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ABSTRACT

Low-dimensional representations, or embeddings, of a graph’s nodes
facilitate several practical data science and data engineering tasks.
As such embeddings rely, explicitly or implicitly, on a similarity
measure among nodes, they require the computation of a quadratic
similarity matrix, inducing a tradeoff between space complexity and
embedding quality. To date, no graph embedding work combines
(i) linear space complexity, (ii) a nonlinear transform as its basis,
and (iii) nontrivial quality guarantees. In this paper we introduce
FREDE (FREquent Directions Embedding), a graph embedding based
on matrix sketching that combines those three desiderata. Starting
out from the observation that embedding methods aim to preserve
the covariance among the rows of a similarity matrix, FREDE itera-
tively improves on quality while individually processing rows of a
nonlinearly transformed PPR similarity matrix derived from a state-
of-the-art graph embedding method and provides, at any iteration,
column-covariance approximation guarantees in due course almost
indistinguishable from those of the optimal approximation by SVD.
Our experimental evaluation on variably sized networks shows that
FREDE performs almost as well as SVD and competitively against
state-of-the-art embedding methods in diverse data science tasks,
even when it is based on as little as 10% of node similarities.
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1 INTRODUCTION

Low-dimensional representations, or embeddings, of graph’s nodes
provide a multi-purpose tool for performing data science tasks such
as community detection, link prediction, and node classification.
Neural embeddings [12, 25, 33, 36], computed by unsupervised
representation learning over nonlinear transformations, outper-
form their linear counterparts [23, 47] in task performance, and
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Figure 1: FREDE scalably produces an embedding at any
time; at the dotted black line, it outperforms all contenders,

including the SVD of a PPR-like similarity matrix, after pro-

cessing about 20% of matrix rows. (PPI data)

achieve scalability via sampling a node similarity matrix, such as
Personalized PageRank (PPR); however, such neural methods lack
theoretically grounded error guarantees with respect to their objec-
tives. The theoretically most well-grounded state-of-the-art method,
NetMF [28], performs Singular Value Decomposition (SVD) on a
dense matrix of nonlinear node similarities, and achieves the global
optimum of its objective by virtue of the properties of SVD.

However, this optimality comes to the detriment of scalability,
as NetMF needs to precompute the similarity matrix and store it in
memory at cost quadratic in the number of nodes. An ideal method
should achieve both quality and scalability.

In this paper, we propose FREDE, the first, to our knowledge,
linear-space algorithm that produces embeddings with quality guar-
antees from a nonlinear transform. We observe that factorization-
based embeddings effectively strive to preserve the covariance of
a similarity matrix, and that a few nodes acting as oracles approx-
imate the distances among all nodes with guarantees [35]. Given
these observations, we adapt a covariance-preservingmatrix sketch-
ing algorithm, Frequent Directions (FD) [11, 18], to produce a graph
embedding by factorizing, on a per-row basis, a PPR-like node sim-
ilarity matrix derived by interpreting a state-the-art neural embed-
ding, VERSE [36], as matrix factorization. FREDE can be distributed,
as it inherits the mergeability property of FD: two embeddings can
be computed independently on different node sets and merged to a
single embedding, with quality guarantees that hold anytime [48],
even after accessing a subset of similarity matrix rows. Figure 1
shows that FREDE outperforms state-of-the-art methods and SVD
in a node classification task after processing about 20% of similarity
matrix rows representing graph nodes.

We summarize our contributions as follows:
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(1) we interpret a state-of-the-art graph embedding method,
VERSE, as factorizing a transformed PPR similarity matrix;

(2) we propose FREDE, an anytime graph embedding algorithm
that minimizes covariance error on that PPR-like matrix via
sketching, with space complexity linear in the number of
nodes and time linear in the number of processed rows;

(3) in a thorough experimental evaluation with real graphs we
confirm that FREDE is competitive against the state of the
art and scales to large networks.

2 PRELIMINARIES AND RELATEDWORK

Our work builds on the know-how of matrix sketching to derive
scalable, anytime graph embeddings for practical data science tasks.
Here, we outline previous work on graph embeddings and the
fundamentals of matrix sketching.

2.1 Problem setting

A graph is a pairG = (V ,E) with n vertices V = (v1, . . . ,vn ), |V | =
n, and edges E ⊆ V × V , |E | = m, represented by an adjacency

matrix A for which Ai j = 1 if (i, j) ∈ E is an edge between node i
and node j, otherwise Ai j = 0. D is the diagonal matrix with the
degree of node i as entry Dii =

∑n
j=1 Ai j . The normalized adjacency

matrix, P = D−1A, represents the transition probability from a node
to any of its neighbors. We represent interactions among nodes
with a similarity matrix S ∈ Rn×n [23, 36, 47]. The row i of A is
denoted as Ai . The embedding problem is to find an n×d matrix W
that retains most information in S.

2.2 Neural embeddings

Initial works on graph embeddings relied on a neural network to
produce vector representations of a graph’s nodes; DeepWalk [25]
first transferred such methods from words [16, 20] to graphs, uti-
lizing a corpus of random walks. LINE [33] extended DeepWalk
by exploiting graph edges rather than walks; Node2vec [12] cus-
tomized random walk generation; and VERSE [36] generalized this
approach to a method that preserves any similarity measure among
nodes, with Personalized PageRank (PPR) [24] as the default option.
Such neural embeddings leverage paths around a node, reach scal-
ability via sampling, and provide no closed-form solution and no
quality guarantees; we call them positional embeddings. In another
neural approach, structural embeddings [3, 29, 30] leverage com-
plex graph structural patterns to improve quality at the expense
of scalability; however, positional embeddings outperform their
structural counterparts in both quality and scalability. For these
reasons, we exclude structural embeddings from our discussion.

