
From Natural Language Processing to Neural Databases

James Thorne
University of Cambridge

Facebook AI
jt719@cam.ac.uk

Majid Yazdani
Facebook AI

myazdani@fb.com

Marzieh Saeidi
Facebook AI

marzieh@fb.com

Fabrizio Silvestri
Facebook AI

fsilvestri@fb.com

Sebastian Riedel
Facebook AI

University College London
sriedel@fb.com

Alon Halevy
Facebook AI
ayh@fb.com

ABSTRACT

In recent years, neural networks have shown impressive perfor-

mance gains on long-standing AI problems, such as answering

queries from text and machine translation. These advances raise

the question of whether neural nets can be used at the core of query

processing to derive answers from facts, even when the facts are

expressed in natural language. If so, it is conceivable that we could

relax the fundamental assumption of databasemanagement, namely,

that our data is represented as fields of a pre-defined schema. Fur-

thermore, such technology would enable combining information

from text, images, and structured data seamlessly.

This paper introduces neural databases, a class of systems that

use NLP transformers as localized answer derivation engines. We

ground the vision in NeuralDB, a system for querying facts repre-

sented as short natural language sentences. We demonstrate that

recent natural language processing models, specifically transform-

ers, can answer select-project-join queries if they are given a set of

relevant facts. However, they cannot scale to non-trivial databases

nor answer set-based and aggregation queries. Based on these in-

sights, we identify specific research challenges that are needed to

build neural databases. Some of the challenges require drawing

upon the rich literature in data management, and others pose new

research opportunities to the NLP community. Finally, we show

that with preliminary solutions, NeuralDB can already answer

queries over thousands of sentences with very high accuracy.

PVLDB Reference Format:

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian

Riedel, and Alon Halevy. From Natural Language Processing to Neural

Databases. PVLDB, 14(6): 1033-1039, 2021.

doi:10.14778/3447689.3447706

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447706

1 INTRODUCTION

Researchers have long considered the application of neural nets to

data management problems, including learning indices [16], query

optimization, data cleaning and entity matching [20, 23, 32]. In

applying neural networks to data management, research has so far

assumed that the data was modeled by a database schema.

The success of neural networks in processing unstructured data

such as natural language and images raises the question of whether

their use can be extended to a point where we can relax the fun-

damental assumption of database management, which is that the

data we process is represented as fields of a pre-defined schema.

What if, instead, data and queries can be represented as short nat-

ural language sentences, and queries can be answered from these

sentences? Furthermore, what if relevant data from images can be

seamlessly combined with text and structured data?

This paper describes a vision for neural databases and prelim-

inary empirical evidence of its potential. Neural databases offer

several benefits that database systems have struggled to support

for decades. The first, and most important benefit, is that a neural

database has no pre-defined schema. Therefore, the scope of the

database does not need to be defined in advance, and any data

that becomes relevant as the application is used can be stored and

queried. The second benefit is that updates and queries can be posed

in a variety of natural language forms, as is convenient to any user.

In contrast, a traditional database query needs to be based on the

database schema. Even when the data is modeled with a more flexi-

ble formalism such as RDF, there is still a single name for any given

relation, and that name needs to be used in updates and queries.

Third, with recent advances in machine translation, the language

of queries and answers can be different from the language of the

data in the neural database. A final benefit comes from the fact

that the neural database is based on a pre-trained language model

that already contains a lot of knowledge which can be exploited to

generate better answers to more diverse queries.

To ground our vision, we built NeuralDB, a database system

in which updates and queries are given as short natural language

sentences. Figure 1 shows example facts and queries thatNeuralDB

can answer. Our preliminary experiments show that NeuralDB

can answer select-project-join-aggregate queries over thousands of

natural language sentences with very high accuracy.

By nature, neural databases are not meant to provide the same

correctness guarantees of a traditional database system, i.e., that the

answers to queries satisfy the precise binary semantics of the query

1033

https://doi.org/10.14778/3447689.3447706
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447706

language. Hence, to be clear about the scope of the vision, neural

databases should not be considered as an alternative to traditional

databases in applications where such guarantees are required.

