
Fine-Grained Lineage for Safer Notebook Interactions

StephenMacke,
1,2

Hongpu Gong,
2

Doris Jung-Lin Lee,
2

Andrew Head,
2

Doris Xin,
2

Aditya Parameswaran
2

1
University of Illinois (UIUC)

2
University of California, Berkeley

{smacke,ruiduoray,dorislee,andrewhead,dorx,adityagp}@berkeley.edu

ABSTRACT

Computational notebooks have emerged as the platform of choice

for data science and analytical workflows, enabling rapid iteration

and exploration. By keeping intermediate program state in memory

and segmenting units of execution into so-called “cells”, notebooks

allow users to enjoy particularly tight feedback. However, as cells

are added, removed, reordered, and rerun, this hidden intermediate

state accumulates, making execution behavior difficult to reason

about, and leading to errors and lack of reproducibility. We present

nbsafety, a custom Jupyter kernel that uses runtime tracing and

static analysis to automatically manage lineage associated with cell

execution and global notebook state. nbsafety detects and pre-

vents errors that users make during unaided notebook interactions,

all while preserving the flexibility of existing notebook semantics.

We evaluate nbsafety’s ability to prevent erroneous interactions

by replaying and analyzing 666 real notebook sessions. Of these,

nbsafety identified 117 sessions with potential safety errors, and

in the remaining 549 sessions, the cells that nbsafety identified

as resolving safety issues were more than 7× more likely to be

selected by users for re-execution compared to a random baseline,

even though the users were not using nbsafety and were therefore

not influenced by its suggestions.

PVLDBReference Format:

StephenMacke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris

Xin, and Aditya Parameswaran. Fine-Grained Lineage for Safer Notebook

Interactions. PVLDB, 14(6): 1093-1101, 2021.

doi:10.14778/3447689.3447712

PVLDBArtifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/nbsafety-project/.

1 INTRODUCTION

Computational notebooks such as Jupyter [23] provide a flexible

medium for developers, scientists, and engineers to complete pro-

gramming tasks interactively. Notebooks, like simpler predecessor

read-eval-print-loops (REPLs), do not terminate after executing,

but wait for the user to give additional instructions while keeping

intermediate programming state in memory. Notebooks, however,

are distinguished from REPLs by their use of the cell as the atomic

unit of execution, allowing users to edit and re-execute previous

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

doi:10.14778/3447689.3447712

def custom_agg(series):
...

[1] [4]

agg_by_col = {'A': 'min', 'B': custom_agg} [2]

df_x_agg = df_x.agg(agg_by_col)
df_y_agg = df_y.agg(agg_by_col)

[3] [5]

Figure 1: Example sequence of notebook interactions leading to

a stale symbol usage. Symbols with timestamps ≤ 3 (resp. > 3) are

shownwith blue (resp. red) borders.

cells. This cell-based iterative execution modality is a particularly

good fit for the exploratory, ad-hoc nature of modern data science.

As a result, the IPython Notebook project [35], and its successor,

Project Jupyter [23], have both grown rapidly in popularity. With

more than 4.7 million notebooks on GitHub as of March 2019 [37],

Jupyter has been called “data scientists’ computational notebook

of choice” [30]. We focus on Jupyter here due to its popularity, but

our ideas are applicable to computational notebooks in general.

Despite the tighter feedback enjoyed by users of computational

notebooks, and, in particular, by users of Jupyter, notebooks have

a number of drawbacks when used for more interactive and ex-

ploratory analysis. Compared to conventional programming en-

vironments, interactions such as out-of-order cell execution, cell

deletion, and cell editing and re-execution can all complicate the

relationship between the code visible on screen and the resident

notebook state. Managing interactions with this hidden notebook

state is thus a burden shouldered by users, who must remember

what they have done in the past.

Illustration. Consider the sequence of notebook interactions de-

picted in Figure 1. Each rectangular box indicates a cell, the note-

book’s unit of execution. The user first defines a custom aggregation

function that, along with min, will be applied to two dataframes,

df_x and df_y, and executes it as cell [1]. Since both aggregations

will be applied to both dataframes, the user next gathers them into

a function dictionary in the second cell (executed as cell [2]). After
running the third cell, which corresponds to applying the aggre-

gates to df_x and df_y, the user realizes an error in the logic of

custom_agg and goes back to the first cell to fix the bug. They re-

execute this cell after making their update, indicated as [4]. How-
ever, they forget that the old version of custom_agg still lingers
in the agg_by_col dictionary and rerun the third cell (indicated

as [5]) without rerunning the second cell. We deem this an unsafe

execution, because the user intended for the change to agg_by_col
to be reflected in df_agg_x and df_agg_y, but it was not. Upon
inspecting the resulting dataframes df_x_agg and df_y_agg, the
user may or may not realize the error. In the best case, user may

identify the error and rerun the second cell. In the worst case, users

may be deceived into thinking that their change had no effect.

This example underscores the inherent difficulty in manually

managing notebook state, inspiring colorful criticisms such as a talk

1093

https://doi.org/10.14778/3447689.3447712
https://github.com/nbsafety-project/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447712

titled “I Don’t Like Notebooks” presented at JupyterCon 2018 [17].

In addition to the frustration that users experience when spending

valuable time debugging state-related errors, such bugs can lead

to invalid research results and hinder reproducibility.

Key Research Challenges. The goal of this paper is to develop

techniques to automatically identify and prevent potentially unsafe cell

executions, without sacrificing existing familiar notebook semantics.

We encounter a number of challenges toward this end:

1. Automatically detecting unsafe interactions. To detect unsafe inter-

actions due to symbol staleness issues, it becomes clear that static

analysis on its own is not enough. A static approach must neces-

sarily be overly conservative when gathering lineage metadata /

inferring dependencies, as it must consider all branches of control

flow. On the other hand, some amount of static analysis is necessary

so that users can be warned before they execute an unsafe cell (as

opposed to during cell execution, by which time the damage may

already be done); finding the right balance is nontrivial.

2. Automatically resolving unsafe behavior with suggested fixes. In ad-

dition to detecting potentially unsafe interactions, we should ideally

also identify which cells to run in order to resolve staleness issues.

A simpler approach may be to automatically rerun cells when a

potential staleness issue is detected (as in Dataflow notebooks [24]),

but in a flexible notebook environment, there could potentially be

more than one cell whose re-executions would all resolve a partic-

ular staleness issue; identifying these to present them as options to

the user requires a significant amount of nontrivial static analysis.

3. Maintaining interactive levels of performance. We must address

the aforementioned challenges without introducing unacceptable

latencies or memory usage. First, we must ensure that any lineage

metadata we introduce does not grow too large in size. Second,

efficiently identifying cells that resolve staleness issues is also non-

trivial. Suppose we are able to detect cells with staleness issues,

and we have detected such issues in cell cs . We can check whether

prepending some cell cr (and thereby executing cr first before cs)
would fix the staleness issue (by, e.g., detecting whether the merged

cell cr ⊕cs has staleness issues), but we show in Section 5.2 that a di-

rect implementation of this idea scales quadratically in the number

of cells in the notebook.

Despite previous attempts to address these challenges and to facil-

itate safer interactions with global notebook state [1, 24, 38], to our

knowledge, nbsafety is the first to do so while preserving existing

notebook semantics. For example, Dataflow notebooks [24] require

users to explicitly annotate cells with their dependencies, and force

the re-execution of cells whose dependencies have changed. Node-

book [38] and the Datalore kernel [1] attempt to enforce a temporal

ordering of variable definitions in the order that cells appear, again

forcing users to compromise on flexibility. In the design space of

computational notebooks [25], Dataflow notebooks observe reac-

tive execution order, while Nodebook and Datalore’s kernel ob-

serve forced in-order execution. However, a solution that preserves

any-order execution semantics, while simultaneously helping users

avoid errors that are only made possible due to such flexibility, has

heretofore evaded development.

Contributions. To address these challenges, we develop nbsafety,

a custom Jupyter kernel and frontend for automatically detecting

unsafe interactions and alerting users, all while maintaining in-

teractive levels of performance and preserving existing notebook

semantics. After a single installation command [27], users of both

Submit cell
execution

Compute symbol
lineage during execution

For each cell:
Perform liveness and
inverse liveness analysis

Highlight cells

 Runtime tracerÀ Static checker

Ã Frontend

Figure 2: �������� workflow with architectural components.[Stephen: Indicate
kernel; give graphics for cell highlights.]

scraped from GitHub. We found that cells highlighted by �������� as
unsafe during replay tended to be cells that users avoid, while cells high-
lighted by �������� as resolving safety issues tended to be cells that users
prefer, underscoring their utility. [Andrew: I’m not sure I fully under-
stand why this indicates a success for nbsafety. It might need to be spelled
out a bit more.] Furthermore, by sampling some of the 117 sessions
for which safety issues were detected, we found poignant instances of
concrete errors users could have avoided had they been using ��������.

