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ABSTRACT 
The requirements of Internet of Things (IoT) workloads are unique 
in the database space.  While significant effort has been spent over 
the last decade rearchitecting OLTP and Analytics workloads for 
the public cloud, little has been done to rearchitect IoT workloads 
for the cloud.  In this paper we present IBM Db2 Event StoreTM , a 
cloud-native database system designed specifically for IoT 
workloads, which require extremely high-speed ingest, efficient 
and open data storage, and near real-time analytics. Additionally, 
by leveraging the Db2 SQL compiler, optimizer and runtime, 
developed and refined over the last 30 years, we demonstrate that 
rearchitecting for the public cloud doesn’t require rewriting all 
components.  Reusing components that have been built out and 
optimized for decades dramatically reduced the development effort 
and immediately provided rich SQL support and excellent run-time 
query performance. 
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1. INTRODUCTION 
1.1 The Needs of IoT systems 
With the rapid proliferation of connected devices (smart phones, 
vehicles, buildings, industrial machinery, etc.) there has never been 
as great a need to persist data, and make it available for subsequent 

analytical processing, as quickly as possible.  Traditionally, the data 
storage and analytics needs of the Internet of Things (IoT) space 
have been serviced by relational databases, time series databases, 
or more recently, elements of the Hadoop ecosystem [1].  
Unfortunately, none of these technologies were designed for the 
specific demands of Internet of Things use cases, which include: 

• Extremely high-speed data ingestion: It is not uncommon in 
IoT use cases to see data arriving at a rate of millions of data 
points per second.  As the data is typically machine generated, 
and not generated by humans, it arrives steadily around the 
clock, resulting in hundreds of billions of events per day. 

• Efficient data storage: Due to the large volume at which data 
is arriving, efficient storage is essential.  This requires that the 
system stores data in a highly compressed format, leverages 
cost effective storage (such as cloud-based object storage), and 
ideally automates data retention through techniques such as 
Time to Live (TTL).  Moreover, since IoT datasets grow so 
rapidly, it is desirable to store the data in an open data format, 
so that it can be directly queried by additional runtime engines 
and does not require migration should the system be re-
platformed in the future. 

• Real-time, near real-time and deep analytics: Persisting data 
is never the end goal.  IoT systems require that the data be made 
available as quickly as possible to both queries which are 
interested in a given data point (or collection of data points 
from a given sensor), as well as more complex queries which 
leverage the full power of SQL.  Additionally, IoT data often 
feeds ML models, such as those used for predictive 
maintenance. 

• Continuous Availability: IoT data stores are fed by remote 
data sources, often with limited ability to store data locally.  As 
a result, in cases where the data store is unavailable for a 
prolonged period of time, remote data sources may overflow 
their local storage, resulting in data loss.  Similarly, queries 
being run on IoT systems are often critical to the business, and 
even a small interruption could result in significant financial 
impact [2]. To ensure a complete data history and consistent 
business insights, IoT systems must remain continuously 
available. 
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1.2 Related Work: Existing Technologies for 
IoT Workloads 
Traditionally, relational database management systems 
(RDBMSes) have been used to handle the most challenging of data 
problems.  As a result, over the last four decades they have evolved 
from a focus on high speed transaction processing [3], to servicing 
high performance analytics [4] [5], and more recently, hybrid 
transactional/analytical processing (HTAP) workloads [6], which 
require both fast transactions and analytics.  In this time, they have 
evolved from running on a single machine, to scaling out to tens or 
hundreds of machines to leverage both MPP techniques, and/or for 
high availability.  While this evolution has created shared data 
architectures that on the surface seem similar to what we propose 
in this paper [7] [8], the leveraging of shared storage in these 
systems is principally for availability, and is not an attempt to 
leverage cheap and plentiful storage, as is required for IoT 
workloads.  Furthermore, the dependence on mutable data and 
strong consistency in most relational systems makes it difficult to 
leverage eventually consistent cloud-based object storage. 
 