Given their benefits, neural databases are well suited for emerg-

ing applications where the schema of the data cannot be determined

in advance and data can be stated in a wide range of linguistic pat-

terns. A family of such applications arise in the area of storing

knowledge for personal assistants that are currently available for

home use and in the future will accompany Augmented Reality

glasses. In these applications, users store data about their habits

and experiences, their friends and their preferences, and designing

a schema for such an application is impractical. Another class of

applications is the modeling and querying of political claims [34]

(with the goal of verifying their correctness). Here too, claims can

be about a wide variety of topics and expressed in many ways.

The key technical insight underlying neural databases is that

state of the art transformer models [36] can be used for query pro-

cessing. More specifically, transformers can combine multiple facts,

each expressed as a short natural language sentence, to answer

simple queries. In effect, transformers can execute joins, selections,

and projections. However, transformers are limited in the size of

the inputs they can realistically process, and they fail when higher-

level mathematical reasoning is involved, such as performing ag-

gregation. Hence, to answer database-like queries, we need to run

multiple transformer instances and combine their answers appro-

priately. These limitations raise the first two technical challenges

for our vision: (1) finding suitable sets of facts from the database to

feed to each transformer instance, and (2) further processing the

answers of each transformer instance (e.g., union and aggregation)

to produce the answer to the query.

In Section 2 we define the functionality of a neural database that

answers queries over facts described as natural language sentences

and describe the underlying NLP technology and its limitations. In

Section 3 we describe NeuralDB, our first prototype neural data-

base that provides initial solutions to the challenges described above.

We also describe a set of experiments that validate the promise of

transformers and of NeuralDB. Section 4 describes additional re-

search challenges for realizing the vision of neural databases.

2 A NEURAL DATABASE FOR TEXT

We ground our vision for neural databases by building a specific

instance, NeuralDB, a system for querying facts described in text.

NeuralDB will demonstrate the challenges involved in building

neural databases. Section 2.1 defines the functionality ofNeuralDB.

In Section 2.2, we explain how NLP technology, namely, transform-

ers over pre-trained language models, can provide a key processing

unit for realizing NeuralDB, and point out the key challenges in

adapting transformers to data management.

2.1 Problem definition

In NeuralDB, data and queries are represented as sentences in nat-

ural language, providing two of the key benefits of neural databases.

First, the database has no pre-defined schema ś users can mention

any relationship of interest. Second, the database is usable by a

broader set of users because updates and queries can be specified

in whatever linguistic form is most convenient to the user.

Facts: (4 of 50 shown)

Nicholas lives in Washington D.C. with Sheryl.

Sheryl is Nicholas’s spouse.

Teuvo was born in 1912 in Ruskala.

In 1978, Sheryl’s mother gave birth to her in Huntsville.

Queries:

Does Nicholas’s spouse live in Washington D.C.?

(Boolean Join) −→ TRUE

Who is Sheryl’s husband?

(Lookup) −→ Nicholas

Who is the oldest person in the database?

(Max) −→ Teuvo

Who is Sheryl’s mother?

(Lookup) −→ NULL

Figure 1: InNeuralDB, facts and queries are posedwith short

natural language sentences. The above queries are answered

by our prototype.

Data: Formally, the data in NeuralDB is a set of sentences. In-

tuitively, a sentence corresponds to a single fact, such as Sue is

Mary’s mom, or Gustavo likes espresso. But in many situations,

especially when updates to the database are spoken by users, it is

more convenient for sentences to express multiple facts, such as

Kiara is married to Kyrone and they have 3 kids. We refer to the

latter sentences as composite and the former as atomic. We mostly

consider atomic sentences in this paper. In its current form, Neu-

ralDB is aimed to support knowledge expressed in short sentences,

not entire paragraphs.

Queries: Formally, a query 𝑄 over a database, 𝐷 , produces a set

of answers: 𝑄 (𝐷) = {𝑎1, . . . , 𝑎𝑙 }. While queries are formulated in

natural language, we only consider queries that, if translated to

SQL, would involve a select-project-join (SPJ) component followed

by an aggregation (predicates involving number comparisons are

left for future work). In our discussion, join queries are ones that

require combining two or more sentences to generate the answers

(e.g.,Who works in a company in France?), and aggregation queries

are ones that end with an aggregation operator (e.g., howmany kids

does Pat have?). A lookup query is a querywhere each answer comes

from a single fact in the database (e.g., Who is Susan’s husband?),

whether there is a single answer or several. If the query returns

True/False, we refer to it as a Boolean query. Note that in our context,

lookup queries are non-trivial because facts in the database are

expressed in a variety of linguistic forms. We use the term support

set for an answer to a query (or a sub-query) to refer to a minimal

set of database facts that are needed in order to derive that answer.