Our free and open source code is available publicly on GitHub [28].
Related Work. Error-prone interactions with global notebook state are
well-documented in industry and academic communities [9, 16, 19,
22, 25, 26, 33, 34, 37, 41]. Despite previous attempts to facilitate
safer interactions with global notebook state [25, 41], to our knowledge,
�������� is the first to do so while preserving the flexibility of existing
notebook semantics.

Dataflow notebooks [25] require users to explicitly annotate cells
with their dependencies, while �������� detects them automatically.
Furthermore, dataflow notebooks force the re-execution of cells whose
dependencies have changed; �������� defers such decisions to the user,
opting for traditional notebook semantics.

Nodebook [41] takes a different approach, that, like ��������, uses
program analysis to infer variable dependencies. Unlike ��������,
however, Nodebook attempts to enforce a temporal ordering of variable
definitions in the order that cells appear. Thus, nodebook can prevent, for
example, the unsafe interaction depicted in Figure 1, since rerunning cell
3 automatically triggers a re-execution of cell 2 in Nodebook. However,
because Nodebook takes a purely static approach, the granularity of the
inferred symbol dependencies can be unnecessarily coarse. For example,
consider a cell that uses symbol d[x] when x == 5. Nodebook will
detect a dependency on variable d, while �������� is able to leverage
the additional runtime information to refine the dependency to d[5].

In the design space of computational notebooks [26], Dataflow note-
books observe reactive execution order, while Nodebook observes forced
in-order execution. ��������, on the other hand, preserves the familiar
any order semantics of traditional notebooks.

We survey additional related work in Section 7.
Organization. The rest of this paper is organized as follows. Section 2
gives a high-level overview of ��������’s architecture and how it inte-
grates into a notebook workflow. The next three sections drill into each
of ��������’s components: Section 3 describes how the tracer maintains
lineage metadata, Section 4 describes the static analyses employed by the
checker, and Section 5 describes how these two components feed into the
frontend in order help users avoid and resolve safety issues. We empir-
ically validate ��������’s ability to highlight (i) cells that should likely
be avoided and (ii) cells that should likely be re-executed in Section 6
before surveying related work and concluding (Sections 7 and 8).

2. ARCHITECTURE OVERVIEW
We now give a bird’s eye view of ��������’s different components

and how they integrate into the typical notebook workflow.

2.1 Background

def ...
...

In[1]In[4]

agg_by_col = ...In[2]

df_x_agg = ...
df_y_agg = ...

In[3]

def custom...
...

In[1]

agg_by_col = ...In[2]

df_x_agg = ...
df_y_agg = ...

In[3]

[Aditya: You’ll need to introduce runtime tracer, static checker, and
liveness analysis for a DB crowd. Very briefly is fine. You’ll also need
to introduce computational notebooks and the notion of “cells”.] The
�������� backend is comprised of two main components: a runtime
tracer that instruments each executed line of code and updates lineage
metadata [Andrew: what is lineage? It also wasn’t clear to me when
I was reading the title, so might be burying the lede], and À a static
checker that performs various program analysis techniques, such as
liveness analysis [3] as well as a novel method we call inverse liveness
analysis (§4.3). The result of this analysis is then fed to Ã the ��������
frontend, which highlights (a) potentially unsafe cells, and (b) cells that
users may wish to re-execute, e.g., because referenced variables were
updated, or because re-execution would resolve a safety issue.

As depicted in Figure 2, all components of �������� are invoked
upon each and every cell execution. When the user submits a request to
run a cell, the tracer () instruments the executed cell, updating symbol
lineage metadata as each line executes. Once the cell finishes execution,
the checker (À) performs liveness and inverse liveness analyses for every
cell in the notebook. By combining the results of these analyses with
the lineage metadata computed by the tracer, the frontend (Ã) is able
to highlight both unsafe cells as well as cells that resolve safety issues
(§5), information which the user can then leverage when deciding the
next action to perform.

To understand the operations of each component, we first introduce
the notions of symbols as well as their timestamps and dependencies.
[Aditya: Why not start with these preliminaries prior to the components?]

Symbols, timestamps, and dependencies. We begin defining our use
of the term symbol.
Definition 1 [Symbol]. A symbol is any piece of data in notebook scope
that can be referenced by a (possibly qualified) name.

For example, if lst is a list with 10 entries, then lst, lst[0], and
lst[8] are all symbols. Similarly, if df is a dataframe with a column
named “col”, then df and df.col are both symbols.

�������� augments each symbol with additional lineage metadata
in the form of timestamps and dependencies.
Definition 2 [Timestamp]. A symbol’s timestamp is the execution counter
of the cell that most recently modified that symbol. Likewise, a cell’s
timestamp is the execution counter corresponding to the most recent
time that cell was executed.

For a symbol s or a cell c, we denote its timestamp as ts(s) or
ts(c), respectively. For example, letting c1, c2, and c3 denote the three
cells in Figure 1, we have that ts(custom_agg)D ts(c1)D 4, since
custom_agg is last defined / updated in c1.
Definition 3 [Dependencies]. The dependencies of symbol s are the set
of symbols that contributed directly to the computation of s. [Andrew:
does this include both control dependencies and data dependencies?]

InFigure1, agg_by_coldependson custom_agg, while df_x_agg
depends on df_x and custom_agg. We write Par(s) to denote the
dependencies of s. Similarly, if t2Par(s), then s2Chd(t). [Andrew:
I’m a bit thrown off by the notation; does it make sense to use “parent”
and “child” if dataflow is often represented as a graph?]

3

Submit cell
execution

def ...
...

[1] [4]

agg_by_col = ...[2]

df_x_agg = ...
df_y_agg = ...

[3]

def custom...
...

[1]

agg_by_col = ...[2]

df_x_agg = ...
df_y_agg = ...

[3]

Figure 3: The �������� frontend highlights cells that are unsafe to execute with
staleness warnings and cells that resolve such issues with cleanup suggestions.

(a standard technique for finding non-redefined symbols in a program)
and inverse liveness analyses (a new technique discussed in §4.3) for
every cell in the notebook. By combining the results of these analyses
with the lineage metadata computed by the tracer, the frontend (Ã, §5)
is able to highlight cells that are unsafe due to staleness issues of the
form seen in Figure 1, as well as cells that resolve such staleness issues.

We now describe the operation of each component in more detail.
 Tracer. The �������� tracer maintains dataflow dependencies for
each symbol that appears in the notebook in the form of lineage meta-
data. It leverages Python’s built-in tracing capabilities [2], which
allows it to run custom code upon four different kinds of events:
(i) line events, when a line starts to execute; (ii) call events, when
a function is called, (iii) return events, when a function returns, and
(iv) exception events, when an exception occurs.

To illustrate its operation, consider that, the first time c3 in Figure 1
is executed, symbols df_agg_x and df_agg_y are undefined. Before
the first line runs, a line event occurs, thereby trapping into the tracer.
The tracer has access to the line triggering the event and parses it as
an Assign statement in Python’s grammar, followed by a quick static
analysis to determine that the symbols df_x and agg_by_col appear
on the right hand side of the assignment. Thus, these two will be the
dependencies for symbol df_agg_x. Since c3 is the third cell exe-
cuted, the tracer furthermore gives df_agg_x a timestamp of 3. Similar
statements hold for df_agg_y once the second line executes.
À Checker. The �������� static checker performs two kinds of program
analysis: (i) liveness analysis, and (ii) a new technique that we call
inverse liveness analysis. The �������� liveness checker helps to detect
safety issues by determining which cells have live references to stale
symbols. For example, in Figure 1, agg_by_col, which is stale, is
live in c3 – this information can be used to warn the user before they
execute c3. Furthermore, the inverse liveness checker serves as a key
component for efficiently computing resolutions to staleness issues, as
we later show in Sections 4 and 5.
Ã Frontend. The �������� frontend uses the results of the static
checker to highlight cells of interest. For example, in Figure 3, which
depicts the original example from Figure 1 (but before the user submits
c3 for re-execution), c3 is given a staleness warning to warn the user
that re-execution could have incorrect behavior due to staleness issues.
At the same time, c2 is given a cleanup suggestion highlight, because

AST Node Example Rule
Assign a = e Par(a)DUSEŒeç

(target in RHS) a = a + e Par(a)DPar(a)[USEŒeç

AugAssign a += e Par(a)DPar(a)[USEŒeç

For for a in e: Par(a)DUSEŒeç

FunctionDef def f(a=e): Par(f)DUSEŒeç

ClassDef class c(e): Par(c)DUSEŒeç

Table 1: Lineage rules used by the �������� tracer.

rerunning it would resolve the staleness issue present in c3. The user can
then leverage the extra visual cues to make a more informed decision
about which cell to next execute, possibly preferring to execute cells
that resolve staleness issues before cells with staleness issues.

