and 18% better DB Time, respectively. The best configuration
generated by DDPG++ only improves the performance by 3%.

We examined the configurations for differences in the best-
observed settings for TPC-C and TicketTracker that may explain
why the algorithms were unable to achieve performance compara-
ble to the results in Figures 11 and 13. We observed that none of
the algorithms changed the sizes of the two buffer caches in Table 2
from their SG default settings. This is expected for the LOB buffer
cache since none of TPC-C’s data is stored in the 32 KB tablespace.

GPR DNN DDPG DDPG++

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) Performance per VM (b) Performance Summary
Figure 14: Adaptability to Different Workloads – Comparison when
applying the model trained on TPC-C data to the TicketTracker workload.

For the main buffer cache, the benefit of increasing its size may be
negligible since TPC-C’s working set size is small.

We also found contrary settings for the knob that specifies file
I/O operations.5 Its best-observed setting for TicketTracker enables
direct I/O, whereas for TPC-C, it disables it. One possibility is that
the OS page cache is more efficient than the DBMS’s buffer cache
for TPC-C because it consists of mostly small writes. This would
also explain why the size of the buffer cache was small.

5.5 Execution Time Breakdown
In this section, we evaluate the execution time details to better
understand where time is being spent during a tuning iteration.
OtterTune’s controller and tuning manager record execution times
from the service’s components for each tuning session. We group
these measurements into seven categories:
1. Restore Database: Reset the database to its initial state.
2. Collect Storage Metrics: Run the Fio microbenchmarks on

the DBMS’s underlying storage device.
3. Prepare Workload: Run the Oracle RAT procedures to ini-

tialize and prepare for the next workload replay.
4. Execute Workload: Replay the workload trace.
5. Collect Data: Retrieve knob/metric data and generate the

summary reports provided by Oracle.
6. Download Configuration: Upload the new result to the Ot-

terTune service and download the next configuration to try.
7. Update Configuration: Install the next configuration.
Table 3 shows the breakdown of the median time spent in each

category during a tuning iteration. As expected, most of the time
is spent executing the workload trace. Although we replay a 10-
minute segment of the trace, the actual time it takes to execute it
5Oracle Knob – FILESYSTEM_IO

1250

Category Time (sec) % of Total Time

Restore Database 318 18.8%
Run Fio 84 5.0%

Prepare Workload 57 3.4%
Execute Workload 959 56.9%

Collect Data 167 9.9%
Download Configuration 19 1.1%

Update Configuration 82 4.9%
Total Time 1777 100%

Table 3: ExecutionTimeBreakdown – Themedian amount of time spent
in different parts of the system during a tuning iteration.

GPR DNN DDPG DDPG++ LHS

Execute (sec) 762 1006 1021 1274 1311
% Canceled 1.8% 8.7% 12.9% 26.8% 32.4%

Table 4:WorkloadReplay Time perAlgorithm – Themedian workload
execution time and the percentage of replays canceled for the algorithms.

can be longer if the DBMS’s configuration has bad settings external
factors are affecting the VM’s performance (e.g., high I/O latency
due to resource contention). The median time it takes to replay the
workload is ∼16 minutes, but it can take up to 45 minutes. Long-
running replays lasting more than 45 minutes are automatically
canceled (see Section 6). The next highest percentage of time is
spent restoring the database to its original state after the workload
replay. This process takes approximately five minutes since the
system only needs to restore the modified pages.

OtterTune’s controller spends ∼10% of its time each iteration
collecting data from the DBMS. Although the portion of time spent
on this task is relatively low, spending nearly three minutes on data
collection might seem questionably high. But only 15 seconds of
that time is spent collecting the knob andmetric data; the remaining
time is spent collecting summary reports provided by Oracle. These
reports were useful for debugging the issues we encountered during
this study, and thus we believe the overhead is worthwhile.

Of the categories shown in Table 3, the only two that vary per al-
gorithm are Execute Workload and Download Config. Table 4 shows
the median workload execution time and the percentage of replays
canceled for each algorithm. Both the execution time and the replay
cancel rate are related to how quickly the algorithm converges. As
an algorithm learns more, it is less likely to select poor configu-
rations. Thus, the number of long-running replays decreases as
the algorithm nears convergence. Table 4 shows that GPR has the
fewest canceled replays. DDPG++ has fewer canceled replays than
DDPG due to its improved convergence rate (see Section 4.3). LHS
has the highest workload execution time and percentage of canceled
replays because it is a sampling technique and never converges.

6 LESSONS LEARNED
During the process of setting up and deploying OtterTune at SG
for this study, several issues arose that we did not anticipate. Some
of these were specific to SG’s operating environment and cloud
infrastructure. Several issues, however, are related to the broad field
of automated DBMS tuning. We now discuss these problems and
our solutions for dealing with them.