2.2 Answering queries using NLP

The NLP problem of question answering from external knowledge

such as Wikipedia, (a.k.a. open-book QA, or QA) is the most natu-

ral point to explore the application of NLP models to NeuralDB.

1034

Common QA tasks, such as SQuAD, [28] and DROP [9], require

models to answer reading comprehension queries such as When

were the Normans in Normandy? and Which kicker had the most

field goals? by extracting a contiguous span of text or performing

reasoning over a given passage of text.

It is important to highlight two key differences between QA and

NeuralDB, which will have a significant impact on the ultimate

solutions. First, in QA, the fact needed to answer a given ques-

tion is typically located in a paragraph or document with multiple

sentences about the same subject where this additional context

may help information recall. NeuralDBs do not enjoy this locality

property because a query may be dependent on multiple facts that

can be anywhere in the database. In fact, models in retrieval-based

tasks that use Wikipedia as a knowledge source may also leverage

the (unique) document title to aid retrieval (for example, predicting

the document key with autoregressive retrieval [7]).

The second difference is that QAmethods are designed to answer

queries where a value is given as an input, and the expected result

is small (e.g., foreign minister of Malaysia). In contrast, database

queries can return sets (e.g., cities of Malaysia) and aggregations

applied to these sets (such as Count and Max).

Keeping these differences in mind, we now describe how NLP

techniques can be used to answer limited forms of database queries.

2.2.1 Pre-trained language models and transformers. Natural Lan-

guage Processing (NLP) has made impressive progress in recent

years by building on transformer architectures and pre-trained lan-

guage models. In addition to QA, such models have led to major

improvements on tasks such as text summarization and machine

translation. Pre-trained language models such as BERT [8], GPT-

3 [6], RoBERTa [21], T5 [27] are neural models trained on large

corpora of text. The models are trained by randomly removing cer-

tain tokens from the corpus and training the neural net to predict

the missing token, given its context (i.e., the words preceding and

following the missing token). At an intuitive level, these models

obtain two kinds of knowledge (1) the ability to make predictions

independent of the exact linguistic form in which knowledge is

stated [24, 33], and (2) some world knowledge that is mentioned

frequently in text (e.g., London is the capital of the UK) [6, 26].1

Pre-trained language models are usually fine-tuned to a given task.

For example, for question answering from text, the systemwould be

further trained with a set of (question, answer) pairs in order to pro-

duce the final model. Importantly, since the pre-trained language

models capture world knowledge [26], fewer examples are needed

for the fine-tuning compared to training a model from scratch.

The Transformer model [36] is the most common neural architec-

ture to operate on pre-trained language models. Transformers [36]

take as input a sequence of symbols x = (𝑥1, . . . , 𝑥𝑛). They are

typically trained in one of two configurations: encoder only or

encoder-decoder. In the former, each token is encoded to a vector

representation that is used to predict a label. In the latter, used

in sequence-to-sequence applications (e.g., question answering or

machine translation), the decoder produces the output sequence.

1Note that the second type of knowledge can also lead to implicit biases. We address
this point in Section 4

John works at Shell

Sarah is a doctor

Marcello lives in USA

Sarah married John

Facts

Neural Query
Processor

(Transformer)

Sarah is from France

Result set

Sarah

Query: Who is
French?

Figure 2: Prototype neural query processor using a T5 Trans-

former. The facts and the query are concatenated and given

as input to the transformer. Our results show that transform-

ers can answer lookup and join queries when given the sup-

port set of facts needed to generate an answer, but that the

architecture does not scale to many facts.

In both configurations, the transformer works in two phases.

In the first phase, the transformer encodes the input into an inter-

mediate representation Z = (𝑧1, . . . , 𝑧𝑛) where the dimension of

the vector is fixed, typically where 𝑧𝑖 ∈ R
768. In the second phase,

the transformer decodes z to produce the output. For example, in

sequence-to-sequence generation, the output would be a sequence

of tokens y = (𝑦1, . . . , 𝑦𝑙), ending with a special token.

