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ABSTRACT
Over the past decade, Apache Spark has become a popu-
lar compute engine for large scale data processing. Similar
to other compute engines based on the MapReduce com-
pute paradigm, the shuffle operation, namely the all-to-all
transfer of the intermediate data, plays an important role in
Spark. At LinkedIn, with the rapid growth of the data size
and scale of the Spark deployment, the shuffle operation is
becoming a bottleneck of further scaling the infrastructure.
This has led to overall job slowness and even failures for long
running jobs. This not only impacts developer productivity
for addressing such slowness and failures, but also results in
high operational cost of infrastructure.

In this work, we describe the main bottlenecks impact-
ing shuffle scalability. We propose Magnet, a novel shuf-
fle mechanism that can scale to handle petabytes of daily
shuffled data and clusters with thousands of nodes. Mag-
net is designed to work with both on-prem and cloud-based
cluster deployments. It addresses a key shuffle scalability
bottleneck by merging fragmented intermediate shuffle data
into large blocks. Magnet provides further improvements
by co-locating merged blocks with the reduce tasks. Our
benchmarks show that Magnet significantly improves shuffle
performance independent of the underlying hardware. Mag-
net reduces the end-to-end runtime of LinkedIn’s production
Spark jobs by nearly 30%. Furthermore, Magnet improves
user productivity by removing the shuffle related tuning bur-
den from users.
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1. INTRODUCTION
Distributed data processing frameworks such as Hadoop

[1] and Spark [40] have gained in popularity over the past
decade for large-scale data analysis use cases. Based on the
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MapReduce computing paradigm [22] and leveraging a large
suite of commodity machines, these distributed data pro-
cessing frameworks have shown good characteristics of scal-
ability and broad applicability to diverse use cases, ranging
from data analytics to machine learning and AI. In more re-
cent years, a collection of modern computation engines, such
as Spark SQL [18], Presto [35], and Flink [19], have emerged
and gone mainstream. Different from Hadoop MapReduce,
these modern computation engines leverage SQL optimizers
to optimize the computation logic specified by the users, be-
fore handing over to DAG execution engines to execute the
optimized operations. Take Spark as an example (Figure 1).
Suppose the user wants to perform an inner join between the
job post view table and the job dimension table before fil-
tering the joined results based on certain conditions. In this
example, the former table contains tracking information for
which member viewed which job post on the LinkedIn plat-
form, and the latter contains detailed information of each job
post. Spark optimizes this query by pushing down the filter
condition before the join operation (Figure 1(a)). Spark’s
DAG execution engine then takes this optimized compute
plan and converts it into one or more jobs. Each job con-
sists of a DAG of stages, representing the lineage of how the
data is transformed to produce the final results of current
job (Figure 1(b)). The intermediate data between stages is
transferred via the shuffle operation.

The shuffle operation, where intermediate data is trans-
ferred via all-to-all connections between the map and reduce
tasks of the corresponding stages, is key to the MapRe-
duce computing paradigm [22]. Although the basic con-
cept of the shuffle operation is straightforward, different
frameworks have taken different approaches to implement
it. Some frameworks such as Presto [35] and Flink stream-
ing [19] materialize intermediate shuffle data in memory
for low latency needs, while others such as Spark [40] and
Flink batch [19] materialize it on local disks for better fault-
tolerance. When materializing the intermediate shuffle data
on disks, there are hash-based solutions, where each map
task produces separate files for each reduce task, or sort-
based solutions, where the map task’s output is sorted by
the hashed value of the partition keys and materialized as a
single file. While the sort-based shuffle incurs the overhead
of sorting, it is a more performant and scalable solution
when the size of the intermediate shuffle data is large [21,
32]. Frameworks such as Spark and Flink have adopted ex-
ternal shuffle services [5, 7, 11] to serve materialized interme-
diate shuffle data, in order to achieve better fault-tolerance
and performance isolation. With the recent improvements
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Figure 1: Compute logical plan and associated stage
DAG of a Spark query.

in networking and storage hardware, some solutions [36, 15]
materialize the intermediate shuffle data in disaggregated
storage instead of local storage. Other solutions [20, 23] by-
pass materializing the intermediate shuffle data, where the
map tasks’ output is directly pushed to the reduce tasks
to achieve low latency. This diversity of shuffle implementa-
tions provides a rich optimization space for shuffle operation
in these computation engines. In fact, improving shuffle in
Spark was the key for it to win the Sort Benchmark [2].

At LinkedIn, as a global professional social network com-
pany, very large batch analysis and machine learning jobs
run on our production Spark clusters spanning thousands of
nodes on a daily basis. This leads to petabytes of data being
shuffled by Spark each day. When processing such a mas-
sive amount of data, the shuffle operation becomes critical
to the operation of the Spark infrastructure. Spark materi-
alizes the shuffle data on disks in a sort-based fashion and
serves it with external shuffle services. While this provides
a good balance of fault-tolerance and performance, the fast
growth of Spark workloads at LinkedIn still poses multiple
challenges.

First, the requirement of establishing all-to-all connec-
tions to transfer the shuffle data between the map and reduce
tasks is posing reliability issues. In clusters with thousands
of nodes, intermittent issues with individual node availabil-
ity can be common. During peak hours, the increased shuffle
workloads can also stress the deployed shuffle services, fur-
ther increasing the likelihood of connection failures.

Second, the disk I/O operations generated during shuf-
fle present efficiency issues. The materialized Spark shuffle
data is portioned into shuffle blocks, which are fetched indi-
vidually in a random order. These blocks are usually small.
The average block size in LinkedIn’s Spark clusters is only
around 10s of KBs. Billions of such blocks are read on our
clusters daily, which can severely stress the disks if served
from HDDs. The small random disk reads, combined with
other overhead such as small network I/Os, lead to increased
latency in fetching shuffle data. Around 15% of the total
Spark computation resources on our clusters are wasted due
to this latency.

Finally, as pointed out in [41], the reduction of average
block size as the shuffle data size grows also introduces a
scalability issue. As our Spark workload trends towards pro-
cessing more data, this efficiency issue has gradually gotten
worse. Some poorly configured Spark applications with un-
necessarily small blocks further exacerbate this problem.

While solutions such as storing shuffle data on SSDs can
help alleviate these problems, switching out HDDs with SSDs
at LinkedIn scale is not practical. More details on this are

discussed in Section 2.2. In addition, cloud-based cluster
deployments that leverage disaggregated storage also suf-
fer from small reads due to network overhead. To tackle
these challenges, we propose an alternative shuffle mecha-
nism named Magnet. With Magnet, we push the fragmented
shuffle blocks produced by every map task to remote shuffle
services, and merge them into large chunks per shuffle par-
tition opportunistically. Some of its benefits are highlighted
below:

• Magnet opportunistically merges fragmented interme-
diate shuffle data into large blocks and co-locates them
with the reduce tasks. This allows Magnet to signif-
icantly improve the efficiency of the shuffle operation
and decrease the job end-to-end runtime, independent
of the underlying storage hardware.

• Magnet adopts a hybrid approach where both merged
and unmerged shuffle data can serve as input to reduce
tasks. This helps improve reliability during shuffle.