2.3 Factorization-based embeddings

Other works cast the problem of embedding a graph’s nodes as one
of exact or approximate factorization of the node similarity matrix,
which is meant to minimize the reconstruction error [28]:

Definition 1 (Reconstruction error). The reconstruction
error between matrices S and S̃ is the Frobenius norm of the difference

among the S and S̃, i.e., ∥S − S̃∥2F =
√∑n

i=1
∑n
j=1(Si j − S̃i j )2.

In the case of symmetric S, there exists an eigendecomposi-
tion S = UΛU⊤, and the optimal rank-k approximation of S is

[S]k =WW⊤, where the matrix W = Uk
√
Λk is the product be-

tween the matrix of the first k eigenvectors, Uk , and a diagonal
matrix of the square roots of the first k eigenvalues, Λk . On the
other hand, in case S is asymmetric, the best rank-k approximation
is obtained by the first k singular vectors and values of the Singular
Value Decomposition (SVD) S = U ΣV⊤, i.e., [S]k = UkΣkV⊤k , where
Uk and Vk denotes the first k columns of U and V, respectively.

GraRep [8] applies SVD to factorize a concatenation of dense
log-transformed DeepWalk transition probability matrices over
different numbers of steps; yet it is neither scalable, nor provides
quality guarantees. HOPE [23] overcomes the scalability drawback
using a generalized form of SVD on special similarity matrices in
the form AB−1; it achieves optimality due to the guarantees of the
Eckart–Young–Mirsky theorem, but its overall performance is hin-
dered by the linearity of the underlying transform [36]. AROPE [47]
applies spectral filtering on symmetric similarity matrices, forfeit-
ing any guarantees. ApproxPPR [41] applies the randomized block
Krylov SVD algorithm [22] on a truncated PPR matrix; NRP [41]
iteratively reweights the resulting embedding vectors by coordinate
descent; this post-hoc refinement boosts the performance of Ap-
proxPPR embeddings [41]. STRAP [42] applies sparse factorization
on a sparse-PPR-based proximity matrix; similarly, ProNE [45] uses
sparse factorization on a weighted adjacency matrix and spectral
propagation on the obtained embeddings.

2.4 The neural-factorization connection

Recent work has established a connection between neural and
factorization-based embeddings. In NetMF [28], Qiu et al. extended
an analysis of word embeddings [16] to connect matrix factorization
and neural embeddings: under certain probability independence
assumptions, DeepWalk, LINE, and Node2vec implicitly apply
SVD on dense log-transformed similaritymatrices. NetMF proposes
novel closed-form solutions to compute such matrices with optimal
error guarantees. For example, DeepWalk’s objective is equivalent
to SVD on the dense similarity matrix

S = log

(
m

bT

( T∑
r=1

Pr
)
D−1

)
, (1)

where T is the random walk window size and b is the number
of negative samples [28]. The d-dimensional DeepWalk embed-
ding is obtained as Ud

√
Σd , where Ud contains the d left singular

vectors and Σd the first d singular values. However, this NetMF
approach requires O(n2) space to store S, a prohibitive complexity
that hinders its application to graphs with more than 100 000 nodes.
In another attempt, NetSMF [27], Qiu et al. sought to mitigate
NetMF’s scalability drawback by sparsifying the similarity ma-
trix; however, matrix sparsification forfeits optimality guarantees,
causing performance deterioration for effectual sparsity levels [27];
besides, the sparsified matrix has O(Tm logn) nonzeros, hence it
still yields quadratic growth.

2.5 Synoptic overview

Table 1 presents previous work, including a hierarchical-clustering-
based heuristic, LouvainNE [5], and one sketching Self-Loop-Aug-
mented adjacency vectors, NodeSketch [40], in terms of desiderata
of the solution, its computation, and time/space requirements:
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Solution Computation Complexity

type method Nonlinear Closed-form Error-bounded Versatile Frugal Anytime Mergeable Space Time

ne
ur
al

DeepWalk
✔ ✘ ✘ ✘

✔
✘ ✘

O(dn) O(dn logn)
Node2vec ✘ O(n3) O(dnb)
LINE ✔ ✘ ✘ ✘ ✔ ✘ ✘ O(dn) O(dnb)
VERSE ✔ ✘ ✘ ✔ ✔ ✘ ✘ O(dn) O(dnb)

fa
ct
or
iz
at
io
n

HOPE ✘ ✔ ✔ ✔ ✔ ✘ ✘ O(dn) O(d2m)
AROPE ✘ ✔ ✘ ✔ ✔ ✘ ✘ O(dn) O(dm+d2n)
ApproxPPR

✘
✔

✘ ✘ ✔ ✘ ✘ O(dn) O((dm + d2n) logn)NRP ✘

NetMF
✔ ✔

✔
✔ ✘ ✘ ✘

O(n2) O(dn2)
NetSMF ✘ O(n2) O(n2)
STRAP ✔ ✘ ✘ ✔ ✔ ✘ ✘ O(n/ϵ ) O(d2n +m/ϵ )
ProNE ✔ ✘ ✘ ✘ ✔ ✘ ✘ O(dn) O(d2n +Tm)

clust LouvainNE ✔ ✘ ✘ ✘ ✔ ✘ ✘ O(m logn) O(m logn + dn logn)
skch NodeSketch ✔ ✘ ✘ ✘ ✘ ✘ ✘ O(n2) O(n2)

skch FREDE (ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ O(dn) O(dn2)

Table 1: Fulfilled (✔) and missing (✘) desiderata of related work; complexities in terms of number of nodes n and edges m,

dimensionality d , context size T , and number of negative samples b; we assume a sparse graph with average degree O(d).