2.2.2 Using transformers to answer queries. Transformers have the

capability to answer simple queries over a small amount of data

expressed in natural language. To adapt them to NeuralDB, we

would first train the transformer with triples of the form (𝐷,𝑄,𝐴),

where 𝐷 is a set of facts, 𝑄 is a query, and 𝐴 is the answer to 𝑄

over 𝐷 . As shown in Figure 2, at query time we feed the facts and

the query to the transformer, and the output is the result set. In

Section 3 we show that transformers produce high quality results

even for queries that require joining multiple sentences.

Given the potential of transformers, we need to address two

challenges in order to adapt transformers to large-scale query an-

swering: organizing the data so it can be fed into transformers

in smaller chunks, and planning to answer a query from multiple

smaller query processing components. We consider each in turn.

Challenge 1: Support set generation. State-of-the-art transformer

models cannot accept large inputs because their memory require-

ments are quadratic in repsect to the size of their inputs. In practice,

it is common to use a maximum input size of 512 or 1024 tokens.

Hence, we cannot encode the entire database using these models.

The implication for neural databases is that we need to run

multiple transformer instances. Each instance needs a subset of

facts from the database as input ś a support set ś from which the

output can be derived. For example, for the query people who live

in London, each support set would include enough facts to derive

whether a person lives in London or not.

1035

John works at Shell

Sarah is a doctor

Sarah married John

John works at Shell

Sarah is a doctor

Sarah married John

Sarah married John

Facts Support sets

NULL

John

Query-based
derivation

Neural SPJ

Support Set
Generator

Query:
How many peoples'

spouses are doctors?

Neural SPJ

Result set

Aggregation 1

Figure 3: Query answering in NeuralDB. The support set generator creates small sets of facts that are each fed into a separate

Neural SPJ operator that runs a single transformer. The results of the individual Neural SPJ operators are either unioned to

produce the result or passed on to a traditional aggregation operator.

In the context of QA, this challenge is addressed by employing

an information retrieval component that extracts a small subset

of the relevant facts from the text corpus and feeds them to the

transformer. The information retrieval component can either be a

simple one (e.g., BM25), or trained jointly with the model to learn to

extract relevant parts of the corpus [12, 15, 18, 25, 34, 39]. However,

in our context, we need to create multiple support sets, each of

which is fed into a transformer.

The retrieval problem is complicated by the fact that answering

a query may require conditional retrieval from the database. For

example, to answer the query Whose spouse is a doctor? we’d

first need to fetch spouses and then their professions. In the NLP

community, this is known as multi-hop query answering [5], which

has recently become an active area of research but restricted to the

case of retrieving or generating a single answer. While research in

NLP focuses on expanding a single set of information to generate

a single answer for a question, in NeuralDB we may need to

perform multi-hop retrieval for sets of facts to support aggregation.

For example, in the query How many people’s spouses are doctors?

multi-hop retrieval is required for every spouse fact.

Challenge 2: Answer composition. Since the transformer is per-

forming local query answering, we need a component that can

assemble the results of the individual transformers to produce an

answer for the full query. Furthermore, as we show in Section 3,

transformers are not adept at computing aggregates. Hence, if the

query contains aggregation, the query plan needs to compute an

intermediate result set that then gets aggregated using a traditional

operator. In the next section, we describe an architecture that com-

bines multiple transformers and is able to answer queries that can

be expressed as a select-project-join followed by an aggregate. For

more complicated queries, we may need a component that builds

an explicit query plan as in a traditional database system.

3 A PROOF OF CONCEPT

We now describe NeuralDB’s architecture that includes initial

solutions to the two challenges outlined above. We experimentally

validate that transformers can locally answer certain classes of

(1) Does Nicholas’s spouse live in Washington D.C.?
{Nicholas lives in Washington D.C. with Sheryl.,
Sheryl is Nicholas’s spouse.} −→ TRUE

(2) Who is the oldest person in the database?
{Teuvo was born in 1912.} −→ (Teuvo, 1912)

(3) Does Nicholas’s spouse live in Washington D.C.?
{Teuvo was born in 1912.} −→ NULL

Figure 4: Examples of the intermediate results that are pro-

duced by the Neural SPJ operator.

database queries and then show that NeuralDB can build on that

to answer queries on large databases. The architecture ofNeuralDB

is shown in Figure 3 and is based on the following ideas.