• Magnet is designed to work well in both on-prem or
cloud-based deployments, and can scale to handle peta-
bytes of daily shuffled data and clusters with thousands
of nodes.

The rest of this paper is organized as follows: Section 2
introduces the Spark shuffle operation and discusses exist-
ing issues. Section 3 presents the detailed design of Magnet.
Section 4 shows some optimizations adopted in the imple-
mentation of Magnet. Section 5 gives the evaluation setup,
key results, and analysis. Section 6 talks about related work.
We conclude this paper in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we motivate and provide the background

for Magnet. Section 2.1 reviews the current Spark shuffle
operation. Sections 2.2-2.4 discuss the major shuffle issues
we have encountered with operating Spark infrastructure at
very-large scale.

2.1 Current Spark Shuffle Operation
As mentioned earlier, the intermediate data between stages

is transferred via the shuffle operation. In Spark, the way
shuffle is performed varies slightly based on the deployment
mode. At LinkedIn, we deploy Spark on YARN [37] and
leverage the external shuffle service [5] to manage the shuf-
fle data. Such a deployment mode is also widely adopted
across the industry, including companies having some of the
largest Spark deployments such as Netflix [10], Uber [9], and
Facebook [16]. With such a Spark deployment, the shuffle
operation in Spark works as illustrated in Figure 2:

1. Each Spark executor upon starting up registers with
the Spark External Shuffle Service (ESS) that is lo-
cated on the same node. Such registrations allow the
Spark ESS to know about the location of the materi-
alized shuffle data produced by local map tasks from
each registered executor. Note that the Spark ESS in-
stances are external to the Spark executors and shared
across potentially many Spark applications.

2. Each task within a shuffle map stage processes its por-
tion of the data. At the end of the map task, it pro-
duces a pair of files, one for the shuffle data and an-
other to index shuffle blocks in the former. To do so,
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Figure 2: Illustration of the three main steps in
Spark shuffle operation.

the map task sorts all the transformed records accord-
ing to the hashed value of the partition keys. During
this process, the map task might spill the intermediate
data to disk if it cannot sort the entire data in memory.
Once sorted, the shuffle data file is generated, where
all records belonging to the same shuffle partition are
grouped together into a shuffle block. The matching
shuffle index file is also generated which records the
block boundary offset.

3. When reduce tasks of the next stage start to run, they
will query the Spark driver for locations of their input
shuffle blocks. Once this information becomes avail-
able, each reduce task will establish connections to
corresponding Spark ESS instances in order to fetch
their input data. The Spark ESS, upon receiving such
a request, skips to the corresponding block data in the
shuffle data file leveraging the shuffle index file, read
it from disk, and send it back to the reduce task.

By materializing the shuffle data to disks in a sort-based
fashion, Spark shuffle operation achieves a reasonable bal-
ance between performance and fault-tolerance. Furthermore,
by decoupling from Spark executors, Spark ESS brings addi-
tional benefits to the Spark shuffle operation: 1) The Spark
ESS can serve the shuffle block even when Spark executors
are experiencing GC pause. 2) The shuffle blocks can still be
served even if the Spark executor generating them is gone.
3) The idle Spark executors can be freed up to save clus-
ter compute resources. However, in our operation of Spark
infrastructure at LinkedIn scale, we still observed multiple
issues with shuffle that are becoming a potential bottleneck
for the infrastructure’s reliability, efficiency, and scalability.
We will discuss these issues in the following sub-sections.

2.2 Inefficient Disk I/O during Shuffle
One of the biggest issues we have observed with Spark

shuffle operation is the inefficient disk I/O due to small shuf-
fle blocks. Since the Spark ESS only reads one shuffle block
for each fetch request, the average size of the shuffle block
dictates the average amount of data read per disk read. At
LinkedIn, we mostly use HDDs for intermediate shuffle data
storage in our Spark clusters. This is due to the cost effec-
tiveness of HDDs compared with SSDs for large-scale storage
needs [28, 24], as well as SSD’s propensity to wear-out when
used for temporary data storage such as shuffle data [29].
For HDD, serving a large number of small random reads
would be subject to its IOPS (I/O operations per second)

Figure 3: Scatter plot of sampled 5000 shuffle reduce
stages with significant delays. The graph shows the
per task average shuffle fetch delay and the aver-
age shuffle block size. The bar chart to the right of
the scatter plot shows the distribution of the shuffle
block size within this dataset. Majority of the data
points have a small block size.

limitations. Furthermore, the shuffle data is usually read
only once and the individual shuffle blocks are accessed in
a random order. Such a data access pattern means that
caching would not help improve the disk I/O efficiency. The
combination of HDD’s limited IOPS and the shuffle data’s
access pattern lead to low disk throughput and extended
delays for fetching shuffle blocks.

In LinkedIn’s production Spark clusters, although the av-
erage daily shuffled data size is big, reaching a few petabytes
per day by the end of 2019, the average daily shuffled block
count is also very high (10s of billions). The average shuffle
block size is only 10s of KBs, which leads to delayed shuffle
data fetch. Figure 3 plots the correlation between the aver-
age shuffle block size and the per task average shuffle fetch
delay for 5000 shuffle reduce stages with significant delays
(> 30 seconds per task). These stages are sampled from
the production Spark jobs run in our clusters in April 2019.
The graph further shows the distribution of the block size
of these 5000 stages. From this graph, we can observe that
majority of the shuffle reduce stages with significant shuffle
fetch delays are ones with small block size.

Although the small shuffle block size seems to be address-
able via properly configuring the number of map and/or re-
duce tasks, we argue that it is not easily achievable. There
do exist misconfigured Spark applications in our clusters,
where the number of reducers is set too large for the amount
of data being shuffled. In such cases, parameter auto-con-
figuration solutions such as [27, 6, 14] can help fix the prob-
lem, by either reducing the number of reducers or increasing
the split size to reduce the number of mappers. However,
there exist “tuning dilemmas” where changing the parame-
ters to improve shuffle performance might negatively impact
other aspects of the job. This is mostly due to an increased
amount of data processed per map/reduce task as a result
of parameter changes. In addition, such “tuning dilemmas”
lead to increased small shuffle blocks.

As pointed out in [41], for a shuffle with M mappers and R
reducers, if the amount of data processed per task stays the
same, the number of shuffle blocks (M ∗R) grows quadrati-
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Figure 4: Illustration of Magnet architecture, with numbered steps explained in Section 3.1.

cally as the size of the shuffle data D grows. This leads to a
reduction of the shuffle block size ( D

M∗R ) as D grows. Based
on our experience supporting thousands of Spark users at
LinkedIn, keeping the amount of data processed per task
relatively constant is a proven practice when the workload
increases. Scaling a Spark application horizontally (more ex-
ecutors) instead of vertically (larger executors) avoids the in-
creased difficulty in acquiring executor containers in a multi-
tenant cluster. It also prevents the decreased resource uti-
lization due to resource over-provisioning. At LinkedIn, due
to the growing number of members joining the platform and
the need of building more complex AI models, the analytics
and machine learning workloads are processing more data
than before. Based on the above analysis, such a need of
processing more data would lead to the inevitable reduction
of shuffle block size.