(1) Handling Long-running Configurations:As discussed in
Section 2.2, prior studies on ML-based tuning relied on synthetic
benchmarks in their evaluations. Benchmarks like TPC-C are fixed
workloads that can be executed for a specific amount of time. Bad
knob configurations and other performance factors do not affect the
execution time. Conversely, the TicketTrackerworkload’s execution
time depends on how long it takes to replay the queries in that
trace. Thus, the DBMS’s performance affects how long this will
take. We found in our experiments that a poor knob configuration
could increase the execution of SG’s 10-minute trace to several
hours. We also observed that the trace took longer when the VMs
were experiencing higher I/O latencies.

Given this, the controller needs to support an early abort mech-
anism that stops long-running workload replays. Setting the early
abort threshold to lower values is beneficial because it reduces
the total tuning time. This threshold, however, must be set high
enough to account for variability in cloud environments. We found
that the 45-minute cut-off worked well, but further investigation is
needed on more robust methods. For early aborted configurations,
the DBMS’s metrics, especially Oracle’s DB Time, are incorrectly
smaller because the workload is cut off. Thus, to correct this data,
the controller calculates a completion ratio as the number of finished
transactions divided by the total transactions in the workload. It
then uses this ratio to scale all counter metrics to approximate what
they would have been if the DBMS executed the full workload trace.

(2) Handling Failed Configurations: If the ML algorithms
do not have prior training data, they will inevitably select poor
configurations to install on the DBMS at the beginning of a tuning
session. There are two kinds of configurations that cause failures,
and each one must be handled by the tuning service differently.
The first of these prevents the DBMS from even starting. The most
common case is when a knob’s value exceeds its allowable bounds.
For example, some knobs related to memory cannot be set to a value
higher than the available RAM. But this problem also occurs when
an implicit dependency that exists between knobs is violated. For
Oracle, such a dependency exists between two knobs that configure
the DBMS’s “shared” pool for SQL statements. One of these knobs
controls the total size of the pool and the other specifies how much
of the pool to reserve for large objects, which cannot be set to a
value larger than half the total size of the pool.6

The second kind of bad configuration is when the DBMS suc-
cessfully starts but then crashes at some point during workload
replay. In the case of Oracle, this occurs when the buffer cache size
is set too large. The DBMS allocates the memory for this buffer
incrementally, and thus it is not caught in start-up checks.

The first issue with a bad configuration is how to identify that
it caused a failure. Configurations that cause the DBMS to fail
to start or crash require access to its host machine to determine
the nature of the failure. To do this, we modified the controller
to retrieve Oracle’s debug log from the host machine and then
check for specific error messages. We acknowledge that DBMS
cloud offerings that do not allow login access to the DBMS’s host
machine will require different failure detection methods.

The next problem is what to do with data collected for failed
configurations. Simply discarding this data and starting the next

6Oracle Knobs – SHARED_POOL_SIZE, SHARED_POOL_RESERVED_SIZE

1251

iteration means that the tuning algorithms would fail to learn that
the configuration was bad. But including the metrics from a delayed
crash is risky because if they are not scaled correctly, the algorithms
could improperly learn that those configurations improve the ob-
jective function. Our solution is to set the result for that iteration
to be twice the objective function value of the worst configuration
ever seen. Because the DBMS is not operational with these failed
configurations, it is valid to give them the same “score.”

(3) DBMS Maintenance Tasks: Every major DBMS contains
components that perform periodic maintenance tasks in the system.
Some DBMSs invoke these tasks at scheduled intervals, while other
tasks are in response to the workload (e.g., Postgres’s autovacuum
runs when a table is modified a certain number of times). It is best
to be aware of these in advance before starting a tuning session.

We also found it helpful to collect metrics from the DBMS’s
OS to identify the causes of random performance spikes. While
running the experiments for this study, we noticed a degradation in
Oracle’s performance that occurred at the same time each evening.
This reduction was due to Oracle’s maintenance task that computes
optimizer statistics once a day. It took us longer to discover the
source of this problem than we would have liked because we did not
initially collect the metrics to help us track it down. Since we were
restoring the database to the same state after each iteration, our
solution was to disable the maintenance task from running in our
experiments. Additional research is needed on how to best handle
maintenance tasks that are scheduled during a tuning session.

(4) Unexpected Cost Considerations: Our results showed
that ML-based algorithms generate configurations that improved
performance by up to 45%. Although these gains are noteworthy,
there is a trade-off between the time it took to deploy OtterTune
versus the benefit. There are several non-obvious factors that one
must consider when determining whether an ML-based tuning so-
lution is worthwhile. First, it depends on the economic significance
of the applications that the organization wishes to tune. Such con-
siderations include the DBMS software license and hardware costs,
and the applications’ monetary and SLA requirements.