Runningmultiple transformers in parallel:As noted earlier, in

practice, transformers can only take a relatively small input. Hence,

to scale to larger data sets, NeuralDB runs multiple copies of a

neural SPJ operator in parallel, each outputting structured results.

When queries don’t involve aggregation, the union of the outputs

of the neural SPJ operators is the answer to the query. When the

query does involve aggregation, these machine-readable outputs

are fed into the aggregation operator. Figure 4 shows examples of

the output of the neural SPJ operator (and therefore the form of the

training data it requires).

The facts given to each transformer are given by a support set

generator (SSG). Intuitively, the support set of an answer to an SPJ

query includes the leaves of its derivation tree. The SSG creates sets

of facts that contain support for an answer, with minimal irrelevant

facts.

Aggregation with a conventional operator: Since the neural

SPJ was designed to output structured results, our architecture can

use a separate conventional aggregation operator. Using a separate

aggregation overcomes the limitation on transformers concerning

aggregation queries. The aggregation operator is selected through

a classifier that maps a query to an aggregation function.

1036

3.1 Implementation

We implemented a version of NeuralDB following the above archi-

tecture. We developed a support set generator (described in detail

in [35]) that incrementally builds support sets by starting with sin-

gle facts and adding more. The decision about which facts to add

to a support set is formulated as a classification problem that can

be trained by the neural SPJ itself. Note that training this support

set generator did not require additional labeled data as a distant

supervision signal comes from measuring how changing the input

facts change the answer generated by the model.

3.1.1 Experimental setup. Training any neural system requires

a supervision signal. We generate training data in a controlled

manner by converting knowledge base tuples from Wikidata [37]

(e.g., (Zuckerberg, ceoOf, Facebook)) to natural language sentences

(e.g, The CEO of Facebook is Zuckerberg). Because of the scale

of Wikidata, it is possible to generate large numbers of training

instances about a wide range of relationships and entities. For our

first experiment (testing the transformers themselves, Section 3.2.1),

it is sufficient to train with triples of the form (𝐷,𝑄,𝐴), where 𝐷

is a set of facts, 𝑄 is a query, and 𝐴 is the answer to 𝑄 over 𝐷 .

However, when testing NeuralDB (Section 3.2.2) we need slightly

more refined labels in order to train the neural SPJ to generate

intermediate results (see Figure 4).

3.1.2 Training data generation. For this proof of concept, we con-

sider simple template-based data generation over 27 relations from

Wikidata and their inverse. For every Wikidata relationship we

consider, we create linguistic variations in both the facts and the

queries by constructing multiple natural language templates that

vary pronouns, temporal expressions, and phrasing of the fact and

query. Each template has a placeholder for the subject and the

object, e.g., $O is the place of birth of $S. We then generate dif-

ferent data instances by substituting entities from Wikidata for

the placeholders in creating training, validation, and held-out test

sets, which are disjoint by subject. Our data was generated using

632 templates: 115 for facts and 517 for the different query types

over the 27 relations, for each fact and query, randomly choosing

an appropriate template for the relation or its inverse. The held-

out test database contains 8400 facts and 14000 queries over this

database with reference answers that are used for scoring. This is

orders of magnitude larger than can be feasibly encoded with the

NLP-only model indicated in Figure 2. For training, we generate

approximately 80,000 training instances, ensuring an equal balance

for each of the aggregation operations. For aggregation, we con-

sider Count, Min, and Max. The supervision for the classifier which

selects the aggregation function is part of the templates.

3.2 Results

3.2.1 Testing transformers. We demonstrate the limitations of a

standalone transformer model designed for conditional language

generation when applied to neural query processing (Figure 2).

Without adaptation, this model can only feasibly encode a maxi-

mum of 50 facts. We use a subset of our training data to fine-tune

a T5 transformer model [27], constructing databases of 50 facts to

avoid memory limitations when encoding the entire database. We

jointly encode all facts by concatenating them with the query.

Table 1: Exact match scores for NeuralDB. Note that IR(k=5)

with a single T5 transformer cannot accurately answer ag-

gregation and join queries. We use 200 parallel SPJ opera-

tors (4xV100GPUs, batch size = 50) over a databasewith 8400

facts, averaged over 14000 queries.