2.3 Reliability of Shuffle all-to-all Connections
Another common issue we observed is with the reliability

of establishing the RPC connections with Spark ESS during
shuffle. As introduced earlier, in the shuffle reduce stage,
each task needs to establish connections to all of the remote
shuffle services hosting its task input. For a shuffle of M
mappers and R reducers, in theory a total of M ∗ R con-
nections need to be established. In practice, reducers on
the same executor share one outgoing connection per des-
tination, and mappers registered with the same Spark ESS
share one incoming connection per source. So, for a Spark
application using S Spark shuffle services and E executors,
up to S ∗ E connections would still be needed. In a large-
scale deployment of Spark infrastructure, both S and E can
be up to 1000. For a large-scale Spark cluster, intermittent
node availability issues can happen. In addition, because
the Spark ESS is a shared service, when a Spark ESS is im-
pacted by a poorly configured job or receives increased shuf-
fle workloads during peak hours, it could also be stressed and
have reduced availability. When the reduce tasks experience
failures in establishing connections to remote Spark ESS, it
immediately fails the entire shuffle reduce stage, leading to
retries of the previous stages to regenerate the shuffle data
that cannot be fetched. Such retries can be very expensive,

and have caused delays in Spark application runtime leading
to production flow SLA breakage.

2.4 Placement of Reduce Tasks
One study [17] claims that data locality is no longer im-

portant in data center computing, while others [30, 26, 38]
still show the benefits data locality can provide. Although
the speed of network has increased significantly in the past
decade, due to limitations of spindle disks’ IOPS as dis-
cussed in Section 2.2, we often cannot saturate the network
bandwidth. This is validated in a benchmark we performed
in Section 5.2. In addition, if the shuffle block is available
locally to the reduce task, the task can directly read it from
disk, bypassing the shuffle service. This also helps reduce
the number of RPC connections during shuffle. Although
shuffle data locality can provide such benefits, the current
shuffle mechanism in Spark would lead to little data locality
for the reduce tasks, as their task input data is scattered
across all the map tasks.

3. SYSTEM DESIGN
With these issues described in Section 2, we present Mag-

net, an alternative shuffle mechanism for Spark. Magnet
aims at keeping the fault-tolerance benefits of the current
Spark shuffle operation, which materializes intermediate shuf-
fle data in a sort-based fashion, while overcoming the above
mentioned issues.

In designing Magnet, we have to overcome several chal-
lenges. First, Magnet needs to improve disk I/O efficiency
during the shuffle operation. It should avoid reading in-
dividual small shuffle blocks from disks which hurts disk
throughput. Second, Magnet should help alleviate poten-
tial Spark ESS connection failures, to improve the overall
reliability of the shuffle operation in large-scale Spark clus-
ters. Third, Magnet needs to cope with potential stragglers
and data skews, which can be common in large-scale clusters
with real-world production workload. Finally, Magnet needs
to achieve these benefits without incurring much memory or
CPU overhead. This is essential in making Magnet a scal-
able solution to handle clusters with thousands of nodes and
petabytes of daily shuffled data.
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3.1 Solution Overview
Figure 4 shows the architecture of Magnet. Four existing

components in Spark (Spark driver, Spark ESS, Spark shuf-
fle map task, and Spark shuffle reduce task) are extended
with additional behaviors in our design. More details are
covered in later subsections.

• Spark driver coordinates the entire shuffle operation
between the map tasks, reduce tasks, and shuffle ser-
vices. (Step 1, 6, 7 in Figure 4)

• The shuffle map tasks now handle the additional prepa-
ration of their materialized shuffle data for pushing to
remote shuffle services. (Step 2, 3 in Figure 4)

• The Magnet shuffle service, which is an enhanced Spark
ESS, accepts remotely pushed shuffle blocks and merges
them into the corresponding merged shuffle file for each
unique shuffle partition. (Step 4 in Figure 4)

• The shuffle reduce tasks now take advantage of these
merged shuffle files, which are often co-located with the
tasks themselves, in order to improve the efficiency of
fetching their task inputs. (Step 8 in Figure 4)

Some key features of Magnet are briefly described below.
Push-Merge Shuffle - Magnet adopts a push-merge shuf-

fle mechanism, where the mapper generated shuffle data is
pushed to remote Magnet shuffle services to be merged per
shuffle partition. This allows Magnet to convert random
reads of small shuffle blocks into sequential reads of MB-
sized chunks. In addition, this push operation is decoupled
from the mappers, so that it does not add to the map task’s
runtime or lead to map task failures if the operation fails.

Best-effort Approach - Magnet does not require a per-
fect completion of the block push operation. By performing
push-merge shuffle, Magnet effectively replicates the shuffle
data. Magnet allows reducers to fetch both merged and un-
merged shuffle data as task input. This allows Magnet to
tolerate partial completion of the block push operation.

Flexible Deployment Strategy - Magnet integrates
with Spark native shuffle by building on top of it. This en-
ables Magnet to be deployed in both on-prem clusters with
co-located compute and storage nodes and cloud-based clus-
ters with a disaggregated storage layer. In the former case,
with the majority of each reduce task’s input merged at one
location, Magnet exploits such locality to schedule reduce
tasks and achieves better reducer data locality. In the latter
case, instead of data locality, Magnet can optimize for bet-
ter load balancing by selecting remote shuffle services that
are less loaded.

Stragglers/Data Skews Mitigation - Magnet can han-
dle stragglers and data skews. Since Magnet can tolerate
partial completion of block push operations, it can mitigate
stragglers and data skews by either halting slow push oper-
ations, or skipping pushing large/skewed blocks.

3.2 Push-Merge Shuffle
In order to improve disk I/O efficiency, we need to either

increase the amount of data read per I/O operation or switch
to using storage mediums that are more optimized for small
random reads such as SSDs or PMEM. However, as pointed
out in Section 2.2, application parameter tuning cannot ef-
fectively increase the shuffle block size due to “tuning dilem-
mas”, and SSDs or PMEM are too expensive to store the in-
termediate shuffle data at scale. [33, 41] proposed solutions

Algorithm 1: Dividing blocks into chunks

Constants available to mapper:
number of shuffle partitions: R
max chunk size: L
offset array for shuffle blocks inside shuffle file:
l1, l2, . . . , lR

shuffle services chosen by driver: M1,M2, . . . ,Mn

Variables:
current chunk to add blocks to: C ← {}
current chunk size: lc ← 0
current shuffle service index: k ← 1

Output:
chunks and their associated Magnet shuffle services

1 for i = 1 . . . R do
2 if (i− 1)/(R/n) + 1 > k and k < n then
3 output chunk and its shuffle service (C,Mk);
4 C ← {blocki};
5 lc ← li;
6 k + +;

7 else if lc + li > L then
8 output chunk and its shuffle service (C,Mk);
9 C ← {blocki};

10 lc ← li;

11 else
12 C = C ∪ {blocki};
13 lc = lc + li;

14 output chunk and its shuffle service (C,Mk);

that merge shuffle blocks belonging to the same shuffle parti-
tion in order to create a larger chunk. Such techniques effec-
tively improve the disk I/O efficiency during shuffle. Magnet
adopts a push-merge shuffle mechanism, which also leverages
the shuffle block merge technique. Compared with [33, 41],
Magnet achieves better fault-tolerance, reducer data local-
ity, and resource-efficiency. More details on this comparison
are given in Section 6.