Overall, each of ��������’s three key components play crucial roles
in helping users avoid and resolve unsafe interactions due to staleness
issues. We describe each component in detail in the following sections.

3. LINEAGE TRACKING
In this section, we describe how �������� traces cell execution in

order to maintain symbol lineage metadata, and how such metadata
aids in the detection and resolution of staleness issues. We begin by
introducing helpful terminology and formalizing our notion of staleness
beyond the intuition we gave from the example in Figure 1.

3.1 Preliminaries
We begin defining our use of the term symbol.

Definition 1 [Symbol]. A symbol is any piece of data in notebook scope
that can be referenced by a (possibly qualified) name.

For example, if lst is a list with 10 entries, then lst, lst[0],
and lst[8] are all symbols. Similarly, if df is a dataframe with a
column named “col”, then df and df.col are both symbols. Symbols
can be thought of as a generalized notion of variables that allow us treat
different nameable objects in Python’s data model in a unified manner.

�������� augments each symbol with additional lineage metadata
in the form of timestamps and dependencies.
Definition 2 [Timestamp]. A symbol’s timestamp is the execution counter
of the cell that most recently modified that symbol. Likewise, a cell’s
timestamp is the execution counter corresponding to the most recent
time that cell was executed.

For a symbol s or a cell c, we denote its timestamp as ts(s) or
ts(c), respectively. For example, letting c1, c2, and c3 denote the
three cells in Figure 1, we have that ts(custom_agg)D ts(c1)D 4,
since custom_agg is last updated in c1, which was executed at time 4.
Definition 3 [Dependencies]. The dependencies of symbol s are the set
of symbols that contributed to the computation of s via direct dataflow.

InFigure1, agg_by_col dependson custom_agg, while df_x_agg
depends on df_x and custom_agg. We write Par(s) to denote the
dependencies of s. Similarly, if t2Par(s), then s2Chd(t).

A major contribution of �������� is to highlight cells with unsafe
usages of stale symbols, which we define recursively as follows:
Definition 4 [Stale symbols]. A symbol s is called stale if there exists
some s02Par(s) such that ts(s0)> ts(s), or s’ is itself stale; that is,
s has a parent that is either itself stale or more up-to-date than s.

In Figure 1, symbol agg_by_col is stale, because ts(agg_by_col)
D 2, but ts(custom_agg) D 4. Staleness gives us a rigorous con-
ceptual framework upon which to study the intuitive notion that,
because custom_agg was updated, we should also update its child
agg_by_col to prevent counterintuitive behavior.

We now draw on these definitions as we describe how ��������
maintains lineage metadata for each symbol while tracing cell execution.

3

Compute symbol
lineage during execution

For each cell:
Perform liveness and
initialized variable analysis

Highlight cells

➊ Runtime tracer➋ Static checker

➌ Frontend
def ...

...
[1] [4]

agg_by_col = ...[2]

df_x_agg = ...
df_y_agg = ...

[3]

def custom...
...

[1]

agg_by_col = ...[2]

df_x_agg = ...
df_y_agg = ...

[3]

Figure 3: The �������� frontend highlights cells that are unsafe to execute with
staleness warnings and cells that resolve such issues with cleanup suggestions.

(a standard technique for finding non-redefined symbols in a program)
and inverse liveness analyses (a new technique discussed in §4.3) for
every cell in the notebook. By combining the results of these analyses
with the lineage metadata computed by the tracer, the frontend (Ã, §5)
is able to highlight cells that are unsafe due to staleness issues of the
form seen in Figure 1, as well as cells that resolve such staleness issues.

We now describe the operation of each component in more detail.
 Tracer. The �������� tracer maintains dataflow dependencies for
each symbol that appears in the notebook in the form of lineage meta-
data. It leverages Python’s built-in tracing capabilities [2], which
allows it to run custom code upon four different kinds of events:
(i) line events, when a line starts to execute; (ii) call events, when
a function is called, (iii) return events, when a function returns, and
(iv) exception events, when an exception occurs.

To illustrate its operation, consider that, the first time c3 in Figure 1
is executed, symbols df_agg_x and df_agg_y are undefined. Before
the first line runs, a line event occurs, thereby trapping into the tracer.
The tracer has access to the line triggering the event and parses it as
an Assign statement in Python’s grammar, followed by a quick static
analysis to determine that the symbols df_x and agg_by_col appear
on the right hand side of the assignment. Thus, these two will be the
dependencies for symbol df_agg_x. Since c3 is the third cell exe-
cuted, the tracer furthermore gives df_agg_x a timestamp of 3. Similar
statements hold for df_agg_y once the second line executes.
À Checker. The �������� static checker performs two kinds of program
analysis: (i) liveness analysis, and (ii) a new technique that we call
inverse liveness analysis. The �������� liveness checker helps to detect
safety issues by determining which cells have live references to stale
symbols. For example, in Figure 1, agg_by_col, which is stale, is
live in c3 – this information can be used to warn the user before they
execute c3. Furthermore, the inverse liveness checker serves as a key
component for efficiently computing resolutions to staleness issues, as
we later show in Sections 4 and 5.
Ã Frontend. The �������� frontend uses the results of the static
checker to highlight cells of interest. For example, in Figure 3, which
depicts the original example from Figure 1 (but before the user submits
c3 for re-execution), c3 is given a staleness warning to warn the user
that re-execution could have incorrect behavior due to staleness issues.
At the same time, c2 is given a cleanup suggestion highlight, because

AST Node Example Rule
Assign a = e Par(a)DUSEŒeç

(target in RHS) a = a + e Par(a)DPar(a)[USEŒeç

AugAssign a += e Par(a)DPar(a)[USEŒeç

For for a in e: Par(a)DUSEŒeç

FunctionDef def f(a=e): Par(f)DUSEŒeç

ClassDef class c(e): Par(c)DUSEŒeç

Table 1: Lineage rules used by the �������� tracer.

rerunning it would resolve the staleness issue present in c3. The user can
then leverage the extra visual cues to make a more informed decision
about which cell to next execute, possibly preferring to execute cells
that resolve staleness issues before cells with staleness issues.

Overall, each of ��������’s three key components play crucial roles
in helping users avoid and resolve unsafe interactions due to staleness
issues. We describe each component in detail in the following sections.

3. LINEAGE TRACKING
In this section, we describe how �������� traces cell execution in

order to maintain symbol lineage metadata, and how such metadata
aids in the detection and resolution of staleness issues. We begin by
introducing helpful terminology and formalizing our notion of staleness
beyond the intuition we gave from the example in Figure 1.

3.1 Preliminaries
We begin defining our use of the term symbol.

Definition 1 [Symbol]. A symbol is any piece of data in notebook scope
that can be referenced by a (possibly qualified) name.

For example, if lst is a list with 10 entries, then lst, lst[0],
and lst[8] are all symbols. Similarly, if df is a dataframe with a
column named “col”, then df and df.col are both symbols. Symbols
can be thought of as a generalized notion of variables that allow us treat
different nameable objects in Python’s data model in a unified manner.

�������� augments each symbol with additional lineage metadata
in the form of timestamps and dependencies.
Definition 2 [Timestamp]. A symbol’s timestamp is the execution counter
of the cell that most recently modified that symbol. Likewise, a cell’s
timestamp is the execution counter corresponding to the most recent
time that cell was executed.

For a symbol s or a cell c, we denote its timestamp as ts(s) or
ts(c), respectively. For example, letting c1, c2, and c3 denote the
three cells in Figure 1, we have that ts(custom_agg)D ts(c1)D 4,
since custom_agg is last updated in c1, which was executed at time 4.
Definition 3 [Dependencies]. The dependencies of symbol s are the set
of symbols that contributed to the computation of s via direct dataflow.

InFigure1, agg_by_col dependson custom_agg, while df_x_agg
depends on df_x and custom_agg. We write Par(s) to denote the
dependencies of s. Similarly, if t2Par(s), then s2Chd(t).

A major contribution of �������� is to highlight cells with unsafe
usages of stale symbols, which we define recursively as follows:
Definition 4 [Stale symbols]. A symbol s is called stale if there exists
some s02Par(s) such that ts(s0)> ts(s), or s’ is itself stale; that is,
s has a parent that is either itself stale or more up-to-date than s.

In Figure 1, symbol agg_by_col is stale, because ts(agg_by_col)
D 2, but ts(custom_agg) D 4. Staleness gives us a rigorous con-
ceptual framework upon which to study the intuitive notion that,
because custom_agg was updated, we should also update its child
agg_by_col to prevent counterintuitive behavior.

We now draw on these definitions as we describe how ��������
maintains lineage metadata for each symbol while tracing cell execution.

3

Figure 2: nbsafetyworkflowwith architectural components.