Method
Exact Match (%)

Count Min/Max Sets Atomic Joins

NeuralDB 79.45 100.00 91.91 97.90 79.29

TF·IDF+T5 31.06 0.00 44.25 98.05 68.02

DPR+T5 38.07 21.19 54.55 97.38 58.64

Our results show that for lookup and join queries the model at-

tained near perfect scores (above 99% exact match) on the template-

generated data. The fact that the model had high scores for queries

that require the combination of multiple facts indicates that the

transformer is able to combine information from multiple sources

when generating an answer to the user query. Furthermore, gener-

ating correct answers when encoding the entire database without

filtering out the irrelevant facts suggests that the model is resilient

to exposure to irrelevant facts. However, the model performs poorly

for queries that require an aggregation (for queries requiring a count

operation, exact match was 57%) or when the query result is a large

set. Importantly, the results indicate that the model can be robust

to simple linguistic variations when processing queries.

3.2.2 Large-scale NeuralDBs. Table 1 compares NeuralDB with

a baseline (bottom two rows) that first applies IR techniques to

retrieve the relevant facts and feeds those to a transformer. In the

NeuralDB version, the support sets generated by the SSG are input

to SPJ operators in parallel and then aggregated. As the table shows,

NeuralDB achieves the highest EM accuracy on all types of queries.

While these numbers cannot be directly compared (as NeuralDB

requires different supervision to generate intermediate results),

NeuralDB makes substantial improvements over several query

types from the same source data.

3.2.3 Summary. The initial experiments confirm the basic tenets of

our approach to neural databases that are embodied in the architec-

ture of NeuralDB: (1) if there were a way to feed the transformer

the relevant facts from the database, it can produce results with

reasonable accuracy, (2) aggregation queries need to be performed

outside of the neural machinery, and (3) in order to handle queries

that result in sets of answers and in order to prepare sets for subse-

quent aggregation operators, we need to develop a neural operator

that can process individual (or small sets of) facts in isolation and

whose results outputted as the answer or fed into a conventional

(i.e. non-neural) aggregation operator.

4 A RESEARCH AGENDA

Our NeuralDB implementation provided initial solutions to Chal-

lenges 1 & 2. This demonstrated that it is possible to build a neural

database that accurately answers queries over large numbers of

facts stated with short sentences. Further addressing Challenges 1 &

2 draws upon the rich literature developed in the data management

community regarding indexing, view materialization, and query

1037

processing. In particular, support set generation can greatly benefit

from indexing and view materialization techniques that enable the

system to efficiently refine the support sets at query time. With

additional advances, we should be able to scale neural databases

to larger data, support more complex queries, and increase their

accuracy. This section outlines additional research challenges.

Challenge 3:Deeper understanding of semantics.To support a wider

range of applications, a neural database needs to correctly handle

the semantics of numbers (comparisons and operations) and data

types (e.g., addresses, time points). An additional challenge concerns

understanding dependencies and hence identifying which updates

should replace previous facts and which should not. For example,

if the fact, Mariah is unemployed, was in the database and later

the fact, Mariah works for Apple, was added, then the first fact

should be removed (or at least, apply only to queries about the

past). However, the same does not hold for the facts Kasper likes

tea followed by the fact Kasper likes coffee. All of these issues pose

challenges for the development of transformers in NLP, but they

are guided by the needs of neural databases.

Challenge 4: Multi-modal neural databases. Combining multiple

modalities such as images, text, structured data and audio in a neural

database is an exciting area of investigation, building on the fact

that transformers have also been applied to other data types. For

example, consider a query that combines an image database with

knowledge from text, asking for photos that include an object used

to brew coffee. Such extensions would benefit from recent progress

on visual query answering systems [2, 4], that can already answer

certain classes of queries on the images themselves.

Challenge 5: Obtaining training data and transfer learning. Finding

training data for a neural database can be challenging in some

contexts. We expect that over time, the community will create

public sets of training data for common relationships. A promising

approach for creating training data sets is to find sentences in

Wikipedia that express known triples from Wikidata or to use

Wikidata triples to generate synthetic sentences as in T-REx [10]

and KELM [1] datasets, respectively. Leveraging similar parallel

corpora of text and structured data can yield additional training data.

Advances in NLP on learning without parallel data [17], few-shot

learning and large language models should considerably reduce the

number of training instances needed.