• nonlinear: using nonlinear transforms; HOPE, AROPE, and
ApproxPPR/NRP use linear transforms; nonlinearity is desirable,
as linear dimensionality reduction methods fail to confer the ad-
vantages of their nonlinear counterparts in general [15, 36].
• closed-form: deriving the solution via an explicit, well-defined
formula without relying on heuristic learning components; only
NetMF and NetSMF are both closed-form and nonlinear; NRP
loses the closed-form character of ApproxPPR due to its perfor-
mance-boosting post-hoc heuristic reweighting; such reweighting
may augment any embedding with additional node degree infor-
mation, yet it was only applied on ApproxPPR in [41].
• error-bounded: affording nontrivial, end-to-end error guaran-
tees with respect to a fixed objective; in principle, error-bounded
methods, like HOPE and NetMF, are closed-form; the reverse is not
always the case, as some closed-formmethods abandon guarantees
for sake of scalability: AROPE by spectral filtering, ApproxPPR by
truncating, and NetSMF by sparsifying the similarity matrix.
• versatile: accommodating diverse similarity measures; HOPE,
AROPE, VERSE, NetMF & NetSMF, and STRAP are versatile.
• frugal (space-efficient): having worst-case space complexity
subquadratic in the number of nodes.
• anytime: allowing the computation of a partial embedding
whose quality improves as more nodes are processed.
• mergeable: allowing for a combination of embeddings on two
node subsets that retains guarantees, hence enabling distributed
computation [2].

2.6 Matrix sketching

SVD applied on a matrix M ∈ Rs×t (s elements, t features) produces
[M]k = UkΣkV⊤k that minimizes reconstruction error; from the
same SVD we can also obtain W = ΣkV⊤k , which minimizes column

covariance error, dependent on the singular value decay of M:

Definition 2 (Covariance error). The column covariance er-
ror is the normalized difference between the covariance matrices:

cek (M,W) =
∥M⊤M −W⊤W∥2
∥M − [M]k ∥2F

≥
∥M⊤M −W⊤W∥2

∥M∥2F
= ce(M,W)

Matrix sketching [6, 7, 18, 38] is an alternative to the computation-
ally heavy matrix reconstruction by SVD grounded on the connec-
tion between SVD and covariance error; it finds a low-dimensional
matrix, or sketch, W ∈ Rd×t of M, by row-wise streaming and with
guarantees on column covariance error, which accounts for variance
loss in each dimension. The correct k for the best rank k approxi-
mation [M]k is not known and often requires grid search. Hence,
we use the lower bound ce(M,W) in lieu of cek (M,W).

A desirable sketch property is mergeability:

Definition 3. Mergeability. A sketching algorithm sketch is
mergeable if there exists an algorithm merge that, applied on the

d × t sketches, W1 = sketch(M1) and W2 = sketch(M2), of two
s
2 × t matrices,M1,M2, with ce(M1,W1) ≤ ϵ and ce(M2,W2) ≤ ϵ ,
produces a d × t sketch W of the concatenated matrix M = [M1; M2],
W = merge(W1,W2) = sketch(M), that preserves the covariance er-
ror bound ϵ , i.e., ce(M,W) ≤ ϵ .

We now discuss some representative sketching algorithms.
Hashing.We construct a 2-universal hash function h : [s] → [d]
and a 4-universal hash function д : [s] → {−1,+1}. Starting with a
zero-valued sketch matrix W, each row Mi is added to the h(i)-th
sketch matrix row with sign д(i): Wh(i) = д(i) ∗ Mi , with com-
plexity linear in matrix size, O(st). In practice, random assignment
of rows is used instead of a hash function. Setting d = O(t 2/ϵ 2),
hashing achieves ce ≤ ϵ [38]. This sketch is trivially mergeable:
merge(W1,W2) =W1 +W2.
Random Projections are a fundamental data analysis tool [38].
Boutsidis et al. [6] propose a row-streaming matrix sketching algo-
rithm that randomly combines rows of the input matrix. In matrix
form, M̃ = RM, where the elements Ri j of the d × s matrix R are
uniformly from {−1/