The second factor to consider is the administrative effort involved
in tuning a database. This effort is the cost of going through the
proper stakeholders to get approval. Third, it depends on whether
the organization has the tooling and infrastructure to run the tuning
sessions. These capabilities include the ability to clone the database
and its workload onto hardware similar to the production environ-
ment. It is non-trivial to estimate these intangible costs relative to
the benefit of deploying an ML-based tuning service – they are just
factors that an organization must consider to make that decision.

7 RELATEDWORK
Much of the previous work on automatic database tuning has fo-
cused on optimizing the physical design of the database [12], such
as selecting indexes [7, 20], partitioning schemes [8, 13, 29], or
materialized views [7]. There have been efforts to automatically
tune a DBMSs’ configuration knobs since the early 2000s. We clas-
sify the previous work on database configuration tuning into two
categories: (1) rule-based methods and (2) ML-based methods.

Rule-based methods select DBMSs’ knob settings based on a
predefined set of rules or heuristics. In most cases, the heuristics

only apply to a particular DBMS and target a specific group of
knobs [1, 5, 14, 27]; thus, rule-based tools are often limited in scope.
The IBM DB2 Performance Wizard Tool asks the DBA questions
about their application and provides DBMS knob settings based on
the answers [27]. Oracle provides a diagnostic tool that can iden-
tify the performance bottlenecks caused by misconfigurations [15].
BestConfig [42] divides the high-dimensional parameter space into
subspaces and uses principles derived from the given resource limits
of the knobs to search for the optimal configuration.

ML-based methods employ black-box techniques to automati-
cally learn the optimal settings for DBMSs’ configuration knobs [41].
Bayesian Optimization (BO) is a popular ML-based approach that
has been successfully applied to system configuration and hyperpa-
rameter tuning problems [33, 34]. BO is used by both iTuned [17]
and our previous work on OtterTune [38], which model the DBMS
tuning problem as a Gaussian Process.

Reinforcement learning is another ML-based method that has
been adapted for database tuning, notably in CDBTune [40] and
QTune [28]. Both of these use the DDPG algorithm described in
Section 4.3, but QTune extends it to include information that it
extracts from the queries in its models (e.g., query type, accessed
tables). Although QTune supports more fine-grained tuning, pri-
vacy constraints may prevent some organizations from sharing this
query information since the queries contain sensitive user data.

There are also methods that focus on tuning specific knobs to op-
timize database performance. iBTune only tunes the buffer pool size
for individual database instances [36]. It employs a pairwise DNN
that uses features from pairs of cloud database instances to predict
request response times. RelM is a multi-level tuning method that
optimizes memory allocations in data analytics systems (Hadoop,
Spark) [26]; it uses Guided Bayesian Optimization that incorporates
metrics derived from the application to speed up the optimization.
Other studies focused on reducing the number of knobs that a
tuning service considers. Our original OtterTune implementation
uses Lasso [37] to rank knobs by importance. Kanellis et al. use
classification and regression trees (CART) [10] to determine the
most important knobs to tune to achieve good performance [24].

8 CONCLUSION
In this study, we conducted a thorough evaluation of machine
learning-based DBMS knob tuning methods with a real workload
on an Oracle installation in an enterprise environment. We im-
plemented three state-of-the-art ML algorithms in the OtterTune
tuning service in order to make a head-to-head comparison. Our
results showed that these algorithms could generate knob configura-
tions that improved performance by up to 45% over ones generated
by a human expert, but the performance was influenced by the num-
ber of tuning knobs and the assistance of human experts in knob
selection. We also solved several deployment and measurement
issues that were overlooked by previous studies.

ACKNOWLEDGMENTS
This work was supported (in part) by the National Science Founda-
tion (IIS-1846158, III-1423210), the National Science Foundation’s
Graduate Research Fellowship (DGE-1252522), Google Research
Grants, and theAlfred P. Sloan Research Fellowship program.TKBM.

1252

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1423210
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1252522
https://sloan.org/grant-detail/8638

REFERENCES
[1] 2011. MySQL Tuning Primer Script. https://launchpad.net/mysql-tuning-primer.
[2] 2021. FIO: Flexible I/O Tester. https://fio.readthedocs.io/en/latest/fio_doc.html.
[3] 2021. OtterTune. https://ottertune.cs.cmu.edu.
[4] 2021. OtterTune - Automated Database Tuning Service. https://ottertune.com.
[5] 2021. PostgreSQL Configuration Wizard. https://pgtune.leopard.in.ua.
[6] 2021. Société Générale. https://www.societegenerale.com.
[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In Proceedings of
the 26th International Conference on Very Large Data Bases. 496–505.