JupyterLab and traditional Jupyter notebooks can opt to use the

nbsafety kernel as a drop-in replacement for Jupyter’s built-in

Python 3 kernel. nbsafety introduces two key innovations to ad-

dress the challenges outlined above:

1. Efficient and accurate detection of staleness issues in cells via novel

jointdynamicandstaticanalysis.Thenbsafety kernel combines run-

time tracing with static analysis in order to detect and prevent note-

book interactions that are unsafe due to staleness issues of the form

seen in Figure 1. The tracer (§3) instruments each program state-

ment so that program variable definitions are annotated with parent

dependencies and cell execution timestamps. This metadata is then

used by a runtime state-aware static checker (§4) that combines said

metadata with static program analysis techniques to determine

whether any staleness issues are present prior to the start of cell ex-

ecution. This allows nbsafety to present users with cell highlights

(§5) that warn them about cells that are unsafe to execute due to stal-

eness issues before they try executing such cells, thus preserving de-

sirable atomicity of cell executions present in traditional notebooks.

2. Efficient resolution of staleness issues. Beyond simply detecting stal-

eness issues, we also show how to detect cells whose re-execution

would resolve such staleness issues — but doing so efficiently re-

quired us to leverage a lesser-known analysis technique called ini-

tialized variable analysis (§4) tailored to this use case. We show how

initialized analysis brings staleness resolution complexity down

from time quadratic in the number of cells in the notebook to linear,

crucial for large notebooks.

We validate our design choices for nbsafety by replaying and an-

alyzing of a corpus of 666 execution logs of real notebook sessions,

scraped from GitHub (§6). In doing so, nbsafety identified that 117

sessions had potential safety errors, and upon sampling these for

manual inspection, we found several with particularly egregious

examples of confusion and wasted effort by real users that would

have been saved with nbsafety. After analyzing the 549 remaining

sessions, we found that cells suggested by nbsafety as resolving

staleness issues were strongly favored by users for re-execution—

more than 7× more likely to be selected compared to random cells,

even though these user interactions were originally performedwith-

out nbsafety and therefore were not influenced by its suggestions.

Overall, our empirical study indicates that nbsafety can reduce

cognitive overhead associated with manual maintenance of global

notebook state under any-order execution semantics, and in doing

so, allows users to focus their efforts more on exploratory data anal-

ysis, and less on avoiding and fixing state-related notebook bugs.

Our free and open source code is available publicly onGitHub [27].

2 ARCHITECTUREOVERVIEW

In this section, we give an overview of nbsafety’s components

and how they integrate into the notebook workflow.

1094

Figure 3: nbsafety highlights unsafe cells with staleness warnings

and cells that resolve staleness issues with cleanup suggestions.

Overview. nbsafety integrates into a notebook workflow accord-

ing to Figure 2. As depicted, all components of nbsafety are in-

voked upon each and every cell execution. When the user submits a

request to run a cell, the tracer (➊, §3) instruments the executed cell,

updating lineage metadata associated with each variable as each

line executes. Once the cell finishes execution, the checker (➋, §4)

performs liveness analysis [4] and initialized variable analysis [29]

for every cell in the notebook. By combining the results of these

analyses with the lineage metadata computed by the tracer, the

frontend (➌, §5) is able to highlight cells that are unsafe due to

staleness issues of the form seen in Figure 1, as well as cells that

resolve such staleness issues.

➊ Tracer. The nbsafety tracer maintains dataflow dependen-

cies for each symbol that appears in the notebook in the form

of lineage metadata. It leverages Python’s built-in tracing capabili-

ties [3],which allows it to run custom code upon four different kinds

of events: (i) line events, when a line starts to execute; (ii) call
events, when a function is called, (iii) return events, when a func-

tion returns, and (iv) exception events, when an exception occurs.

To illustrate its operation, consider that, the first time c3 in Fig-

ure 1 is executed, symbols df_agg_x and df_agg_y are undefined.
Before the first line runs, a line event occurs, thereby trapping into
the tracer. The tracer has access to the line of code that triggered

the line event and parses it as an Assign statement in Python’s

grammar, followed by a quick static analysis to determine that

the symbols df_x and agg_by_col appear on the right hand side

of the assignment (i.e., these symbols appear in USE[R.H.S. of the

Assign]). Thus, these two will be the dependencies for symbol

df_agg_x. Since c3 is the third cell executed, the tracer further-

more gives df_agg_x a timestamp of 3. Similar statements hold

for df_agg_y once the second line executes.

➋ Checker. The nbsafety static checker performs two kinds of

program analysis: (i) liveness analysis, and (ii) initialized variable

analysis. Thenbsafety liveness checker helps to detect safety issues

by determining which cells have live references to stale symbols.

For example, in Figure 1, agg_by_col, which is stale, is live in c3—
this information can be used to warn the user before they execute

c3. Furthermore, the initialized checker serves as a key component

for efficiently computing resolutions to staleness issues, as we later

show in Sections 4 and 5.

➌ Frontend. The nbsafety frontend uses the results of the static

checker to highlight cells of interest. For example, in Figure 3,

which depicts the original example from Figure 1 (but before the

user submits c3 for re-execution), c3 is given a staleness warning

highlight to warn the user that re-execution could have incorrect

behavior due to staleness issues. At the same time, c2 is given a

cleanup suggestion highlight, because rerunning it would resolve

the staleness in c3. The user can then leverage the extra visual cues

to make a more informed decision about which cell to next execute.

ASTNode Example Rule

Assign a = e Par(a)=USE[e]
(target in RHS) a = a + e Par(a)=Par(a)∪USE[e]
AugAssign a += e Par(a)=Par(a)∪USE[e]

For for a in e: Par(a)=USE[e]
FunctionDef def f(a=e): Par(f)=USE[e]

ClassDef class c(e): Par(c)=USE[e]

Table 1: Subset of lineage rules used by the nbsafety tracer.

Overall, each of nbsafety’s three key components play crucial

roles in helping users avoid and resolve unsafe interactions due to

staleness issues without compromising existing notebook program

semantics. We describe each component in the following sections.

3 LINEAGE TRACKING

In this section, we describe how nbsafety traces cell execution in

order to maintain symbol lineage metadata, and how such metadata

aids in the detection and resolution of staleness issues.

3.1 Preliminaries

We begin defining our use of the term symbol.

Definition 1 [Symbol].A symbol is any piece of data in notebook

scope that can be referenced by a (possibly qualified) name.

For example, if lst is a list with 10 entries, then lst, lst[0], and
lst[8] are all symbols. Similarly, if df is a dataframewith a column

named “col”, then df and df.col are both symbols. Symbols can be

thought of as a generalized notion of variables that allow us treat dif-

ferent nameable objects in Python’s data model in a unified manner.

nbsafety augments each symbol with additional lineage meta-

data in the form of timestamps and dependencies.

Definition 2 [Timestamp].A symbol’s timestamp is the execution

counter of the cell that most recently modified that symbol. Likewise,

a cell’s timestamp is the execution counter corresponding to the most

recent time that cell was executed.

For a symbol s or a cell c , we denote its timestamp as ts(s) or ts(c),
respectively. For example, letting c1, c2, and c3 denote the three

cells in Figure 1, we have that ts(custom_agg) = ts(c1)= 4, since
custom_agg is last updated in c1, which was executed at time 4.

Definition 3 [Dependencies]. The dependencies of symbol s are
those symbols that contributed to s’s computation via direct dataflow.

In Figure 1, agg_by_col depends on custom_agg, while
df_x_agg depends on df_x and custom_agg. We denote the de-

pendencies of s with Par(s).
A major contribution of nbsafety is to highlight cells with un-

safe usages of stale symbols, which we define recursively as follows:

Definition 4 [Stale symbols]. A symbol s is called stale if there exists
some s′ ∈Par(s) such that ts(s′)> ts(s), or s′ is itself stale; that is, s
has a parent that is either itself stale or more up-to-date than s.

In Figure 1, symbol agg_by_col is stale, because ts(agg_by_col)
= 2, but ts(custom_agg) = 4. Staleness gives us a rigorous con-

ceptual framework upon which to study the intuitive notion that,

because custom_agg was updated, we should also update its child

agg_by_col to prevent counterintuitive behavior.

We now draw on these definitions as we describe how nbsafety

maintains lineage metadata while tracing cell execution.

3.2 Lineage Update Rules

nbsafety attempts to be non-intrusive when maintaining lineage

with respect to the Python objects that comprise the notebook’s

1095

state. To do so, we avoid modifying the Python objects created by

the user, instead creating “shadow” references to each symbol. nb-

safety then takes a hybrid dynamic / static approach to updating

each symbol’s lineage. After each statement has finished executing,

the tracer inspects the AST node for the executed statement and

performs a lineage update according to the rules shown in Table 1.