√
d, 1/
√
d}. For each row Mi , the algorithm

samples a random vector ri ∈ Rd with entries in {−1/
√
d, 1/
√
d}

and updates W = W + riM⊤i . This sketch achieves ce ≤ ϵ with
d = O(t/ϵ 2), with practical performance exceeding the guaran-
tee [17], and is mergeable with merge(W1,W2) =W1 +W2.
Sampling. The Column Subset Selection Problem (CSSP) [7] is to
select a column subset of an entire matrix. In the row-update model,
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a solution is found by sampling scaled rows Mi/
√
dpi with probabil-

ity pi = ∥Mi ∥
2/∥M∥2F . While the norm ∥M∥2F is usually unknown

in advance, the method can work with d reservoir samplers, where
d is the sketch size. This sketch achieves ce ≤ ϵ with d = O(t/ϵ 2),
yet the cost of maintaining reservoir samples is non-negligible. The
sketch is mergeable if we use distributed reservoir sampling.
Frequent Directions (FD) [18], the current state of the art in
sketching, extends the Misra-Gries algorithm [21] from frequent
items to matrices and outperforms other methods [6, 7, 9] in quality.
FD sketches a matrix by iteratively filling the sketch with incoming
rows, performing SVD on it when it cannot add more rows, and
shrinking the accumulated vectors with a low-rank SVD approxima-
tion. The complexity is O(dts), due to s/d iterations of computing
the O(d2t) SVD decomposition of a 2d × t matrix W with d ≪ t .
This sketch achieves ce≤ϵ when d = O(t/ϵ) and is mergeable with

merge(W1,W2) = FD(concatenate(W1,W2)). (2)

The table below lists the embedding dimension d required to
attain error bound ce ≤ ϵ ≤ 1 for different algorithms.

Algorithm Hashing RP Sampling FD

Dimension d O(t2/ϵ2) O(t/ϵ2) O(t/ϵ2) O(t/ϵ)

We observe that, by putting the node similarity matrix S in the
role of the sketched matrix M, we can effectively turn a sketching
technique to an embedding method. Indeed, recent work [46] has
adapted a sketching algorithm [6, 37] to graph embeddings, yet
forfeited1 its error guarantees. We apply the know-how of state-
of-the-art matrix sketching to serve graph embedding purposes,
leading to anytime graph embeddings with error guarantees.

3 ANYTIME GRAPH EMBEDDINGS

We observe that SVD-based graph embeddings, such as HOPE
and NetMF, use only one of the two unitary matrices SVD pro-
duces, U and V. For example, NetMF returns W = U:d

√
Σ:d , with Σ

truncated to d singular values. Therefore, such methods cannot re-
construct matrix S; SVD products U and Σmay only reconstruct the
row covariance matrix SS⊤ = UΣ2U⊤, as WW⊤ = UΣ2U⊤, where
W = UΣ; thus, such methods are better understood as implicitly
minimizing the covariance error, rather than the reconstruction
error [28], in relation to a similarity matrix among graph nodes.

Serendipitously, sketching algorithms aim to reconstruct the col-
umn covariance S⊤S = VΣ2V⊤. Given this relationship, we apply a
state-of-the-art matrix sketching algorithm in lieu of SVD to con-
struct a graph embedding in anytime fashion, by row updates of any
partially materializable similarity matrix S. Unfortunately, the ma-
trix form of DeepWalk (Eq. 1) cannot be partially materialized. Next,
we propose a partially materializable matrix based on Personalized
PageRank (PPR), inspired from the VERSE [36] similarity-based em-
beddings. As we show in the experiments, this choice attains good
quality and time performance. However, our method carries no prej-
udice with regard to the partially materializable matrix used; other
choices are possible, such as, for example, the Node-Reweighted
PageRank (NRP) [41]. Our aim is to illustrate the advantageous
1In our experiments, we use a variant of [46] with error guarantees as a baseline.

application of sketching for embedding purposes, while our frame-
work supports any way of deriving the primary input matrix.

3.1 A row-wise computable similarity matrix

VERSE [36] is the first similarity-based embeddingmethod that does
not require the entire matrix as input, as it allows for efficient row-
wise computation; in its default version, it uses the PPR similarity
measure:

Definition 4. Given a starting node distribution s , damping factor

α , and the transition probability matrix P, the PPR vector PPRi · is
defined by the recursive equation:

PPRi = αs + (1 − α)PPR⊤i P (3)

To compute PPRi , we leverage the fact that the probability dis-
tribution of a random walk with restart converges to PPRi vec-
tor [4, 24]. Following [16, 28] we show that, under mild assump-
tions, VERSE with PPR similarity virtually factorizes the log(PPR)
matrix up to an additive constant.

Theorem 1. Let X be the matrix of VERSE embeddings. If the

terms zi j = x⊤i xj are independent, then VERSE factorizes the matrix

Y = log(PPR) + logn − logb = XX⊤.

Proof. Consider the VERSE objective function for the uniform

sampling distribution and PPR similarity:

L =

n∑
i=1

n∑
j=1

[
PPRi j logσ (x⊤i xj ) + bEj ′∼Qi logσ (−x

⊤
i xj ′)

]
,

where σ (x) = (1 + e−x )−1 is the sigmoid, Qi is the noise sample

distribution, and b the number of noise samples. Since PPR is right-

stochastic and Qi is uniform, i.e., Pr(Qi = j) = 1
n , we can separate

the two terms as follows:

L =

n∑
i=1

n∑
j=1

PPRi j logσ (x⊤i xj ) +
b

n

n∑
i=1

n∑
j ′=1

logσ (−x⊤i xj ′).

An individual loss term for vertices i and j is:

Li j = PPRi j logσ (x⊤i xj ) +
b

n
logσ (−x⊤i xj ).

We substitute zi j = x⊤i xj , use our independence assumption, and

solve for

∂Li j
∂zi j

= PPRi jσ (−zi j )− bnσ (zi j ) = 0 to get zi j = log n ·PPRi j
b ,

hence XX⊤ = log(PPR) + logn − logb = Y.