A key factor in assessing the cost of training data is whether it

needs to cover all the relationships that occur in the queries. For

example, if the training data has no mention of people’s hobbies,

can we still answer a query such as, what are Ruth’s hobbies?

Developments in transfer learning [14] could be applied to this

context. It is also reasonable to expect that as we obtain training

data for many relations, transfer will occur more naturally because

the linguistic patterns in queries and facts are limited. An initial

experiment described in [35] substantiates this intuition.

Challenge 6:Mitigating biases.Apossible downside of using neural

techniques in a database is the potential for bias from the underlying

language model. For example, suppose our database included facts

saying that John and Jane work at a hospital, but when we asked for

their profession, the system answers doctor for John and nurse for

Jane. Currently, there is no good way of distinguishing biased from

unbiased knowledge in a language model. A possible approach to

addressing this issue is to design a separate module that attacks

the database with queries that attempt to discover biases. Then, we

could devise safeguards within the database that ensure that we

don’t use such biased knowledge in answering queries.

Challenge 7: Applying neural components to existing data man-

agement architectures. In NeuralDB, the entire database was text.

However, there are settings in existing DBMSs where structured

data is mixed with text and images. The challenge is to extend

existing DMBSs and their query processors to incorporate neural

operators, thereby allowing a wider range of queries over these

data. For example, consider querying a product user report database

for reports about a malfunctioning battery that also have an image

of a battery accompanying them.

5 RELATED WORK

Space does not permit a comprehensive description of related work.

The differences between neural databases and question answering

over text was covered in Section 2.2. Bridging the gap between

unstructured natural language data and database-style querying

has been a long-standing theme in database research [3, 13, 19, 30,

39, 40]. Unlike the above works, neural databases do not try to map

data or queries into a pre-defined schema but operate directly on

facts described as short natural language sentences.

In the spirit to Neural Turing Machines [11] and Memory Net-

works [31] architectures, an alternative way of building neural

databases is to encode all the facts in the database to a neural mem-

ory and build machinery to read, write, and reason on top of this

neural memory. However, such an approach would not have con-

trol and transparency: It is challenging to remove facts from the

database or check whether a particular fact exists. Also, it would

not be possible to explain query results. Furthermore, these archi-

tectures perform well on bAbI [38] tasks where the number of facts

is limited, and mainly lookup or simple reasoning is needed. There

also have been considerable efforts in mixing traditional symbolic

reasoning or data management algorithms with neural network

architectures, such as differentiable backward chaining [29] and

differentiable prolog [22]. Instead of łneuralizingž existing symbolic

reasoners, in our work, we start with a scalable neural architecture

and support it with symbolic computation only where necessary.

This enables us to directly leverage the rapid progress made in

retrieval augmented QA models and ensures scalability.

6 CONCLUSIONS

We introduced neural databases, a new class of database systems

that use neural reasoning, and are therefore able to answer queries

from data expressed as natural language sentences that do not

conform to a pre-defined schema. The design of the NeuralDB

architecturewas based on a careful examination of the strengths and

weaknesses of current models used for natural language processing,

namely transformers. Neural databases open up many avenues

of research because they provide a path for leveraging the latest

advances in NLP and computer vision to enable queries over more

flexible and varied representations of data.

1038

REFERENCES
[1] Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Large scale

knowledge graph based synthetic corpus generation for knowledge-enhanced
language model pre-training, 2020.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module
networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 39ś48. IEEE Computer
Society, 2016.

[3] I Androutsopoulos, G D Ritchie, and P Thanisch. Natural Language Interfaces to
Databases - an Introduction. Natural Language Engineering, 1(1):29ś81, 1995.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: visual question answering. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 2425ś2433. IEEE Computer Society, 2015.

[5] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caim-
ing Xiong. Learning to retrieve reasoning paths over wikipedia graph for question
answering. In International Conference on Learning Representations, 2020.

[6] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. 2020.

[7] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autore-
gressive entity retrieval. In International Conference on Learning Representations,
2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota, 2019.

[9] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. DROP: A Reading Comprehension Benchmark Requiring
Discrete Reasoning Over Paragraphs. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368ś2378,
Minneapolis, Minnesota, jun 2019. Association for Computational Linguistics.