Example. Suppose the statement

gen = map(lambda x: f(x), foo + [bar])
has just finished executing. Using rule 1 of Table 1, the tracer will

then statically analyze the right hand side in order to determine

USE[map(lambda x: f(x), foo + [bar])]
which is the set of used symbols that appear in the RHS. In this

case, the aforementioned set is {f, foo, bar} — everything else

is either a Python built-in (map, lambda), or an unbound symbol

(i.e. in the case of the lambda argument x). The tracer will thus set
Par(gen)= {f,foo,bar} and will also update ts(gen).
Fine-GrainedLineageforAttributesandSubscripts.nbsafety

is able to track lineage at a finer granularity than simply top-level

symbols. For example, nbsafety tracks parents and children of

subscript symbols like x[0] and attribute symbols like x.a (as well
as combinations thereof) as first-class citizens, in addition to those

of top-level symbols such as x. Please see the technical report [28]
for more details.

Staleness Propagation. We already saw that the tracer annotates

each symbol’s shadow reference with timestamp and lineage meta-

data. Additionally, it tracks whether each symbol is stale, as this

cannot be inferred solely from timestamp and lineage metadata. To

see why, recall the definition of staleness: a symbol s is stale if it has
a more up-to-date parent (i.e., an s′ ∈Par(s) with ts(s′) > ts(s)),
or if it has a stale parent, precluding the ability to determine stal-

eness locally. Thus, when s is updated, we perform a depth first

search starting from each child c ∈Chd(s) in order to propagate

the “staleness” to all descendants.

Bounding Lineage Overhead. Consider the following cell:

x = 0
for i in random.sample(range(10**7), 10**5):

x += lst[i]

[1]

In order to maintain lineage metadata for symbol x to 100% cor-

rectness, we would need to somehow indicate that Par(x) contains
lst[i] for all 105 random indices i. It is impossible to maintain

acceptable performance in general under these circumstances. Po-

tential workarounds include conservative approximations, as well

as lossy approximations. For example, as a conservative approxi-

mation, we could instead specify that x depends on lst, with the

implication that it also depends on everything in lst’s namespace.

However, this will cause x to be incorrectly classified as stale when-
ever lst is mutated, e.g., if a new entry is appended. We therefore

opted for a lossy approximation that we describe in our extended

technical report [28].

Handling Calls to External Libraries.When nbsafety’s tracer

traps due to a function call, it inspects the location of the called

function. If the called function was not defined in the user’s note-

book, but in some imported file, nbsafety disables tracing until

control returns to the notebook proper, since external files typically

do not have access to state defined in the notebook. If an object

in notebook state is passed explicitly as, e.g., a function param-

eter, nbsafety assumes the library does not mutate it; we leave

improvements to future work. By disabling tracing when control is

if num % 3 == 0:
foobar = True
s = 'foobar'

elif num % 3 == 1:
foo = True
s = 'foo'

else:
s = 'bar'

print(s, foobar)

num

foofoobar bar

print

%3==0

%3==1

%3==2

LIVE: num, foobar
INITIALIZED: s

Figure 4: Example liveness and initialized variable analysis.

outside the notebook, we ensure that additional tracing overhead

is bounded by the size of the user’s notebook.

Finally, our technical report [28] contains additional details sur-

rounding the tracer, such as how we garbage collect shadow meta-

data, how we handle mutations when variables alias each other,

and how we handle namespaced symbols such as attributes .

4 LIVENESS AND INITIALIZEDANALYSES

In this section, we describe the program analysis component of nb-

safety’s backend. The checker performs liveness analysis [4], and a

lesser-known program analysis technique called initialized variable

analysis, or definite assignment analysis [29]. These techniques are

crucial for efficiently identifying which cells are unsafe to execute

due to stale references, as well as which cells help resolve staleness

issues. We begin with background before discussing the connection

between these techniques and staleness detection and resolution.

4.1 Background

Livenessanalysis [4] is a program analysis technique for determining

whether the value of a variable at some point is used later in the

program. Although traditionally used by compilers to, for example,

determine how many registers need to be allocated at some point

during program execution, we use it to determine whether a cell

has references to stale symbols. We also show (§5) how initialized

variable analysis analysis [29], a technique traditionally used by

IDEs and linters to detect potentially uninitialized variables, can be

used to efficiently determine which cells to to resolve staleness.

Example. In Figure 4, symbols num and foobar are live at the top
of the cell, since the value for each at the top of the cell can be used

in some path of the control flow graph (CFG). In the case of num,
the (unmodified) value is used in the conditional. In the case of

foobar, while one path of the CFG modifies it, the other two paths

leave it unchanged by the time it is used in the print statement;

hence, it is also live at the top of the cell. The symbol that is not

live at cell start is foo, since it is only ever assigned and never used,
and s, since every path in the CFG assigns to s. We call symbols

such as s that are assigned in every path of the CFG dead once they

reach the end of the cell.

4.2 Cell Oriented Analysis

We now describe how we relate liveness, which is traditionally ap-

plied in the context of a single program, to a notebook environment.

Definition 5 [Live symbols].Given a cell c and some symbol s, we
say that s is live in c if there exists some execution path in c in which
the value of s at the start of c’s execution is used later in c .

In other words, s is live in c if, treating c as a standalone program,

s is live in the traditional sense at the start of c . We already saw in

Figure 4 that the live symbols in the example cell are num, fiz, and
buz. For a given cell c , we use LIVE(c) to denote the live symbols in c .

1096

We are also interested in dead symbols that are (re)defined in

every branch by the time execution reaches the end of a given cell c .

Definition 6 [Dead symbols].Given a cell c and some symbol s, we
say that s is dead in c if, by the time control reaches the end of c , every
possible path of execution in c overwrites s in a manner independent

of the current value of s.

Denoting such symbols as DEAD(c), we will see in Section 5 the

role they play in assisting in the resolution of staleness issues.

Staleness and Freshness of Live Symbols in Cells. Recall that

symbols are augmented with additional lineage and timestamp

metadata computed by the tracer (§3). We can thus additionally

refer to the set STALE(c)⊆ LIVE(c), the set of stale symbols that are

live in c . When this set is nonempty, we say that cell c itself is stale:

Definition7 [Stale cells]. Acellc is called stale if there exists somes∈
LIVE(c) such thats is stale; i.e.,c hasa live reference to some stale symbol.

A major contribution of nbsafety is to identify cells that are stale

and preemptively warn the user about them.

Note that a symbol can be stale regardless of whether it is live in

some cell. Given a particular cell c , we can also categorize symbols

according to their lineage and timestamp metadata as they relate to

c . For example, when a non-stale symbol s that is live in c is more

“up-to-date” than c , then we say that it is fresh with respect to c:

Definition 8 [Fresh symbols]. Given a cell c and some symbol s, we
say that s is fresh w.r.t. c if (i) s is not stale, and (ii) ts(s)> ts(c).

We can extend the notion of fresh symbols to cells just as we did

for stale symbols and stale cells:

Definition 9 [Fresh cells]. A cell c is called fresh if it (i) it is not stale,
and (ii) it contains a live reference to one or more fresh symbols; that

is, ∃s∈ LIVE(c) such that s is fresh with respect to c .

Example. Consider a notebook with three cells run in sequence,

with code a=4, b=a, and c=a+b, respectively, and suppose the first

cell is updated to be a=5 and rerun. The third cell contains refer-

ences to a and b, and although a is fresh, b is stale, so the third cell

is not fresh, but stale. On the other hand, the second cell contains

a live reference to a but no live references to b, and is thus fresh.

As we see in our experiments (§6), fresh cells are oftentimes

cells that users wish to re-execute; another major contribution of

nbsafety is therefore to automatically identify such cells. In fact, in

the above example, rerunning the second cell resolves the staleness

issue present in the first cell. That said, running any other cell that

assigns to b would also resolve the staleness issue, so staleness-

resolving cells need not necessarily be fresh. Instead, fresh cells

can be thought of as resolving staleness in cell output, as opposed

to resolving staleness in some symbol. We study such staleness-

resolving cells next.

Cells that Resolve Staleness.We have already seen how liveness

checking can help users to identify stale cells. Ideally, we should

also identify cells whose execution would “freshen” the stale vari-

ables that are live in some cell c , thereby allowing c to be executed

without potential errors due to staleness. We thus define refresher

cells as follows:

Definition 10 [Refresher cells]. Anon-stale cell cr is called refresher
if there exists some other stale cell cs such that

STALE(cs)−STALE(cr ⊕cs),∅
where cr ⊕ cs denotes the concatenation of cells cr and cs . That is,
the result of merging cr and cs together has fewer live stale symbol

references than does cs alone.

Intuitively, if we were to submit a refresher cell for execution, we

would reduce the number of stale symbols live in some other cell

(possibly to 0). Note that a refresher cell may or may not be fresh.

In addition to identifying stale and fresh cells, a final major con-

tribution of nbsafety is the efficient identification of refresher cells.

We will see in Section 5 that scalable computation of such cells

requires initialized analysis to compute dead symbols.