[8] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating Vertical
and Horizontal Partitioning into Automated Physical Database Design. In Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of
Data. 359–370.

[9] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.

[10] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. 1984.
Classification and Regression Trees. CRC press.

[11] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “What-If” Index
Analysis Utility. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data. 367–378.

[12] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases. 3–14.

[13] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 48–57.

[14] Benoît Dageville andMohamed Zait. 2002. SQLMemoryManagement in Oracle9I.
In Proceedings of the 28th International Conference on Very Large Data Bases. 962–
973.

[15] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Gra-
ham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In
CIDR. 84–94.

[16] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.

[17] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase
Configuration Parameters with iTuned. Proceedings of the VLDB Endowment 2, 1
(2009), 1246–1257.

[18] Kurt Engeleiter, John Beresniewicz, and Cecilia Gervasio. 2010. Maximizing
Database Performance: Performance Tuning with DB Time. Retrieved December
29, 2020 from https://www.oracle.com/technetwork/oem/db-mgmt/s317294-db-
perf-tuning-with-db-time-181631.pdf

[19] Leonidas Galanis, Supiti Buranawatanachoke, Romain Colle, Benoît Dageville,
Karl Dias, Jonathan Klein, Stratos Papadomanolakis, Leng Leng Tan, Venkatesh-
waran Venkataramani, Yujun Wang, and Graham Wood. 2008. Oracle Database
Replay. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data. 1159–1170.

[20] Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive Data
Base Management System. In Proceedings of the 1976 ACM SIGMOD International
Conference on Management of Data. 1–8.

[21] Michael Hammer and Bahram Niamir. 1979. A Heuristic Approach to Attribute
Partitioning. In Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data. 93–101.

[22] Charles R. Hicks and Kenneth V. Turner. 1997. Fundamental Concepts in the
Design of Experiments (5 ed.). Oxford University Press.

[23] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. 2001. Characteristics of
Production Database Workloads and the TPC Benchmarks. IBM Systems Journal
40, 3 (2001), 781–802.

[24] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
2020. TooMany Knobs to Tune? Towards Faster Database Tuning by Pre-selecting
Important Knobs. In 12th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 20).

[25] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb,
Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander Zeier. 2011. Fast
Updates on Read-Optimized Databases Using Multi-Core CPUs. Proceedings of
the VLDB Endowment 5, 1 (2011), 61–72.

[26] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an
AutoTuner for Memory-based Analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1667–1683.

[27] Eva Kwan, Sam Lightstone, Adam Storm, and Leanne Wu. 2002. Automatic
Configuration for IBM DB2 Universal Database. Technical Report. IBM.

[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[29] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-Aware Automatic
Database Partitioning in Shared-Nothing, Parallel OLTP Systems. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data. 61–72.

[30] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y.
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. 2018.
Parameter Space Noise for Exploration. In 6th International Conference on Learn-
ing Representations (ICLR 2018).

[31] Carl Edward Rasmussen. 2003. Gaussian Processes in Machine Learning. In
Summer School on Machine Learning. Springer, 63–71.

[32] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. RuntimeMeasure-
ments in the Cloud: Observing, Analyzing, and Reducing Variance. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 460–471.

[33] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Fre-
itas. 2016. Taking the HumanOut of the Loop: A Review of Bayesian Optimization.
Proc. IEEE 104, 1 (2016), 148–175.

[34] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. In Advances in Neural Information
Processing Systems. 2951–2959.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

[36] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. iBTune: Individualized Buffer
Tuning for Large-Scale Cloud Databases. Proceedings of the VLDB Endowment 12,
10 (2019), 1221–1234.

[37] Robert Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[38] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1009–1024.

[39] Bohan Zhang. 2021. https://github.com/bohanjason/ottertune.
[40] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement
Learning. In Proceedings of the 2019 International Conference on Management of
Data. 415–432.

[41] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database Meets
Artificial Intelligence: A Survey. IEEE Transactions on Knowledge and Data
Engineering (2020).

[42] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Perfor-
mance Potential of Systems via Automatic Configuration Tuning. In Proceedings
of the 2017 Symposium on Cloud Computing. 338–350.

1253

https://launchpad.net/mysql-tuning-primer
https://fio.readthedocs.io/en/latest/fio_doc.html
https://ottertune.cs.cmu.edu
https://ottertune.com
https://pgtune.leopard.in.ua
https://www.societegenerale.com
https://www.oracle.com/technetwork/oem/db-mgmt/s317294-db-perf-tuning-with-db-time-181631.pdf
https://www.oracle.com/technetwork/oem/db-mgmt/s317294-db-perf-tuning-with-db-time-181631.pdf
https://github.com/bohanjason/ottertune