Even though this solution is algebraically impossible, as it im-
plies approximating a non-symmetric matrix by a symmetric one,
it provides a matrix whose covariance we can sketch. Similarly,
STRAP [42] applies Sparse Randomized SVD to the logarithm of a
similarity matrix based on Sparse PPR.

3.2 FREDE algorithm

Since the matrix Y = XX⊤ has equal row and column ranks, we
rewrite the decomposition commutatively, as Y = log(PPR)+logn−
logb = X⊤X. We keep the bias parameter b equal to 1, as in NetMF,
and apply Frequent Directions (Section 2.6) to obtain a d ×n sketch-
based embedding W by processing rows of Y. Algorithm 1 presents
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Insert PPR(v, ·) into W

v

CompressW, update Σ̂

,

anytime

Figure 2: FREDE samples log(PPR) rows, periodically com-

presses the derived sketch and gets singular values by SVD,

and yields an embedding with error guarantees at any time.

the details of FREDE and Figure 2 shows its workflow; it com-
putes rows of the PPR matrix, and hence of the transformed Y,
by sampling or power iterations, applies the SVD-based Frequent
Directions sketching process periodically with each d rows it pro-
cesses (Lines 8–12), and returns embeddings with guarantees at any
time (Lines 14–15). We keep track of singular values in Σ̂ alongside
the sketch so as to avoid performing SVD upon a request for output;
as in [28], we multiply by

√
Σ̂ at output time (Line 15), whereas a

covariance-oriented sketcher would use Σ̂. The time to process all
n nodes with O(n/d) SVD iterations costing O(d2n) is O(dn2).

Sketch-based embeddings inherit the covariance error bounds of
sketching (Section 2.6), which hold anytime, even after processing
only an arbitrary subset of rows. Thus, FREDE embeddings inherit
the anytime error guarantees of Frequent Directions, which are valid
after materializing only part of the similarity matrix, and superior
to those of other sketch-based embeddings; it achieves ce ≤ ϵ on
the submatrix S[s] built from any size-s subset of processed rows
(nodes) when d = O(n/ϵ) [11], independently of s . In Section 4.8 we
show that FREDE outperforms other sketch-based embeddings in
anytime node classification.

Algorithm 1 FREDE algorithm

1: function FREDE(G,n,d)
2: W← zeros(2d,n) ▷ all zeros matrix W ∈ R2d×n
3: Σ̂← I(2d) ▷ diagonal identity matrix Σ̂ ∈ R2d×2d
4: for v ∈ V do

5: x ← PersonalizedPageRank(v)
6: y ← logx + logn ▷ PPR-like similarity row
7: Insert y into the last zero valued row of W
8: if W has no zero valued rows then
9: U, Σ,V⊤ ← SVD(Σ̂W),σ ← Σd,d

10: Σ̂:d ←
√
max(Σ2:d − σ

2Id , 0) ▷ set dth row of Σ̂ to 0

11: Σ̂d : ← Id ▷ set last d entries of Σ̂ to 1
12: W:d ← V⊤:d ,Wd : ← 0d×n ▷ zero last d rows of W

13: return Σ̂,W:d
14: function GetEmbedding(k ≤ d) ▷ Anytime
15: return

√
Σ̂W:k ▷ first k rows

3.3 Parallelization and distribution

The steps of Algorithm 1 are parallelizable. Line 5 could employ
approximate PPR [41, 43], and Line 9 efficient SVD calculations [13].

Such speedups trade quality for scalability. Furthermore, FREDE can
be efficiently distributed across machines for the sake of scalability,
with very small communication overhead and preserving its quality
guarantees. This appealing characteristic, unique among related
works on embeddings, follows from the mergeability property that
FREDE inherits from Frequent Directions. In each machinem, we
may create a partial embedding matrixW based on the subset of
the nodes available tom, and then merge partial embeddings from
t servers, i.e., iteratively sketch their concatenations by Equation 2
in hierarchical fashion, incurring a log2 t time complexity factor.

4 EXPERIMENTS

The primary advantage of FREDE is its anytime character, i.e.,
its ability to derive embeddings by processing only a fraction of
similarity matrix rows. On that front, it may only be compared
against other sketch-based embeddings. Here, we also compare
FREDE on qualitative performance in data science tasks against
other graph embeddings to corroborate its practical impact.

4.1 Compared methods

We evaluate FREDE against three sketching baselines, exact matrix
factorization by SVD, and all methods in Table 1 bar those that
(i) use linear transforms, which previous work [36] has established
underperform nonlinear ones (i.e., HOPE, AROPE, ApproxPPR,
NRP), (ii) require heavy hyperparameter tuning (i.e., Node2vec and
NodeSketch), or (iii) underperform DeepWalk (i.e., LINE):
• Sketching baselines, i.e., Hashing, Random Projections and
Sampling (Section 2.6), compute the sketch and filter singular val-
ues as in FREDE. Our Random Projections baseline is a refined
variant of [46], substituting a crude higher-order matrix approxi-
mation with the row-update sketching algorithm applied on the
transformed PPR matrix, and hashing is a variant of [26].
• SVD is the exact SVD decomposition of the nonlinearly tran-
formed PPRmatrix Ywith the same parameters as in FREDE, against
which we were able to compare on the three smallest datasets.
• DeepWalk2 [25] learns an embedding by sampling fixed-length
random walks from each node and applying word2vec-based learn-
ing on those walks; despite intensive research on graph embeddings,
DeepWalk remains competitive when used with time-tested de-
fault parameters [36]: walk length t =80, number of walks per node
γ =80, and window size T =10; we use these values.
• VERSE3 [36] trains a single-layer neural network to learn the
PPR similarity measure via sampling, with default parameters α =
0.85 and nsamples = 106.
• NetMF4 [28] performs SVD on the closed-form DeepWalk ma-
trix. We use the optimal method, NetMF-small; as it is not scalable,
we evaluate it on our three smallest datasets, using the same pa-
rameters as in DeepWalk, and bias b = 1 as in the original paper.
• NetSMF5 [28] sparsifies the NetMF similarity matrix to attain
scalability forfeiting optimality; we run it with defaultM = 103.
• LouvainNE6 [5] learns embeddings in a hierarchical fashion
using the Louvain hierarchical clustering method; the final node
2https://github.com/xgfs/deepwalk-c
3https://github.com/xgfs/verse
4Code in the supplementary material.
5https://github.com/xptree/NetSMF
6https://github.com/maxdan94/LouvainNE