Initialized Variable Analysis. Initialized variable analysis [29]

can be thought of as the “inverse” of liveness analysis. While live-

ness analysis is a “backwards-may” technique for computing sym-

bols whose non-overwritten values “may” be used in a cell, initial-

ized analysis is a “forwards-must” technique that computes symbols

that will be “definitely assigned” by the time control reaches the

end of a cell. Please see the technical report [28] for a detailed

discussion of initialized analysis; we leverage it within the context

of nbsafety to determine whether a non-stale cell will overwrite

any stale symbols, which turns out to be an efficient mechanism

for computing refresher cells (§5.2).

4.3 Resolving Live Symbols

In many cases, it is possible to determine the set of live symbols in

a cell with high precision purely via static analysis. In some cases,

however, it is difficult to do so without awareness of additional

runtime data. To illustrate, consider the example below:

x = 0
def f(y):

return x + y
lst = [f, lambda t: t + 1]

[1]

print(lst[1](2)) [2]

Whether or not symbol x should be considered live at the top of

the second cell depends on whether the call to lst[1](2) refers
to the list entry containing the lambda, or the entry containing

function f. In this case, a static analyzer might be able to infer that

lst[1] does not reference f and that x should therefore not be

considered live at the top of cell 2 (since there is no call to function f,
in whose body x is live), but doing so in general is challenging due

to Rice’s theorem. Instead of doing so purely statically, nbsafety

performs an extra resolution step, since it can actually examine

the runtime value of lst[1] in memory. This allows nbsafety to

be more precise about live symbols than a conservative approach

would be, which would be forced to consider x as live even though

f is not referenced by lst[1].

5 CELLHIGHLIGHTS

In this section, we describe how to combine the lineage metadata

with the output of the static checker to highlight cells of interest.

5.1 Highlight Abstraction

We begin by defining the notion of cell highlights in the abstract

before discussing concrete examples, how they are presented, and

how they are computed.

Definition 11 [Cell highlights].Given a notebook N abstractly de-

fined as an ordered set of cells {ci }, a set of cell highlightsH is a subset

of N comprised of cells that are semantically related in some way at

a particular point in time.

More concretely, we will consider the following cell highlights:

• Hs , the set of stale cells in a notebook;

1097

• Hf , the set of fresh cells in a notebook; and

• Hr , the set of refresher cells in a notebook.

Note that these sets of cell highlights are all implicitly indexed by

their containing notebook’s execution counter.When not clear from

context we writeH
(t)
s ,H

(t)
f , andH

(t)
r (respectively) to make the

time dependency explicit. Along these lines, we are also interested

in the following “delta” cell highlights:

• ∆H
(t)
f =H

(t)
f −H

(t−1)
f (new fresh cells); and

• ∆H
(t)
r =H

(t)
r −H

(t−1)
r (new refresher cells)

again omitting superscripts when clear from context.

Interface.We have already seen from the example in Figure 3 that

stale cells are given staleness warnings to the left of the cell, and

refresher cells are given cleanup suggestions to the left of the cell.

nbsafety also augments fresh cells with cleanup suggestions of

the same color as that used for refresher cells. Overall, the fresh

and refresher highlights are intended to steer users toward cells

that they may wish to re-execute, and the stale highlights are in-

tended to steer users away from cells that they may wish to avoid,

intuitions that we validate in our empirical study (§6).

Computation. ComputingHs andHf is straightforward: for each

cell c , we simply run a liveness checker to determine LIVE(c), and
then perform ametadata lookup for each symbol s∈ LIVE(c) to deter-
mine whether s is fresh w.r.t. c or stale. Refresher cell computation

deserves a more thorough treatment that we consider next.

5.2 Computing Refresher Cells Efficiently

Beforewe discuss hownbsafety uses an initialized variable checker

from Section 4 to efficiently compute refresher cells, consider how

one might design an algorithm to compute refresher cells directly

from Definition 10. The straightforward way is to loop over all

non-stale cells cr ∈N −Hs and compare whether STALE(cr ⊕cs) is
smaller than STALE(cs). In the case that Hs and N −Hs are similar

in size, this requires performing O
(
|N |2

)
liveness analyses, which

would create unacceptable latency in the case of large notebooks.

By leveraging an initialized variable checker, it turns out that

we can check whether STALE(cs) and DEAD(cr) have any overlap

instead of performing liveness analysis over cr ⊕cs and checking

whether STALE(cr ⊕cs) shrinks. We state this formally as follows:

Theorem 1. Let N be a notebook, and let cs ∈Hs ⊆N . For any other

cr ∈N −Hs , the following equality holds:
STALE(cs)−STALE(cr ⊕cs)=DEAD(cr)∩STALE(cs)

Please see the technical report [28] for a proof. □
Theorem 1 relies crucially on the fact that the CFG of the concate-

nation of two cells cr and cs into cr ⊕cs will have a “choke point”
at the position where control transfers from cr into cs , so that any

symbols in DEAD(cr) cannot be “revived” in cr ⊕cs .
ComputingHr Efficiently. Contrasted with taking O

(
|N |2

)
pairs

cs ∈Hs , cr ∈N −Hs and checking liveness on each concatenation

cr ⊕cs , Theorem 1 instead allows us compute the setHr as⋃
cs ∈Hs

⋃
s∈STALE(cs)

{
cr ∈N −Hs :s∈DEAD(cr)

}
(1)

Equation 1 can be computed efficiently by creating inverted index

that maps dead symbols to their containing cells (DEAD−1) in or-

der to efficiently compute the inner set union. Furthermore, this

approach only requires O(|N |) liveness analyses and O(|N |) initial-

ized variable analyses as preprocessing, translating to significant

latency reductions in our benchmarks (§6.4).

6 EMPIRICAL STUDY

We now evaluate nbsafety’s ability to highlight unsafe cells, as

well as cells that resolve safety issues (refresher cells). We do so by

replaying 666 real notebook sessions and measuring how the cells

highlighted by nbsafety correlate with real user actions. After

describing data collection (§6.1) and our evaluation metrics (§6.2),

we present our quantitative results (§6.3 and §6.4).

6.1 Notebook Session Replay Data

We now describe our data collection and session replay efforts.

Data Scraping. The .ipynb json format contains a static snap-

shot of the code present in a computational notebook and lacks

explicit interaction data, such as how the code present in a cell

evolves, which cells are re-executed, and the order in which cells

were executed. Fortunately, Jupyter’s IPython kernel implements a

history mechanism that includes information about individual cell

executions in each session, including the source code and execution

counter for every cell execution.We thus scraped history.sqlite
files from 712 repositories files using GitHub’s API [2], from which

we successfully extracted 657 such files. In total, these history files

contained execution logs for ≈ 51000 notebook sessions, out of

which we were able to collect metrics for 666 after conducting the

filter and repair steps described next.

Notebook Session Repair.Many of the notebook sessions were

impossible to replay with perfect replication of the session’s orig-

inal behavior (due to, e.g., missing files). To cope, we adapted ideas

from Yan et al. [37] to repair sessions wherever possible. Please see

our technical report [28] for details for repair and filtering (below).

Session Filtering. Despite these efforts, we were unable to re-

construct some sessions to their original fidelity due to various

environment discrepancies. Furthermore, certain sessions had few

cell executions and appeared to be random tinkering. We therefore

filtered out undesirable sessions, after which we were left with 2566

replayable sessions. However, we were unable to gather meaningful

metrics on more than half of the sessions we replayed because of

exceptions thrown upon many cell executions. We filtered these in

post-processing by removing data for any session with more than

50% of cell executions resulting in exceptions.

After the repair and filtration steps, we extracted metrics from

a total of 666 sessions. Our scripts are available on GitHub [26].

6.2 Metrics

Besides conducting benchmark experiments to measure overhead

associated with nbsafety (§6.4), the primary goal of our empir-

ical study is to evaluate our system and interface design choices

from the previous sections by testing two hypotheses. Our first

hypothesis (i) is that cells with staleness issues highlighted by nb-

safety are likely to be avoided by real users, suggesting that these

cells are indeed unsafe to execute. Our second hypothesis (ii) is that

fresh and refresher cells highlighted by nbsafety are more likely to be

selected for re-execution, indicating that these suggestions can help

reduce cognitive overhead for users trying to choose which cells

to re-execute. To test these hypotheses, we introduce the notion of

predictive power for cell highlights.

Definition 12 [Predictive Power].Given a notebook N with a total

of |N | cells, the id of the next cell executed c , and a non-empty set of

cell highlightsH (chosen before c is known), the predictive power of
H is defined as P(H)= I{c ∈H}· |N |/|H |.

1098

Hs Hrnd Hn Hf Hr ∆Hr ∆Hf

Highlight set

0.0

2.5

5.0

7.5

10.0

M
e
a
n
P
r
e
d
i
c
t
i
v
e
P
o
w
e
r

Num safety errors

0

>0

Figure 5:AVG(P(H∗)) for sessions with/without safety issues.

Averaged over many measurements, predictive power assesses how

many more times more likely a cell from some set of highlights H

is to be picked for re-execution, compared to random cells.