3.2.1 Preparing Blocks for Remote Push
One principle we hold in designing the block push opera-

tion in Magnet is to incur as little CPU/memory overhead on
the shuffle service as possible. As mentioned earlier, Spark
ESS is a shared service across all Spark applications in the
cluster. For a Spark on YARN deployment, the resources
allocated to Spark ESS are usually orders of magnitude less
than the resources available for Spark executor containers.
Incurring heavy CPU/memory overhead on the shuffle ser-
vice would impact its scalability. In [41], Spark ESS needs
to buffer multiple MB-sized data chunks from local shuffle
files in memory in order to efficiently merge blocks. In [33],
the mapper produced records are not materialized locally,
but sent to per shuffle partition write ahead buffers in re-
mote shuffle services. These buffered records are potentially
sorted on the shuffle service before materialized into exter-
nal distributed file systems. Both of these approaches are
not ideal for ensuring low CPU/memory overhead in shuffle
services.

In Magnet, we keep the current shuffle materialization
behavior, which materializes the shuffle data in a sort-based
fashion. Once a map task produces the shuffle files, it di-
vides the blocks in the shuffle data file into MB-sized chunks,
each to be pushed to a remote Magnet shuffle service to be
merged. With Magnet, the Spark driver determines a list
of Magnet shuffle services the map tasks of a given shuffle
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should work with. Leveraging this information, each map
task can consistently decide the mapping from shuffle blocks
to chunks, and from chunks to Magnet shuffle services. More
details are described in Algorithm 1.

This algorithm guarantees that each chunk only contains
contiguous blocks inside the shuffle file up to a certain size,
and blocks from different mappers belonging to the same
shuffle partition are pushed to the same Magnet shuffle ser-
vice. To reduce the chances of blocks from different map
tasks in the same shuffle partition being pushed to the same
Magnet shuffle service at the same time, each map task ran-
domizes the order in which chunks are processed. Once the
chunks are divided and randomized, the map task hands
off to a dedicated thread pool to process transfers of these
chunks and finishes. Each chunk is loaded from disk into
memory, where individual block inside the chunk is pushed
to the associated Magnet shuffle service. Note that this
buffering of chunks happens inside Spark executors instead
of Magnet shuffle services. More details on this are given in
Section 4.1.

3.2.2 Merging Blocks on Magnet Shuffle Services
On the Magnet shuffle service side, for each shuffle parti-

tion that is actively being merged, the Magnet shuffle ser-
vice generates a merged shuffle file to append all received
corresponding blocks. It also maintains some metadata for
every actively merged shuffle partition. The metadata con-
tains a bitmap tracking the mapper IDs of all merged shuffle
blocks, a position offset indicating the offset in the merged
shuffle file after the most recent successfully appended shuf-
fle block, and a currentMapId that tracks the mapper ID
of the shuffle block currently being appended. This meta-
data is uniquely keyed by the combination of the application
ID, shuffle ID, and shuffle partition ID, and maintained as
a ConcurrentHashMap. This is illustrated in Figure 5.

When the Magnet shuffle service receives a block, it first
retrieves the corresponding shuffle partition metadata be-
fore attempting to append the block into the correspond-
ing merged shuffle file. The metadata can help the Magnet
shuffle service to properly handle several potential abnor-
mal scenarios. The bitmap helps the Magnet shuffle service
to recognize any potential duplicate blocks, so no redun-
dant data is written into the merged shuffle file. In ad-
dition, even though the map tasks have already random-

ized the order of the chunks, a Magnet shuffle service may
still receive multiple blocks from different map tasks belong-
ing to the same shuffle partition. When this happens, the
currentMapId metadata can guarantee one block gets com-
pletely appended to the merged shuffle file before the next
is written to disk. Furthermore, it is possible that a block is
partially appended to the merged shuffle file before encoun-
tering a failure, which corrupts the entire merged shuffle file.
When this happens, the position offset can help bring the
merged shuffle file back to a healthy state. The next block
will be appended from the position offset, effectively over-
writing the corrupted portion. If the corrupted block is the
last block, the corrupted portion would be truncated when
the block merge operation is finalized. By keeping track of
this metadata, the Magnet shuffle service can properly han-
dle duplication, collision, and failure during the block merge
operation.

3.3 Improving Shuffle Reliability
Magnet takes a best-effort approach and can fall back to

fetching the original unmerged shuffle blocks. Thus any fail-
ures during the block push/merge operations is non-fatal:

• If the map task fails before materializing its shuffle
data, no remote block push is triggered at this moment
yet. Normal retry of the map task will initiate.

• If a shuffle block fails to be pushed to a remote Magnet
shuffle service, after some retries, Magnet gives up on
pushing this block and the associated chunk. These
blocks that are not successfully pushed will be fetched
in their original form.

• If the Magnet shuffle service experiences any duplica-
tion, collision, or failure during the block merge opera-
tion, leading to blocks not getting merged, the original
unmerged block will be fetched instead.

• If the reduce task fails to fetch a merged shuffle block,
it can fall back to fetching the list of the unmerged
shuffle blocks backing this merged shuffle block with-
out incurring a shuffle fetch failure.

The metadata tracked in the Magnet shuffle service, as
introduced in Section 3.2.2, mostly improves the shuffle ser-
vice’s tolerance of merge failures. The additional metadata
tracked in the Spark driver helps boost the reduce task’s
fault-tolerance. As shown in Figure 4, in step 6, the Spark
driver retrieves a list of MergeStatus from the Magnet shuf-
fle services when it notifies them to stop merging blocks for a
given shuffle. In addition, when each map task completes, it
also reports a MapStatus to the Spark driver (step 5 in Fig-
ure 4). For a shuffle with M map tasks and R reduce tasks,
the Spark driver gathers M MapStatus and R MergeStatus.
Such metadata tells the Spark driver the location and size
of every unmerged shuffle block and merged shuffle file, as
well as which blocks get merged into each merged shuffle
file. Thus, the Spark driver can build a complete picture of
how to get the task inputs for each reduce task combining
the merged shuffle file and unmerged blocks. When a re-
duce task fails to fetch a merged shuffle block, the metadata
also enables it to fall back to fetching the original unmerged
blocks.

Magnet’s best-effort approach effectively maintains two
replicas of the shuffle data. While this helps improve shuffle
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reliability, it also increases the storage need and write op-
erations for the shuffle data. In practice, the former is not
a major issue. The shuffle data is only temporarily stored
on disks. Once a Spark application finishes, all of its shuffle
data also gets deleted. Even though Spark applications shuf-
fle petabytes of data daily in our clusters, the peak storage
need for shuffle data is only hundreds of TB. The increased
shuffle data storage need is a very small fraction of the total
capacity in our clusters. We further discuss the implications
of increased write operations in Section 4.3.