1106



embeddings are a concatenations of cluster embeddings, with de-
fault parameters parameters α = 0.01 and no restriction on hmax ,
the maximum number of levels.
• STRAP7 [42] obtains embeddings through sparse factorization
of approximate PPR vectors computed with a backward-push algo-
rithm. We use the default setting with ϵ = 10−5.
• ProNE8 [45] applies spectral propagation on embeddings ob-
tained by sparsely factorizing a weighted adjacency matrix. We use
the default parameters k = 10, µ = 0.2, and θ = 0.5.

4.2 Datasets

We experiment on 8 publicly available real9,10 datasets.
• PPI [12, 32]: a protein-protein interaction dataset, where labels
represent hallmark gene sets of specific biological states.
• POS [12, 19]: aword co-occurrence network built fromWikipedia
data. Labels tag parts of speech induced by Stanford NLP parser.
• BlogCatalog [34, 44]: a social network of bloggers from the
blogcatalog website. Labels represent self-identified topics of blogs.
• CoCit [1, 36]: a paper citation graph generated from the Mi-
crosoft Academic graph, featuring papers published in 15 major
data mining conferences. We use conference identifiers as labels.
• CoAuthor [1, 36]: a coauthorsip graph from Microsoft Aca-
demic. We use snapshots from 2014 and 2016 for link prediction.
• VK [36]: a Russian all-encompassing social network. Labels rep-
resent user genders. We use snapshots from November 2016 and
May 2017 for link prediction.
• Flickr [34, 44]: a photo-sharing social network, where labels
represent user interests, and edges messages between users.
• YouTube [34, 44]: a video-based network; labels are genres.

Size Statistics

dataset |V | |E | |L | Avg. deg. Density

PPI 4k 77k 50 19.9 5.1 × 10−3
POS 5k 185k 40 38.7 8.1 × 10−3
BlogCatalog 10k 334k 39 64.8 6.3 × 10−3
CoCit 44k 195k 15 8.86 2.0 × 10−4
CoAuthor 52k 178k — 6.94 1.3 × 10−4
VK 79k 2.7M — 34.1 8.7 × 10−4
Flickr 80k 12M 195 146.55 1.8 × 10−3
YouTube 1.1M 3M 47 5.25 9.2 × 10−6

Table 2: Dataset characteristics: number of vertices |V |, num-

ber of edges |E |; number of node labels |L|; average node de-

gree; density defined as |E |/
( |V |
2

)
.

Table 2 summarises the data characteristics. All algorithms are
implemented in Python11 and ran on a 2×20-core Intel E5-2698 v4
CPU machine with 384Gb RAM and a 64Gb memory constraint.

4.3 Parameter settings

We set embedding dimension d = 128 unless indicated otherwise.
For SVD, we use the gesdd routine in the Intel MKL library. For
classification we use LIBLINEAR [10]. We repeat each experiment
10 times and evaluate each embedding 10 times.
7https://github.com/yinyuan1227/STRAP-git
8https://github.com/THUDM/ProNE
9https://github.com/xgfs/verse/tree/master/data
10http://leitang.net/code/social-dimension/data/flickr.mat
11https://github.com/xgfs/FREDE
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Figure 3: Covariance error vs. dimensionality d; FREDE ap-

proaches SVD, which yields optimal covariance error.

4.4 Sketching quality

As a preliminary test, we assess our choice of sketching backbone
against other sketching algorithms and the optimal rank-k covari-
ance approximation obtained by SVD on the full similarity matrix,
S̃⊤S̃ = VdΣ2dV

⊤
d . Figure 3 reports the covariance error ce on PPI

data, vs. the dimensionality d . FREDE outperforms the other sketch-
ing algorithms (Section 2.6) by at least 2 orders of magnitude and,
as d grows, it converges to the optimal SVD solution. This result
reconfirms that the advantages of Frequent Directions versus other
sketching methods transfer well to the domain of graph embed-
dings. For the sake of completeness, we keep comparing to other
sketching methods in the rest of our study, as performance may
vary depending on the downstream data science task.
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Figure 4: Classification performance of sketching algo-

rithms on PPI data wrt. number of walks to compute PPR.