Intuition. To understand predictive power, consider a set of high-

lights H chosen uniformly randomly without replacement from

the entire set of available cells. In this case, E[I{c ∈H}]=P(c ∈H)=

|H |/|N |, so that the predictive power ofH is (|H |/|N |)·(|N |/|H |)=

1. This holds for any number of cells in the set of highlightsH , even

when |H |= |N |. Increasing the size ofH increases the chance for a

nonzero predictive power, but it also decreases the “payout” when

c ∈H . For a fixed notebook N , the maximum possible predictive

power for H occurs whenH = {c}, in which case P(H)= |N |.

Rationale. Our goal in introducing predictive power is not to give

a metric that we then attempt to optimize; rather, we merely want

to see how different sets of cell highlights correlate with real user

behavior. In some sense, any P(H),1 is interesting: P(H)<1 indi-
cates that users tend to avoidH , and P(H)>1 indicates that users
tend to preferH . For the different sets of cell highlights {H∗} intro-

duced in Section 5, each P(H∗) helps us to make this determination.

Gatheringmeasurements. The session interaction data available

in the scraped history files only contains the submitted cell con-

tents for each cell execution, and unfortunately lacks cell identifiers.

Therefore, we attempted to infer the cell identifier as follows: for

each cell execution, if the cell contents were ≥80% similar to a pre-

viously submitted cell (by Levenshtein similarity), we assigned the

identifier of that cell; otherwise, we assigned a new identifier.When-

ever we inferred that an existing cell was potentially edited and

re-executed, we measured predictive power for various highlights

H∗ when such highlights were non-empty. Across the various high-

lights, we computed the average of such predictive powers for each

sessions, and the averaged the average predictive powers across all

sessions, reporting the result as AVG(P(H∗)) for eachH∗ (§6.3).

Highlights of Interest. We gathered metrics for Hs , Hf , ∆Hf ,

Hr , and ∆Hr , which we described earlier in Section 5. Additionally,

we also gathered metrics for the following “baseline highlights”:

• Hn , or the next cell highlight, which contains only the k+1 cell
(when applicable) if cell k was the previous cell executed; and

• H
rnd

, or the random cell highlight, which simply picks a random

cell from the list of existing cells.

We take measurements for Hn because picking the next cell in a

notebook is a common choice, and it is interesting to see how its

predictive power compares with cells highlighted by the nbsafety

frontend such asHf andHr . We also take measurements forH
rnd

to validate via Monte Carlo simulation the claim that random cells

H
rnd

should satisfy P(H
rnd

)=1 in expectation.

Quantity Hn H
rnd

Hs Hf Hr ∆Hf ∆Hr
AVG(P(H∗)) 2.64 1.02 0.30 2.83 3.90 9.17 6.20
AVG(|H∗ |) 1.00 1.00 2.71 3.73 2.31 1.73 1.81

Table 2: Summaryofmeasurements taken for varioushighlight sets.

6.3 Predictive Power Results

In this section, we present the results of our empirical evaluation.

Overall, nbsafety discovered that 117 sessions out of the 666 encoun-

tered staleness issues at some point, underscoring the need for a tool

to prevent such errors. Furthermore, we found that the “positive”

highlights likeHf andHr correlated strongly with user choices.

Predictive Power for VariousHighlights.We now discuss aver-

age P(H∗) for the various H∗ we consider, summarized in Table 2.

Summary. Out of the highlightsH∗ with P(H∗)>1, new fresh

cells, ∆Hf , had the highest predictive power, while Hn had the

lowest (excepting H
rnd

, which had P(H
rnd

) ≈ 1 as expected).

Hs had the lowest predictive power coming in at P(Hs)≈0.30,
suggesting that users do, in fact, avoid stale cells.

We measured the average value of P(Hs) at roughly 0.30, which
is the lowest mean predictive power measured out of any highlights.

One way to interpret this is that users were more then 3× less likely

to re-execute stale cells than they are to re-execute randomly se-

lected highlights of the same size as Hs — strongly supporting the

hypothesis that users tend to avoid stale cells.

On the other hand, all of the highlightsHn , Hf , Hr , ∆Hf , and

∆Hr satisfied P(H∗)>1 on average, with P(∆Hf) larger than the

others at 9.17, suggesting that users are more than 9×more likely

to select newly fresh cells to re-execute than they are to re-execute

randomly selected highlights of the same size as ∆Hf . In fact, Hn
was the lowest non-random set of highlights with mean predictive

power >1, strongly supporting our design decision of specifically

guiding users to all the cells from Hf and Hr (and therefore to

∆Hf and ∆Hr as well) with our aforementioned visual cues. Fur-

thermore, we found that no |H∗ | was larger than 4 on average,

suggesting that these cues are useful, and not overwhelming.

Finally, given the larger predictive powers of ∆Hf and ∆Hr , we
plan to study interfaces that present these highlights separately

from Hf andHr in future work.

Effect of Safety Issues on Predictive Power. Of the 666 sessions

we replayed, we detected 1 or more safety issues (due to the user exe-

cuting a stale cell) in 117, while themajority (549) did not have safety

issues. We reveal interesting behavior by computing AVG(P(H∗))

when restricted to (a) sessions without safety errors, and (b) sessions

with 1 or more safety errors, depicted in Figure 5.

Summary. For sessions with safety errors, users were more

likely to select the next cell (Hn), and less likely to select fresh

or refresher cells (Hf andHr , respectively).

Figure 5 plotsAVG(P(H∗)) for various highlight sets after faceting

on sessions that did and did not have safety errors. By definition,

AVG(P(Hs))=0 for sessions without safety errors (otherwise, users
would have attempted to execute one or more stale cells), but even

for sessions with safety errors, we still found P(Hs)<1 on average,

though not enough to rule out random chance.

Interestingly, we found thatAVG(P(Hn))was significantly higher
for sessions with safety issues, suggesting that users were more

likely to “blindly” execute the next cell without thought.

Finally, we found that users were significantly less likely to

choose cells fromHf ,Hr , or ∆Hr for sessions with safety errors.

1099

0 50 100 150 200

Number of Cells in Session

0

100

200

S
e
s
s
i
o
n
A
n
a
l
y
s
i
s
T
i
m
e
(
s
)

Analysis Latency vs # Cells in Session

nbsafety (quadratic refresher)

nbsafety (initialized analysis)

Figure 6: Measuring the impact of cell count on analysis latency for

nbsafetywith andwithout efficient refresher computation.

Approach Jupyter nbsafety nbsafety (quadratic refresher)

Analysis Time (s) 0 990 5070

Execution Time (s) 3150 4850 4850

Total Time (s) 3150 5840 9920

Median Slowdown 1× 1.44× 1.58×

Table 3: Summary of latencymeasurements.Median slowdownmea-

sured on sessions that took > 5 seconds to execute in vanilla Jupyter.

In fact, users favored Hn over Hr or Hf in this case. Regardless

of whether sessions had safety issues, however, ∆Hf and ∆Hr still
had the highest mean predictive powers out of any of the highlights.

6.4 Benchmark Results

Our benchmarks are designed to assess the additional overhead

incurred by our tracer and checker by measuring the end-to-end

execution latency for the aforementioned 666 sessions, with and

without nbsafety. Furthermore, we assess the impact of our initial-

ized analysis approach to computing refresher cells by comparing

it with the naïve quadratic baseline (both discussed in Section 5).

Overall Execution Time.We summarize the time needed for var-

ious methods to replay the 666 sessions in our execution logs in

Table 3, and furthermore faceted on the static analysis and tracing

/ execution components in the same table. We measured latencies

for both vanilla Jupyter and nbsafety, as well as for an ablation

that replaces the efficient refresher computation algorithm with

the quadratic variant.

Summary. The additional overhead introduced by nbsafety is

within the same order-of-magnitude as vanilla Jupyter, taking

less than 2× longer to replay all 666 sessions, with typical

slowdowns less than 1.5×. Without initialized analysis for

refresher computation, however, total reply time increased to

more than 3× the time taken by the vanilla Jupyter kernel.

Furthermore, we see from Table 3 that refresher computation begins

to dominate with the quadratic variant, while it remains relatively

minor for the linear variant based on initialized analysis.

Impact ofNumberofCells onAnalysis Latency. To better illus-

trate the benefit of using initialized analysis for efficient computa-

tion of refresher cells, we measured the latency of just nbsafety’s

analysis component, and for each session, we plotted this time

versus the total number of cells created in the session, in Figure 6.

Summary.While quadratic refresher computation is acceptable

for sessions with relatively few cells, we observe unacceptable

per-cell latencies for larger notebooks with more than 50 or

so cells. The linear variant that leverages initialized analysis,

however, scales gracefully even for the largest notebooks in

our execution logs.

The variance in Figure 6 for notebooks of the same size can be

attributed to cells with different amounts of code, as well as different

numbers of cell executions (since the size of the notebook is a lower

bound for the aforementioned according to our replay strategy).