[10] Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon
Hare, Frederique Laforest, and Elena Simperl. T-REx: A large scale alignment
of natural language with knowledge base triples. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May 2018. European Language Resources Association (ELRA).

[11] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[12] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-wei Chang.
REALM : Retrieval-Augmented Language Model Pre-Training, 2020.

[13] Alon Y. Halevy, Oren Etzioni, AnHai Doan, Zachary G. Ives, Jayant Madhavan,
Luke K. McDowell, and Igor Tatarinov. Crossing the structure chasm. In CIDR
2003, First Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 5-8, 2003, Online Proceedings. www.cidrdb.org, 2003.

[14] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for NLP. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
2790ś2799, Long Beach, California, USA, 09ś15 Jun 2019. PMLR.

[15] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, andWen-tau Yih. Dense Passage Retrieval for Open-Domain
Question Answering. 2020.

[16] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The
case for learned index structures. In Gautam Das, Christopher M. Jermaine, and
Philip A. Bernstein, editors, Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, pages 489ś504. ACM, 2018.

[17] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. Word translation without parallel data. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[18] Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In NeurIPS, 2020.

[19] Fei Li and H V Jagadish. Constructing an Interactive Natural Language Interface
for Relational Databases. Proceedings of the VLDB Endowment2, 8(1):73ś84, 2014.

[20] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
Deep entity matching with pre-trained language models. Proc. VLDB Endow.,

14(1):50ś60, September 2020.
[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. 2019.

[22] Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, Sebastian Riedel, and
Edward Grefenstette. Differentiable reasoning on large knowledge bases and
natural language. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages
5182ś5190. AAAI Press, 2020.

[23] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
Deep learning for entity matching: A design space exploration. In Gautam Das,
Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 19ś34. ACM, 2018.

[24] Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. Dissecting
Contextual Word Embeddings: Architecture and Representation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
1499ś1509, Brussels, Belgium, 2018. Association for Computational Linguistics.

[25] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,
Nicola De Cao, James Thorne, Yacine Jernite, Vassilis Plachouras, TimRocktäschel,
et al. Kilt: a benchmark for knowledge intensive language tasks. arXiv preprint
arXiv:2009.02252, 2020.

[26] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H. Miller, and Sebastian Riedel. In Proceedings of EMNLP-IJCNLP,
Hong Kong, China.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Ma-
chine Learning Research, 21:1ś67, 2020.

[28] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for SQuAD. ACL 2018 - 56th Annual Meeting of the
Association for Computational Linguistics, Proceedings of the Conference (Long
Papers), 2:784ś789, 2018.

[29] Tim Rocktäschel and Sebastian Riedel. End-to-end Differentiable Proving. In
I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, and
R Garnett, editors, Advances in Neural Information Processing Systems 30, pages
3788ś3800. Curran Associates, Inc., 2017.

[30] Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktäschel, Mike
Sheldon, Guillaume Bouchard, and Sebastian Riedel. Interpretation of natural
language rules in conversational machine reading. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2018.

[31] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory
networks. In Advances in neural information processing systems.

[32] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, XiaoyongDu, Guoliang Li, SamMadden,
and Mourad Ouzzani. Relational pretrained transformers towards democratizing
data preparation [vision]. CoRR, abs/2012.02469, 2020.

[33] Ian Tenney, Patrick Xia, Berlin Chen, AlexWang, Adam Poliak, R. ThomasMcCoy,
Najoung Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, and Ellie
Pavlick. What do you learn from context? Probing for sentence structure in
contextualized word representations. ICLR, pages 1ś17, 2019.

[34] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
FEVER: a large-scale dataset for Fact Extraction and VERification. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 809ś819, New Orleans, Louisiana, 2018. Association for Computational
Linguistics.

[35] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Y. Halevy. Neural databases. CoRR, abs/2010.06973, 2020.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Lilon Jones, Aidan
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In 31st
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, 2017.

[37] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78ś85, 2014.

[38] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van
Merriënboer, Armand Joulin, and Tomas Mikolov. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

[39] Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel
Deutch, and Jonathan Berant. Break It Down: A Question Understanding Bench-
mark. Transactions of the Association for Computational Linguistics, 8:183ś198,
2020.

[40] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R. Lyu,
Irwin King, and Steven C. H. Hoi. Photon: A robust cross-domain text-to-sql
system.

1039