3.4 Flexible Deployment Strategy
In Sections 3.2-3.3, we have shown how Magnet integrates

with Spark native shuffle by building on top of it. Different
from [4, 33], Magnet allows Spark to natively manage all
aspects of shuffle, including storing shuffle data, providing
fault tolerance, and tracking shuffle data location metadata.
Spark does not rely on external systems for shuffle in this
case. This allows the flexibility to deploy Magnet in both on-
prem clusters with co-located compute/storage nodes and
cloud-based clusters with disaggregated storage layer.

For on-prem data centers that co-locate compute and stor-
age nodes, data locality for shuffle reduce tasks can bring
multiple benefits. This includes increased I/O efficiency
and reduced shuffle fetch failures due to bypassing network
transfers. By leveraging Spark’s locality-aware task schedul-
ing [12] and choosing Magnet shuffle services to push shuffle
blocks based on locations of Spark executors, achieving shuf-
fle data locality appears trivial. However, Spark’s dynamic
resource allocation [13] complicates this. The dynamic al-
location feature allows Spark to release idle executors with
no tasks running for a certain period of time and re-launch
the executors later if tasks are pending again. This makes
Spark applications more resource-efficient in a multi-tenant
cluster. This feature is enabled in LinkedIn’s Spark deploy-
ment. Similarly, a few other large-scale Spark deployments
also recommend this [10, 16].

With Spark dynamic allocation, when the driver selects
the list of Magnet shuffle services at the beginning of a shuf-
fle map stage (step 1 in Figure 4), the number of active
Spark executors might be less than the desired number due
to executor release at the end of the previous stage. If we
choose Magnet shuffle services based on locations of Spark
executors, we might end up with fewer shuffle services than
needed. To address this issue, we choose Magnet shuffle ser-
vices in locations beyond the active Spark executors, and
launch Spark executors later via dynamic allocation based
on locations of the chosen Magnet shuffle services. This
way, instead of choosing Magnet shuffle services based on
Spark executor locations, we launch Spark executors based
on locations of Magnet shuffle services. This optimization is
possible because of Magnet’s integration with Spark native
shuffle.

For cloud-based cluster deployments, the compute and
storage nodes are usually disaggregated. In such deploy-
ments, the intermediate shuffle data could be materialized
in disaggregated storage via fast network connections [36,
15]. Data locality for shuffle reduce tasks no longer matters
in such a setup. However, Magnet still fits well with such
cloud-based deployments. Magnet shuffle services run on
the compute nodes, and store the merged shuffle files on the
disaggregated storage nodes. By reading larger chunks of
data instead of the small fragmented shuffle blocks over the

Timeline

Map Task

Block Push

                  Reduce Task

(a) Effects of stragglers in reduce task are hidden by other tasks

(b) Stragglers in push operation pauses job executions

(c) Magnet mitigates push operation stragglers with early termination

Figure 6: Handling stragglers in push operations.

network, Magnet helps to better utilize the available net-
work bandwidth. Furthermore, the Spark driver can choose
to optimize for better load balancing instead of data local-
ity when selecting Magnet shuffle services. The Spark driver
can query the load of the available Magnet shuffle services
in order to pick ones that are less loaded. In our implemen-
tation of Magnet, we allow such flexible policies to select
locations of Magnet shuffle services. So, we can choose to
optimize for either data locality or load balancing or a com-
bination of both based on the cluster deployment mode.

3.5 Handling Stragglers and Data Skews
Task stragglers and data skews are common issues in real-

world data processing, and they slow down job executions.
In order to become a practical solution in our environment,
Magnet needs to be able to handle these potential issues.

3.5.1 Task Stragglers
When all the map tasks finish at the end of the shuffle map

stage, the shuffle block push operation might not fully finish
yet. There is a batch of map tasks which just started push-
ing blocks at this moment, and there could also be stragglers
which cannot push blocks fast enough. Different from strag-
glers in the reduce tasks, any delay we experience at the
end of the shuffle map stage will directly impact the job’s
runtime. This is illustrated in Figure 6. To mitigate such
stragglers, Magnet allows the Spark driver to put an up-
per bound on how long it is willing to wait for the block
push/merge operation. At the end of the wait, the Spark
driver notifies all the chosen Magnet shuffle services for the
given shuffle to stop merging new shuffle blocks. This might
lead to a few blocks not merged by the time the shuffle re-
duce stage starts, however it ensures Magnet can provide the
majority of the benefit of push-merge shuffle while bounding
the negative impact of stragglers to the Spark application’s
runtime.

3.5.2 Data Skews
Data skews happen when one or more shuffle partitions

become significantly larger than the others. In Magnet, if
we try to push and merge such partitions, we might end up
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merging a partition with 10s or even 100s GB of data, which
is not desirable. There are existing solutions that deal with
data skews in Spark, such as the adaptive execution fea-
ture [14]. With Spark adaptive execution, statistics about
each shuffle partition’s size are gathered at runtime, which
can be used to detect data skews. If such a skew is de-
tected, the operator triggering the shuffle, such as a join or
group-by, might divide the skewed partitions into multiple
buckets in order to spread the computation of the skewed
partition onto multiple reduce tasks. Magnet integrates well
with such a skew-mitigating solution. When dividing the
map task’s shuffle blocks into chunks following Algorithm 1,
Magnet can amend the algorithm by not including shuffle
blocks larger than a predefined threshold into any chunks.
This way, Magnet will merge all the normal partitions, but
skip the skewed partitions that exceed the size threshold.
With Spark adaptive execution, the non-skewed partitions
would still be fetched in their entirety, which can benefit
from Magnet’s push-merge shuffle. For the skewed parti-
tions, since Magnet does not merge them and the original
unmerged blocks are still available, it would not interfere
with Spark adaptive execution’s skew-mitigating solution.

4. IMPLEMENTATION OPTIMIZATIONS
We implemented Magnet on top of Apache Spark 2.3.

Since the modifications are specific to Spark internals and
not to the user-facing public APIs, existing Spark applica-
tions can benefit from Magnet with no code changes. In
order to achieve optimal efficiency and scalability, we also
applied a few optimizations in our implementation.

4.1 Parallelizing Data Transfer and Task Ex-
ecution

One area where Spark is superior to the legacy Hadoop
MapReduce engine is how it parallelizes shuffle data fetch
and task execution. As illustrated in Figure 7(a), Hadoop
MapReduce achieves limited parallelization via a technique
termed ”slow start”. It allows some reduce tasks to start
fetching the shuffle data while some map tasks are still run-
ning. This way, only some reduce tasks’ shuffle data fetch
time overlaps with the map tasks executions. Spark does
a much better job in this regard. Instead of overlapping
map tasks and reduce tasks, which is not easy to manage
in a DAG execution engine, Spark achieves the paralleliza-
tion with asynchronous RPC. Separate threads are used for
fetching remote shuffle blocks and executing reduce tasks
on the fetched blocks. These two threads act like a pair of
producers and consumers, allowing better overlap between
shuffle data fetch and reduce task executions. This is illus-
trated in Figure 7(b).

In our implementation of Magnet, we adopt a similar tech-
nique to achieve parallelized data transfer and task execu-
tion. On the shuffle map task side, by leveraging the dedi-
cated thread pool, we decouple shuffle block push operations
from map task executions. This is illustrated in Figure 7(c).
This allows parallelized block push operations while later
mappers are executing. While the shuffle map tasks might
be more CPU/memory intensive, the block push operation
are more disk/network intensive. Such parallelization helps
to better utilize the compute resources available to Spark
executors.