4.5 PPR approximation

Figure 4 shows the performance of sketching algorithms on a node
classification task (predicting correct labels) vs. the number of ran-
dom walks for PPR approximation. FREDE consistently outper-
forms sketching baselines and reaches the exact-PPR solution with
106 walks. This result indicates that we can achieve performance
obtained using the exact PPR values in downstream tasks even
without computing such PPR values with high precision. In the rest
of our experiments, we compute PPR values by power iterations,
as that is feasible with the data we use.
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Figure 5: Classification performance of FREDE with varying percentage of the graph as input on three datasets.

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 16.33 19.74 21.34 22.39 23.38
NetMF 18.58 22.01 23.87 24.65 25.30
NetSMF 18.45 22.38 23.86 24.59 25.56
VERSE 16.45 19.89 21.64 23.08 23.84
LouvainNE 13.8 15.91 16.59 16.83 17.06
STRAP 18.25 21.94 23.47 24.15 24.91
ProNE 17.56 22.53 24.29 25.03 26.02
FREDE 19.56 23.11 24.38 25.11 25.52
SVD 18.31 22.12 23.66 25.03 25.78
Rand. Proj. 16.80 19.99 21.45 22.38 23.14
Sampling 16.25 19.55 20.93 21.85 22.68
Hashing 16.73 19.97 21.51 22.43 23.44

Table 3: Micro-F1 classification, PPI data.

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 43.42 47.12 48.96 49.86 50.18
NetMF 43.42 46.98 48.52 49.23 49.72
NetSMF 42.06 44.25 45.17 45.60 46.25
VERSE 40.80 44.70 46.60 47.65 48.24
LouvainNE 41.19 41.62 41.72 41.94 41.84
STRAP 47.26 50.85 52.08 52.70 53.60
ProNE 47.41 52.18 53.84 54.57 55.10
FREDE 46.59 49.23 50.45 51.02 51.30
SVD 44.69 48.86 50.57 51.53 52.20
Rand. Proj. 40.24 43.87 45.65 46.43 47.18
Sampling 40.35 43.80 45.39 46.30 46.69
Hashing 40.17 43.88 45.44 46.35 46.79

Table 4: Micro-F1 classification, POS data.

4.6 Node classification

Tables 3–8 report classification results in terms of the popularMicro-
F1 measure [25, 33]; Macro-F1 results are similar. SVD is featured
where it runs within 64Gb. For each dataset, we repeat the experi-
ment 10 times and report the average. Surprisingly, on PPI and POS,
FREDE outperforms its exact counterpart, SVD, and consistently
supersedes its sketching counterparts across all datasets.

4.7 Link prediction

Link prediction is the task of predicting the appearance of a link
between pairs of nodes in a graph. Tables 10 and 11 report link
prediction accuracy (predicting the appearance of a link) on CoAu-
thor and VK by a logistic regression classifier on features derived
from embeddings by the rules in Table 9. As a baseline, we use

labelled nodes, %

method 10% 30% 50% 70% 90%
DeepWalk 36.22 39.84 41.22 42.06 42.53
NetMF 36.62 39.80 41.05 41.70 42.17
NetSMF 35.74 39.16 40.17 40.82 41.06
VERSE 35.82 40.06 41.63 42.63 43.14
LouvainNE 18.40 19.99 20.68 21.17 21.40
STRAP 37.48 40.74 41.82 42.40 42.88
ProNE 36.74 40.19 41.27 41.75 41.99
FREDE 35.69 38.88 39.98 40.54 40.75
SVD 37.60 40.99 42.10 42.66 43.47
Rand. Proj. 30.82 34.43 35.81 36.52 37.16
Sampling 29.44 32.32 33.41 34.04 34.29
Hashing 30.81 34.36 35.82 36.65 37.28

Table 5: Micro-F1 classification, BlogCatalog data.

labelled nodes, %

method 1% 3% 5% 7% 9%
DeepWalk 37.22 40.34 41.72 42.59 43.16
NetSMF 41.07 43.29 44.13 44.61 44.99
VERSE 38.95 41.20 42.55 43.41 44.01
LouvainNE 35.29 36.56 37.14 37.49 37.67
STRAP 35.86 41.93 43.38 43.80 44.12
ProNE 35.82 39.54 40.72 41.46 41.97
FREDE 42.46 44.56 45.39 45.84 46.17
Rand. Proj. 40.89 42.63 43.63 44.32 44.78
Sampling 40.84 42.97 43.93 44.49 44.91
Hashing 40.86 42.66 43.65 44.29 44.83

Table 6: Micro-F1 classification, CoCit data.

labelled nodes, %

method 1% 3% 5% 7% 9%
DeepWalk 32.39 36.02 37.41 38.15 38.70
VERSE 30.08 34.22 36.06 37.11 37.83
LouvainNE 22.19 22.60 22.73 22.89 23.03
STRAP 30.13 34.26 35.75 36.60 37.14
ProNE 30.90 35.11 36.63 37.47 38.04
FREDE 30.90 32.98 33.86 34.48 34.88
Rand. Proj. 28.92 32.21 33.82 34.76 35.49
Sampling 28.46 30.97 32.08 32.75 33.24
Hashing 29.07 32.23 33.77 34.75 35.48

Table 7: Micro-F1 classification, Flickr data.

common link prediction features (node degree, number of common
neighbors, Adamic-Adar index, Jaccard coefficient, and preferen-
tial attachment). We represent absent links in the training data by
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labelled nodes, %

method 1% 3% 5% 7% 9%
DeepWalk 37.96 40.54 41.75 42.60 43.37
VERSE 38.04 40.50 41.72 42.59 43.33
LouvainNE 31.41 32.28 32.65 33.00 33.29
STRAP 32.82 38.02 40.03 41.13 41.75
ProNE 38.40 42.20 43.09 43.69 44.04
FREDE 34.51 37.37 38.78 39.40 39.95
Rand. Proj. 33.88 36.10 37.23 37.94 38.38
Sampling 33.97 35.66 36.37 37.19 37.71
Hashing 32.64 35.64 36.92 37.46 38.13

Table 8: Micro-F1 classification, YouTube data.