While RDBMSes are unquestionably versatile, their generalization 
prevents them from being ideal for several recently identified use 
cases [9], one of which is IoT workloads.  In IoT workloads, 
machine generated data is often produced at a rate of millions of 
events per second – orders of magnitude faster than human 
generated transactions.  For example, an IoT system producing 1M 
events/sec (a rate common in the IoT space) will generate more 
events in a single day than the total number of US stock market 
trades in a year [10].  This tremendous volume of arriving data 
plays against the strengths of traditional relational database systems 
whose WAL techniques favour transactional consistentcy at the 
expense of ingest performance.  Additionally, since traditional 
relational database systems update and delete in-place and require 
strong consistency, they are not able to directly leverage cloud 
object storage - the most cost-effective way to store large volumes 
of data in the public cloud.  While recent cloud-native relational 
database systems are now able to leverage cloud object storage [11] 
[12] and have made a concerted effort to separate compute and 
storage to improve transactional availability [13], they have not yet 
gained widespread adoption for IoT workloads. 
 
Over the last decade, time series databases have dramatically 
increased in popularity [14] and have become the repositories of 
choice for IoT data.  While time series databases are able to rapidly 
ingest data and store time series data efficiently, many of them, 
such as InfluxDB [15], Kdb+ [16], use a non-SQL compliant query 
language [17] [18], and struggle with true continuous availability 
[19]. There do exist time series databases which support SQL, such 
as TimescaleDB [20], however we show in section 3 that they have 
limitations in terms of ingest and query performance. Also, none of 
these time series databases leverages an open data format or can 
directly leverage object storage to efficiently handle the massive 
volume of data generated by IoT systems.  
 
To counter the limitations of time series databases, a wave of 
Hadoop and open-source based systems, like Apache Druid [22], 
have been employed for high speed data use cases with some 
success  [23] [24] [25]. These systems are typically architected 
according to the Lambda Architecture whereby one data store is 
used to persist data quickly (typically a time series database or KV 
store) and provide near real-time analytics, while a second system 

is used for deep analytics [26].  The Lambda Architecture however, 
suffers from complexity (multiple systems to maintain), stores a 
non-trivial portion of the data in two places (resulting in higher 
storage costs), and is difficult to query, as application designers 
have to understand which of the disparate systems to query for a 
given use case.  Furthermore, many of the systems, on which 
Lambda is built, struggle to achieve the required ingest speeds 
required for IoT workloads, without a significant hardware 
footprint  [27].   
 
More recently systems have emerged which are tackling similar 
requirements to those found in IoT systems.  Unfortunately, these 
newer systems are either restricted to internal use [28] or are opaque 
[29, 30].  

1.3 A Purpose-Built IoT System 
To address the specific needs of IoT use cases, we built Db2 Event 
Store [31], which has the following design principles: 

• Make ingest as fast as possible: The system is designed to do 
the minimum amount of synchronous work required to persist 
data, ensure durability in the presence of node failures, and 
make it available to query processing.   

• Asynchronously refine and enrich data: Once data has been 
ingested, it is further refined and enriched asynchronously, to 
make query processing more efficient. 

• Highly optimize query processing: Efficient query processing 
leverages a highly optimized open data format, meta-data 
constructs which allow for data skipping, and a robust and 
mature query optimizer and runtime.  Furthermore, queries 
leverage all available hardware by running in parallel across all 
nodes in the cluster and also multi-threaded within each node. 

• Ensure continuous availability for both ingest and queries: 
Each component of the system is designed to be fully 
redundant.  In the event of node failures, data is quickly 
assigned new leaders amongst the surviving members to ensure 
minimal disruption to ingest and queries. 

In the remainder of this paper we describe the Db2 Event Store 
architecture in detail, as well as some of the challenges faced in 
building the system.  We then compare it to two existing systems 
in wide used for IoT use cases, both from a functional and 
performance perspective.  Finally, we discuss some of the 
remaining challenges to be overcome.  

2. ARCHITECTURE 
2.1 Architectural overview 
Db2 Event Store leverages a hybrid MPP shared nothing / shared 
disk cluster architecture . The combination of shared nothing and 
shared disk architectures allows it to combine the linear scalability 
attributes of a traditional MPP shared nothing data store with the 
superior availability, and cloud-native characteristics of a shared 
data system. The system is constructed by combining a new cloud 
native storage layer with Db2’s existing BLU MPP columnar 
database engine [5].  
 