On the shuffle reduce task side, if the merged shuffle file
is located on a remote Magnet shuffle service, fetching the

Timeline

Map Task
Block Push

Block Fetch
Reduce Task

(a) MapReduce slow-start overlaps map tasks with only 
some reduce tasks’ shuffle block fetch

(b) Spark adopts asynchronous shuffle data transfer to 
parallelize reduce tasks with shuffle block fetch

(c) Magnet parallelizes map tasks with shuffle block push, 
which leads to fewer larger blocks fetched by reduce tasks

Figure 7: Magnet aims to parallelize task executions
with shuffle data transfer.

entire merged shuffle file as a single block might lead to
undesired fetch delays, since we cannot achieve much paral-
lelization between data fetch and reduce task execution. To
address this issue, Magnet divides each merged shuffle file
into multiple MB-sized slices while blocks are appended to
it. The slice boundary within the merged shuffle file is kept
as a separate index file stored on disk. The Spark driver
only needs to track information at the granularity of the
merged shuffle partitions. How a merged shuffle file is fur-
ther divided into slices is only tracked by the Magnet shuffle
service via the index file. When the reduce task fetches a
remote merged shuffle file, the Magnet shuffle service re-
sponds with the number of slices so the client can convert
a single fetch of the merged shuffle file into multiple fetches
of the individual MB-sized slices. Such a technique helps
achieve a better balance between optimizing disk I/Os and
parallelizing data transfer and task execution.

4.2 Resource Efficient Implementation
The implementation of Magnet incurs minimal CPU and

memory overhead on the shuffle service side. The Magnet
shuffle service’s only responsibility during the block push
and merge operation is to accept remotely pushed blocks
and append it to the corresponding merged shuffle file. This
low overhead is achieved via the following:

1. Different from [33], no sorting is performed on the shuf-
fle service side. All sorting during the shuffle, either
map-side sort or reduce-side sort, is performed inside
Spark executors by the map tasks and reduce tasks.

2. Different from [4, 41], the Magnet shuffle service does
not buffer shuffle blocks in memory during the merge
operation. The only buffering of blocks happens inside
Spark executors, and Magnet shuffle service merges
blocks directly on disk.

The shuffle optimization in [41] is achieved by shuffle ser-
vices pulling and merging shuffle blocks from local mappers.
This requires buffering blocks in memory before merging to
improve disk efficiency. The memory need grows as the num-
ber of concurrent merge streams in a shuffle service grows.
In [41], it mentions that 6-8GB of memory is needed for 20
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concurrent merge streams. This could become a scaling bot-
tleneck in busy production clusters with much higher con-
currency. Magnet buffers blocks in Spark executors instead,
which distributes the memory needs across all executors.
The limited concurrent tasks in Spark executors also keeps
the memory footprint low, making Magnet more scalable.
In [33, 4], the merge operation leverages per-partition write
ahead buffers inside the shuffle service to batch write merged
shuffle data. While this helps reduce the number of write
operations during merge, the memory requirement brings a
similar scaling bottleneck as [41].

4.3 Optimizing Disk I/O
In Section 3.2, we showed how Magnet batch-reads shuffle

blocks to improve the disk I/O efficiency. This improvement
however requires writing most of the intermediate shuffle
data a second time during the merge operation. Although
this seems expensive, we argue that the overall I/O efficiency
is still improved. Different from small random reads with
HDDs, small random writes can benefit from multiple levels
of caching such as the OS page cache and the disk buffer.
These caches group multiple write operations into one, re-
ducing the number of write operations placed on the disk.
As a result, small random writes can achieve much higher
throughput than small random reads. This is also shown
in our benchmark in Section 5.2.3. With the batch reading
of shuffle blocks and the caches batching the write oper-
ations, Magnet reduces the overall disk I/O operations for
shuffling small shuffle blocks even though it performs double
write. For large shuffle blocks, as described in Section 3.5.2,
we skip merging these blocks. Thus the overhead of double
write is not incurred for them. In practice, because of Mag-
net’s best-effort nature, choosing the appropriate OS I/O
scheduler to prioritize read operations over writes can help
reduce the overhead of double write. We are also looking
into using small dedicated SSDs as a buffer to batch write
even more blocks. Compared with the write ahead buffer
approach in [33, 4], this improves the HDD write efficiency
without incurring additional memory overhead.

5. EVALUATION RESULTS
In this section, we present benchmark results for Magnet.

Via a combination of synthetic and production workload
evaluations, we show that Magnet shuffle service can effec-
tively improve the disk I/O efficiency and reduce the job
runtime while being resource efficient.

5.1 Evaluation Setup
We evaluated Magnet under two different environments.

The first is a distributed stress testing framework we devel-
oped to stress test the performance of a single Spark shuffle
service. It can generate very high workloads for both shuffle
block fetch and push operations in order to mimic a busy
production cluster. More details are in Section 5.2.1. The
second is a benchmark cluster deployed with the Magnet
shuffle service. As introduced in Section 2.1, the Spark shuf-
fle service runs within an underlying YARN NodeManager
instance. In both environments, the YARN NodeManager
instances are configured with only 3GB heap size. Further-
more, both environments use nodes with 56 CPU cores and
256 GB RAM each, connected with 10Gbps Ethernet links.
For storage, each node has 6 HDDs, each with 100 MB/s I/O

Table 1: Synthetic shuffle data configurations. It
shows the total size of the data to be shuffled, the
number of map tasks which equivalents to the num-
ber of shuffle files generated, the number of reduce
tasks which equivalents to the number of blocks in
each shuffle file, and the size of individual blocks.

Size # Map # Reduce Block
(# shuffle files) (# blocks/file)

1 150 GB 1000 15000 10 KB

2 150 GB 1000 1500 100 KB

3 150 GB 1000 150 1000 KB

speed for sequential reads. A few nodes with SSDs are also
used to evaluate the impact of a different storage medium.

5.2 Synthetic Workload Evaluations
We use a distributed stress testing framework for the syn-

thetic workload evaluations. By stress testing against a sin-
gle Spark shuffle service via simulating the workload it re-
ceives in a busy cluster during peak hours, we evaluate the
completion time, disk I/O throughput and resource foot-
print of Magnet shuffle service against vanilla Spark.

5.2.1 Stress Testing Framework
To evaluate the characteristics of the Magnet shuffle ser-

vice, especially under heavy shuffle workloads, we developed
a distributed stress testing framework that allows us to simu-
late very high workloads a single Spark shuffle service would
receive. Such a stress testing framework allows us to control
the following three parameters, so that we can observe the
performance of a Spark shuffle service even under situations
that can only be found in a busy cluster during peak hours.

• Number of concurrent connections a single Spark shuf-
fle service would receive

• Size of individual shuffle block size

• Total size of the intermediate shuffle data

Furthermore, this framework is able to stress test both
the shuffle block fetch and push operations. The former
transfers shuffle blocks from a single Spark shuffle service
to multiple clients, while the latter transfers shuffle blocks
from multiple clients to a single shuffle service. With this
framework, we are able to evaluate both the vanilla Spark
shuffle service and the Magnet shuffle service.