Operator Result

Average (a + b)/2
Concat [a1, . . . , ad , b1, . . . , bd ]
Hadamard [a1 ∗ b1, . . . , ad ∗ bd ]
Weighted L1 [ |a1 − b1 |, . . . , |ad − bd |]
Weighted L2 [(a1 − b1)2, . . . , (ad − bd )2]

Table 9: Edge embedding strategies for link prediction,

nodes u,v ∈ V and corresponding embeddings a, b ∈ Rd .
method Average Concat Hadamard L1 L2
DeepWalk 68.97 68.43 66.61 78.80 77.89
NetSMF 74.59 74.24 81.82 64.73 64.57
VERSE 79.62 79.25 86.27 75.15 75.32
LouvainNE 67.88 67.45 67.85 69.66 69.91
STRAP 79.08 78.72 80.32 71.81 72.05
ProNE 74.15 73.88 74.74 74.80 73.89
FREDE 81.28 80.95 86.83 81.70 82.37
Rand. Proj. 80.81 80.54 86.73 80.79 81.42
Sampling 80.98 80.74 86.45 79.53 79.51
Hashling 80.84 80.48 86.66 80.59 81.33
Baseline 77.53

Table 10: Link prediction accuracy, CoAuthor data.

method Average Concat Hadamard L1 L2
DeepWalk 69.98 69.83 69.56 78.42 77.42
NetSMF 72.63 72.51 68.17 74.52 74.05
VERSE 74.56 74.42 80.94 77.16 77.47
LouvainNE 66.87 66.78 67.74 67.42 67.44
STRAP 74.35 74.23 76.93 67.84 66.10
ProNE 71.29 71.14 74.92 73.54 74.41
FREDE 74.68 74.59 77.63 74.25 73.60
Rand. Proj. 74.41 74.27 77.01 74.33 74.56
Sampling 74.38 74.27 76.82 72.26 71.95
Hashing 74.36 74.27 76.86 74.30 74.56
Baseline 78.84

Table 11: Link prediction accuracy, VK data.

negative sampling, and use 50% of links for training and remaining
50% for testing. FREDE outperforms all methods on CoCit, and
all sketching baselines on VK. Surprisingly, sketching baselines
perform better than state-of-the-art graph embeddings on CoCit.

4.8 Anytime classification

We study anytime operation (Section 3.2) on node classification
using 50% of nodes for training and processing PPR rows in random
order. Figure 5 presents results for PPR-based methods and NetSMF
on three datasets. FREDE outperforms all others on PPI, as in Table 3,

after processing only 1% of similarities. Remarkably, on CoCit
data, all sketchers outperform all other methods after processing
about 3% of nodes; their downstream performance drops thereafter,
a fact indicating that more information, revealing inter-cluster
connections, harms the classification outcomes. A similar effect
appears for sketching baselines with PPI data, yet not for FREDE,
which outperforms all others after processing less than 20% of nodes
and keeps growing thereafter. FREDE also performs competitively
on Flickr (we examine up to 10% of nodes, as Random Projections
was inefficient; SVD and NetSMF did not run within 64Gb) and
BlogCatalog, as in Tables 5 and 7. The rightmost plot in Figure 5
shows runtime on BlogCatalog; while sketchers’ runtime grows
linearly, those of one-offmethods, except STRAP, stand apart. These
results illustrate that embeddingmerging preserves the downstream
quality; as Equation 2 shows, merging two embeddings amounts
to sketching their concatenation; therefore, the sketch operation
Algorithm 1 periodically performswith each newd similaritymatrix
rows it processes can also be viewed as a merge operation.
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Figure 6: Memory consumption per datasets and regression

lines; SVD and NetSMF could not fit YouTube in 64Gb RAM.

4.9 Memory consumption

Lastly, Figure 6 shows the memory consumption for each method
and dataset, with linear regression on data sizes. All methods bar
SVD and NetSMF embed the largest YouTube graph (106 nodes)
on a 64Gb RAM commodity machine. FREDE consumes memory
comparable to that of neural methods and never exceeds that of
other factorization-based embeddings.

5 CONCLUSION

Since graph embeddings implicitly aim to preserve similarity ma-
trix covariance, row-wise sketching techniques are suited therefor.
We applied a state-of-the-art sketcher, Frequent Directions, on a
matrix-factorization interpretation of a state-of-the-art embedding,
VERSE, to craft FREDE: a linear-space graph embedding that allows
for scalable data science operations on graph data, as well as for
anytime and distributed computation with error guarantees. Besides
its anytime character, FREDE achieves almost as low covariance er-
ror as the exact SVD solution and stands its ground against previous
graph embeddings even after processing as little as 10% of similar-
ity matrix rows; therefore, it promises significant practical impact.
In the future, we plan to examine the feasibility of anytime local
embeddings [26], applications of graph embeddings in the context
of graph summarization [31] and anonymization [39], and augment
FREDE using recent enhancements on Frequent Directions [14].
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