7 RELATEDWORK

Our work has connections to notebook systems, fine-grained data

versioning and provenance, and data-centric applications of pro-

gram analysis. Our notion of staleness and cell execution orders is

reminiscent of the notion of serializability—we elaborate on this

connection in our technical report [28].

Notebook Systems. Error-prone interactions with global note-

book state are well-documented [10, 17, 19, 22, 24, 25, 30, 31, 34, 38].

The idea of treating a notebook as a dataflow computation graph has

been studied previously [8, 24, 38]; however, nbsafety is the first

such system to our knowledge that preserves existing any-order

execution semantics. We already surveyed Dataflow notebooks [24],

Nodebook [38], and Datalore’s kernel in Section 1. nbgather [19]

takes a purely static approach to automatically organize notebooks

thereby reducing non-reproducibility. However, nbgather does

not help prevent state-related errors made before reorganization.

Versioning and Provenance. Provenance capture can be either

coarse-grained, typically employed by scientific workflow systems,

e.g. [5, 7, 9, 12, 13], or fine-grained provenance as in database sys-

tems [11, 16, 20], typically at the level of individual rows. Recent

work has examined challenges related to version compaction [6, 21],

and fine-grained lineage for scalable interactive visualization [32].

Vizier [8] attempts to combine cell versioning and data provenance

into a cohesive notebook system with an intuitive interface, while

warning users of caveats (i.e., possibly brittle assumptions that the

analyst made about the data). Like Vizie, we leverage lineage to

propagate information about potential errors. However, data de-

pendencies still need to be specified using their dataset API, while

nbsafety infers them automatically.

Data-centric ProgramChecking. The database community has

traditionally leveraged program analysis to optimizedatabase-backed

applications [15, 18, 33, 36], while we focus on catching bugs in an

interactive notebook environment. One exception is SQLCheck [14],

which employs a data-aware static analyzer to detect and fix so-

called antipatterns that occur during schema and query design.

8 CONCLUSION

We presented nbsafety, a kernel and frontend for Jupyter that at-

tempts to detect and correct potentially unsafe interactions in note-

books, all while preserving the flexibility of familiar any-order note-

book semantics. We described the implementation of nbsafety’s

tracer, checker, and frontend, and how they integrate into existing

notebook workflows to efficiently reduce error-proneness in note-

books. We showed how cells that nbsafety would have warned as

unsafe were actively avoided, and cells that would have been sug-

gested for re-execution were prioritized by real users on a corpus

of 666 real notebook sessions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. We additionally thank

Sarah Chasins for bringing to our attention the connection between refresher cells and

initialized variable analysis. We acknowledge support from grants IIS-1940759 and IIS-

1940757 awarded by theNational Science Foundation, and funds from theAlfred P. Sloan

Foundation, Facebook, Adobe, Toyota Research Institute, Google, the Siebel Energy

Institute, and State Farm. The content is solely the responsibility of the authors and does

not necessarily represent the official views of the funding agencies and organizations.

1100

BIBLIOGRAPHY

[1] 2018 (accessed December 1, 2020). Datalore. https://datalore.jetbrains.com/.

[2] 2020. GitHub SearchAPI. https://developer.github.com/v3/search/. Date accessed:

2020-07-29.

[3] 2020. sys: System-specific parameters and functions. https://docs.python.org/

2/library/sys.html#sys.settrace. Date accessed: 2020-07-29.

[4] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.

[5] Manish Kumar Anand, Shawn Bowers, Timothy Mcphillips, and Bertram

Ludäscher. 2009. Exploring scientific workflow provenance using hybrid

queries over nested data and lineage graphs. In Scientific and Statistical Database

Management. Springer, 237–254.

[6] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya

Parameswaran. 2015. Principles of dataset versioning: Exploring the recreation/s-

torage tradeoff. In Proceedings of the VLDB Endowment. International Conference

on Very Large Data Bases, Vol. 8. NIH Public Access, 1346.

[7] Shawn Bowers. 2012. Scientific workflow, provenance, and data modeling

challenges and approaches. Journal on Data Semantics 1, 1 (2012), 19–30.

[8] Mike Brachmann,William Spoth, Oliver Kennedy, Boris Glavic, Heiko Mueller,

Sonia Castelo, Carlos Bautista, and Juliana Freire. 2020. Your notebook is not

crumby enough, REPLace it.. In CIDR.

[9] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan. 2004.

Archiving scientific data. ACM Transactions on Database Systems (TODS) 29, 1

(2004), 2–42.

[10] Souti Chattopadhyay et al. 2020. What’s Wrong with Computational Notebooks?

Pain Points, Needs, and Design Opportunities. In Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems. 1–12.

[11] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in

databases: Why, how, and where. Now Publishers Inc.

[12] Susan B Davidson, Sarah Cohen Boulakia, et al. 2007. Provenance in Scientific

Workflow Systems. IEEE Data Eng. Bull. 30, 4 (2007), 44–50.

[13] Susan B Davidson and Juliana Freire. 2008. Provenance and scientific workflows:

challenges andopportunities. InProceedings of the 2008ACMSIGMODinternational

conference on Management of data. ACM, 1345–1350.

[14] Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. 2020. SQLCheck:

Automated Detection and Diagnosis of SQL Anti-Patterns. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data. 2331–2345.

[15] K Venkatesh Emani et al. 2017. Dbridge: Translating imperative code to sql. In

Proceedings of the 2017 ACM International Conference on Management of Data.

1663–1666.

[16] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance

Semirings. In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (Beijing, China) (PODS ’07). ACM,

New York, NY, USA, 31–40. https://doi.org/10.1145/1265530.1265535

[17] Joel Grus. 2018 (accessed June 26, 2020). I Don’t Like Notebooks (JupyterCon 2018

Talk). https://t.ly/Wt3S.

[18] Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify:

Lifting the Curse of Cursor Loops using Custom Aggregates. In Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data. 559–573.

[19] AndrewHead, Fred Hohman, Titus Barik, StevenMDrucker, and Robert DeLine.

2019. Managing messes in computational notebooks. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems. 1–12.

[20] Melanie Herschel et al. 2017. A survey on provenance: What for? What form?

What from? The VLDB Journal 26, 6 (2017), 881–906.

[21] Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran. 2020.

OrpheusDB: bolt-on versioning for relational databases (extended version). The

VLDB Journal 29, 1 (2020), 509–538.

[22] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A

Myers. 2018. The story in the notebook: Exploratory data science using a literate

programming tool. In Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems. 1–11.

[23] Thomas Kluyver et al. 2016. Jupyter Notebooks-a publishing format for

reproducible computational workflows.. In ELPUB. 87–90.

[24] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking

dependencies of cells. In 9th {USENIX}Workshop on the Theory and Practice of

Provenance (TaPP 2017).

[25] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of

Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.

In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) (VL/HCC ’20).

[26] Stephen Macke. 2020 (accessed July 29, 2020). NBSafety Experiments.

https://github.com/nbsafety-project/nbsafety-experiments/.

[27] Stephen Macke and Hongpu Gong. 2020 (accessed July 29, 2020). NBSafety.

https://github.com/nbsafety-project/nbsafety/.

[28] Stephen Macke, Hongpu Gong, Doris Lee, Andrew Head, Doris Xin,

and Aditya Parameswaran. 2020. Fine-Grained Lineage for Safer Note-

book Interactions. Technical Report (2020). https://drive.google.com/

file/d/1U8NTLRMEiwevGPrXEHvPGWL_uCBWUdyZ/view Available at:

https://smacke.net/papers/nbsafety.pdf.

[29] Anders Møller and Michael I Schwartzbach. 2012. Static program analysis. Notes.

Feb (2012).

[30] JeffreyM Perkel. 2018. Why Jupyter is data scientists’ computational notebook

of choice. Nature 563, 7732 (2018), 145–147.

[31] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

2019. A large-scale study about quality and reproducibility of jupyter notebooks.

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR). IEEE, 507–517.

[32] Fotis Psallidas and EugeneWu. 2018. Smoke: Fine-grained lineage at interactive

speed. arXiv preprint arXiv:1801.07237 (2018).

[33] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson,

César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of

imperative programs in a relational database. Proceedings of the VLDB Endowment

11, 4 (2017), 432–444.

[34] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and

explanation in computational notebooks. In Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems. 1–12.

[35] Helen Shen. 2014. Interactive notebooks: Sharing the code. Nature 515, 7525

(2014), 151–152.

[36] CongYan,AlvinCheung, JunwenYang, andShanLu. 2017. Understandingdatabase

performance inefficiencies in real-world web applications. In Proceedings of the

2017 ACM on Conference on Information and Knowledge Management. 1299–1308.

[37] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data

Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. 1539–1554.

[38] Kevin Zielnicki. 2017 (accessed July 5, 2020). Nodebook. https:

//multithreaded.stitchfix.com/blog/2017/07/26/nodebook/.

1101