With this stress testing framework, we first generate syn-
thetic shuffle data with certain block size and total size.
Based on whether to evaluate the block fetch or push oper-
ation, such synthetic shuffle data could be generated on the
one node running the Spark shuffle service, or distributed
across multiple nodes running the clients. After generat-
ing the synthetic shuffle data, a certain number of clients
are launched, each starting to fetch or push its portion of
the shuffle blocks from/to the Spark shuffle service. These
clients perform the same operation as the Spark map and
reduce tasks in terms of how they fetch or push blocks. Each
client opens multiple connections with the Spark shuffle ser-
vice. The number of clients launched times the number of

3390



connections established per client becomes the number of
concurrent connections the Spark shuffle service receives.

In our benchmark, we used one node to run the Spark
shuffle service and 20 nodes to run the clients. We generated
three different sets of synthetic shuffle data, as shown in
Table 1. These three sets of synthetic shuffle data share the
same total data size with varying block sizes.

5.2.2 Completion Time
The first metric we want to evaluate is the completion

time for transferring shuffle data. With Magnet, transfer-
ring the intermediate shuffle data from map tasks to reduce
tasks involves first pushing shuffle blocks to Magnet shuffle
services for merging, then fetching the merged shuffle blocks
from Magnet shuffle services for reduce task consumption.
Here we evaluate the completion time for both the shuffle
block fetch and push operations.

In this benchmark, we launched three runs for both the
shuffle block fetch and push operations, with configurations
as shown in Table 1. In addition, each run used 200 clients
each with five connections. So the shuffle service received
1000 concurrent connections. As a comparison, the number
of concurrent connections received by a Spark shuffle service
in our production cluster during peak hours is around the
same.

For the shuffle block fetch operation, as the block size
grows, the I/O operations of the shuffle service gradually
turns from small random read to large sequential read. This
leads to better I/O efficiency and shorter completion time,
as shown in Figure 8(a). As for the shuffle block push op-
eration, since the clients read large chunks of data from the
shuffle file irrespective of the block size, the small block size
has less impact to the shuffle block push operation’s effi-
ciency. This is also shown in Figure 8(a). From this bench-
mark, we can clearly see that Magnet effectively mitigates
the negative impact of small shuffle blocks when reading
from HDDs. To transfer 150GB of 10 KB blocks with a sin-
gle shuffle service, compared with vanilla Spark which takes
four hours, Magnet only takes a little more than five min-
utes.

We further compare the time it takes to complete shuffle
block fetch operation with HDDs vs. SSDs. Similar to the
previous benchmark, 150 GB of data with varying block sizes
is fetched from a single shuffle service using 1000 concurrent
connections. As shown in Figure 8(b), SSDs show much
more consistent performance as the block size changes. This
further demonstrates that Magnet is able to achieve optimal
disk efficiency for shuffle data transfer irrespective of the
underlying storage hardware.

5.2.3 Disk I/O
We further evaluate the disk I/O efficiency with the shuffle

block fetch and push operations. Since HDDs are subject
to limited IOPS, we choose to measure the disk read/write
throughput to compare how fast the shuffle service is able
to read/write block data. When performing shuffle block
fetch operations, the shuffle service is mainly reading shuffle
blocks from disks. With shuffle block push operations, the
shuffle service is mainly writing shuffle blocks to disks.

In this benchmark, in addition to evaluating with differ-
ent block sizes, we also evaluate the impact of the number of
concurrent connections the shuffle service receives. For block
fetch operations, we observe that the shuffle service disk read

(a) Completion time for block push operation with 
Magnet and block fetch operation with vanilla Spark ESS

(b) Completion time for block fetch operation with  
vanilla Spark ESS using HDD vs. SSD

Figure 8: Completion time comparison for shuffle
block push operation with Magnet shuffle service
and shuffle block fetch operation with vanilla Spark
ESS. (a) shows that the block push operation is not
impacted much by small block size. (b) shows that
block fetch operation requires storage mediums such
as SSD to achieve the same. This validates Magnet
can optimize shuffle data transfer irrespective of the
underlying storage hardware.

throughput increases significantly as the block size increases
(Figure 9(a)). This again illustrates the inefficiency of per-
forming small reads with HDDs. In addition, due to the
shuffle blocks being read only once in a random order, no
caching would help improve the read throughput. However,
as the number of concurrent connections increases, we do
not see any significant increase in the disk read through-
put. This is the case for all three block sizes. In theory, an
increased number of connections would mean more utiliza-
tion of the available network bandwidth. The fact that we
are not seeing any throughput increase indicates that the
performance is bottlenecked at the disk and the clients are
unable to saturate the available network bandwidth.

For block push operations, the disk write throughput is
more consistent as the block size changes. When processing
block push requests, the Magnet shuffle service appends in-
dividual blocks to the merged shuffle file. Unlike the case
for small random read, multiple levels of caching such as the
OS page cache and the disk buffer help improve the perfor-

3391



(a) Disk read throughput of block fetch operation

(b) Disk write throughput of block push operation

Figure 9: Disk throughput comparison for shuffle
block fetch and push operations. (a) shows that
HDD read throughput with block fetch operations
is severely impacted with small shuffle block size.
(b) shows that HDD write throughput with block
push operation is more consistent. In both cases,
an increased number of connections does not lead to
increased throughput, indicating the performance is
bottlenecked at disk instead of network.

mance of small random writes. Thus, the write throughput
is much less impacted by the small block size. This is shown
in Figure 9(b).

5.2.4 Resource Usage
We also evaluate the resource usage of Magnet shuffle

services when performing the block push operations. The
vanilla Spark shuffle services deployed in our production
clusters can handle petabytes of daily shuffled data. This
is largely due to the low resource usage of the shuffle ser-
vice for both CPU and memory when performing the shuffle
block fetch operations. For the Magnet shuffle service to
achieve the same, it also needs to have a low resource foot-
print.

In this benchmark, we evaluate both the shuffle fetch and
push operations with three different block sizes as before.
For each run, the shuffle service is receiving 1000 concurrent
connections to simulate the scenario of shuffle services at
peak hours. The Magnet shuffle service is showing a sim-
ilar CPU consumptions as the vanilla Spark shuffle service
when data is being transferred. It averages between 20-50%
of a CPU virtual core in the three runs with different block
sizes. This is reasonable as the shuffle block push opera-
tion is a disk intensive operation, similar to the block fetch

Table 2: Evaluation results with production work-
loads.

Map Stage Reduce Stage Total Task
Runtime Runtime Runtime

Workload 1 2.7 min 37 s 38 min
w/o Magnet

Workload 1 2.8 min 33 s 37 min
w/ Magnet
Workload 2 2.4 min 6.2 min 48.8 hr
w/o Magnet

Workload 2 2.8 min 2 min (-68%) 15 hr (-69%)
w/ Magnet
Workload 3 2.9 min 11 min 89.6 hr
w/o Magnet

Workload 3 4.1 min 2.1 min (-81%) 31 hr (-66%)
w/ Magnet
Workload 2+3 7.1 min 38 min 144.7 hr
w/o Magnet

Workload 2+3 8.5 min 6.3 min (-83%) 43 hr (-70%)
w/ Magnet

operation. For memory consumptions, the Magnet shuffle
service is showing a similar footprint as the vanilla Spark
shuffle service, averaging around 300 MB for both on-heap
and off-heap memory. In addition, its memory usage is not
impacted by the block size. This is largely due to the im-
plementation optimization introduced in Section 4.2.

5.3 Production Workload Evaluations
We further evaluate Magnet with a few selected real work-

loads. This evaluation was done in a benchmark cluster
with 200 nodes. We launched 200 Spark executors each
having 5 GB memory and 2 vcores. We used 3 produc-
tion jobs in our evaluation, representing small job (Workload
1), medium CPU-intensive job (Workload 2), large shuffle-
heavy job (Workload 3). These workloads have the following
characteristics:

• Workload 1 is a short SQL query which shuffles less
than 100 GB data

• Workload 2 shuffles around 400 GB of data, and is
CPU intensive in both the shuffle map and reduce tasks

• Workload 3 is more I/O intensive, which shuffles around
800 GB data

We measured three metrics for these workloads with and
without using the Magnet shuffle service: 1) the end-to-end
runtime of all shuffle map stages, 2) the end-to-end runtime
of all reduce stages, and 3) total task runtime. The results
are shown in Table 2. For Workload 1, since the shuffle
overhead is low, it does not benefit much from Magnet. The
runtime comparison further validates that Magnet does not
introduce much overhead leading to performance regression.
For Workload 2, the total job runtime saw a 45% reduction,
and the reduce stage runtime and total task runtime saw
a 68% reduction with Magnet. This validates that even for
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CPU intensive jobs, Magnet can provide significant improve-
ment by optimizing the shuffle operation. For Workload 3,
which is shuffle I/O intensive, Magnet significantly decreases
the job runtime. Specifically, Magnet reduced the shuffle re-
duce stage runtime by 81%, while keeping the shuffle map
stage runtime largely unaffected.

In addition to measuring the performance of Magnet with
a single workload, we also benchmarked with both Workload
2 and 3 running at the same time, each using 100 Spark
executors. This is to measure the performance of Magnet
with a mix of both CPU intensive and shuffle I/O intensive
jobs, as well as when Magnet shuffle services serve both block
push and fetch requests at the same time. From Table 2, we
can see that the performance gains of Magnet is even more
with combined workloads. This shows that while the vanilla
Spark shuffle service’s performance degrades under increased
shuffle workload, Magnet can continue to achieve superior
shuffle performance.

6. RELATED WORK
Recently, there has been great research interest in opti-

mizing shuffle for distributed data processing frameworks.
Different from Magnet, where mappers push shuffle blocks
to remote shuffle services to be merged, Riffle [41] performs
block merge operation via shuffle services pulling shuffle
blocks from local mappers. It has three disadvantages com-
pared with Magnet: 1) Pull-based merge service requires
buffering blocks in memory before merging to improve disk
efficiency. The memory need grows as the number of con-
current merge streams in a shuffle service grows. This could
become a scaling bottleneck in busy production clusters.
Magnet buffers blocks in Spark executors instead, which dis-
tributes the memory needs across all executors. The limited
concurrent tasks in Spark executors also keeps the memory
footprint very low, making Magnet more scalable. 2) Local
merge service does not relocate shuffle blocks, thus it cannot
provide better shuffle data locality for reducers. 3) Similarly,
local merge service does not replicate shuffle blocks on a dif-
ferent node, thus cannot help improve fault-tolerance.

Sailfish [33]/Cosco [4] are two more solutions that merge
shuffle blocks. Building on top of an abstraction of I-files,
which is an extension to KFS [8], Sailfish aggregates Hadoop
MapReduce shuffle data per partition into I-files, each con-
sisting of multiple chunks. Cosco [4] is an implementation
of Sailfish for Spark. Both solutions aim at disaggregated
cluster deployments. The compute engines delegate to ex-
ternal storage systems, KFS for Sailfish and Facebook’s dis-
aggregated storage cluster for Cosco, to manage the shuf-
fle intermediate data. This includes storing shuffle data,
providing fault-tolerance, and tracking location metadata of
shuffle blocks. On the other hand, Magnet integrates with
Spark native shuffle, where Spark still manages all aspects of
shuffle. Sailfish/Cosco’s delegated shuffle approach has two
disadvantages compared with Magnet: 1) The dependency
on external storage systems makes it more restrictive to de-
ploy. In cloud-based environments where dedicated storage
layers already exist, it might not be possible to deploy cus-
tom storage solutions at scale. As LinkedIn is moving from
on-prem clusters to Microsoft Azure [3], it is important to
design a solution that is flexible to deploy in both envi-
ronments. 2) With delegated shuffle, Spark cannot lever-
age the shuffle metadata hidden in external systems to get

smart with scheduling reducers or handle shuffle fetch fail-
ures. Magnet’s integration with Spark native shuffle helps
improve performance by offering better shuffle data locality.
While the integrated shuffle approach provides a more flexi-
ble deployment strategy and the native shuffle performance,
the delegated shuffle approach is less coupled with a specific
engine and thus can more easily extend to support multiple
compute engines.

iShuffle [25] is another work that optimizes Hadoop MapR-
educe shuffle via a shuffle-on-write technique. It pushes
mapper generated shuffle blocks to the reducers. Compared
with Magnet, iShuffle is subject to the impact of stragglers
and does not help improve shuffle reliability. In addition,
due to the limitations of Hadoop MapReduce, which adopts
1-level monolithic scheduling instead of Spark on YARN’s
2-level scheduling mechanism [34], iShuffle also cannot ef-
fectively schedule reduce tasks to leverage data locality in a
multi-tenant cluster.

There are a few other studies that aim to improve shuf-
fle with different approaches. HD shuffle [31] proposed a
new shuffle algorithm that divides a single large fan-in fan-
out shuffle into multiple ones each with a bounded fan-in
fan-out. While this can help improve the disk efficiency, it
introduces additional shuffles which might not be desirable.
MapReduce Online [20] proposed a push-based mechanism
to optimize online aggregation and continuous queries. It
works for in-memory shuffle, and is not designed for large
jobs. Hadoop-A [39] proposed an approach to optimize shuf-
fle leveraging RDMA, and Splash from MemVerge [42] is a
solution that leverages PMEM. The benefits of these solu-
tions are coupled with non-commodity hardware. Worth
noting is that Riffle [41], Sailfish [33], and Cosco [4] are the
only known solutions so far that are deployed in production
at scale.

7. CONCLUSIONS
In this paper, we present Magnet, a Spark shuffle service

leveraging push-merge shuffle to improve the efficiency, re-
liability, and scalability of the shuffle operation in Spark.
Magnet achieves optimized disk I/Os on the shuffle write
and read paths via merging shuffle blocks. It further re-
duces shuffle related failures by replicating the shuffle data
in both the original and optimized form. Magnet also im-
proves data locality for shuffle reduce tasks which further
improves the efficiency and reliability of shuffle in Spark.
Based on our evaluations, we show that Magnet helps to
mitigate several existing issues with Spark shuffle operation
and leads to shorter job completion time.
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