Table data is physically divided into micro-partitions based on a 
user defined hash partitioning key, and stored on a reliable shared 
storage medium such as cloud object storage (e.g. IBM Cloud 
Object Storage [32]) , a network attached storage device (such as 
IBM Cloud Block Storage [33]), or a cluster filesystem (such as 
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Ceph [34] or IBM Spectrum Scale [35]). The entire dataset is fully 
accessible by all compute nodes in the cluster, decoupling the 
storage from the compute and enabling each to be scaled 
independently. 
MPP shared nothing scale-out for ingest and query processing is 
achieved by logically dividing the leadership of micro-partitions 
across the available compute nodes, coordinated through the 
consistent meta-store Apache Zookeeper [36]. Each micro-partition 
is logically owned by one and only one compute node at any given 
point in time and any requests to read or write that micro-partition 
are executed via the owning compute node, enabling query and 
ingest parallelism across the cluster. By ensuring a sufficiently 
large number of micro-partitions relative to the number of compute 
nodes the system ensures sufficient granularity in the data 
partitioning to allow an even distribution of data leadership across 
the compute nodes in the presence of node failures. When handling 
node failures, the affected micro-partitions are logically reassigned 
amongst the remaining compute nodes that are replicas of the failed 
micro-partitions, substantially reducing the failover time compared 
to a model that requires data migration [37], and allowing 
processing to continue with minimal disruption. 
 
To ensure that database metadata does not become a single point of 
failure and to maintain the desired continuous availability, the 
system implements the concept of a “floating” catalog node where 
catalog information is stored on a reliable shared filesystem and 
exposed via a logical node that can be restarted on any of the 
compute servers in the event of a failure.  
 
The architecture is depicted below: 

 
Figure 1 MPP shared nothing / shared disk architecture 

Fast ingest in this architecture is achieved through a combination 
of parallelism and optimized storage techniques. The system 
implements a headless cluster architecture where all compute nodes 
play the dual role of head and data nodes. This allows ingest to be 
parallelized across the entire cluster and removes any potential for 
a head node ingest bottleneck.  Within the server, ingested records 
are mapped to specific micro-partitions by Db2’s MPP hash 
partitioning function and shipped to the owning members via Db2’s 
internal cluster communication infrastructure. 
 
On the storage side, data is written into fast local storage (SSD or 
NVMe) devices present on each of the compute nodes, and it is 
further replicated and written to the local storage on at least two 
other compute nodes before acknowledging commits. This ensures 
availability of the data in the event of a compute node failure. The 

data is then asynchronously written to durable shared storage. This 
model allows the system to avoid any extra latency that might 
otherwise be incurred from the shared storage medium (particularly 
in the case of high latency cloud object storage) and allows the 
architecture to efficiently accommodate both small and large 
inserts. It should be noted that this model implies that micro-
partition leadership must be aligned with the replica locations, but 
this affinity is also desirable as it has the beneficial side effect of 
enabling better data cache locality. Ingested data can be optionally 
aged out of the system via a time-to-live (TTL) mechanism, 
configured at the table level.  
 
The ingested data is stored in an open data format (Apache Parquet 
[38]) which leverages a compressed PAX storage format which can 
be efficiently utilized for analytics processing by Db2’s BLU 
columnar runtime engine.  The use of an immutable open data 
format also allows for the data to be queried directly by external 
runtime engines (e.g. Hive, Spark, Presto). In order to support the 
cost and scalability benefits of cloud object storage, which may not 
have strong consistency guarantees for modified data, the system 
leverages an append-only immutable storage model where data 
blocks are never re-written. Synopsis metadata information, which 
allows for data skipping during query processing,  is automatically 
generated as part of the ingest process and is written in separate 
Parquet files, allowing for synopsis data to be accessed and cached 
separately from the table data. Indexing is also supported and is 
implemented as an UMZI index [39] leveraging an LSM-tree style 
format to adhere to the append-only requirement. Indexes are 
generated asynchronously as part of the data sharing process to 
minimize the latency on ingest processing. This also means that 
duplicate key elimination occurs during data sharing processing.  
Db2 Event Store implements a first-writer-wins (FWW) semantic 
when ingesting into tables with primary keys defined.  FWW 
ensures that the first landed version of a row (where  a distinct row 
is defined by its associated primary key) is never replaced if in the 
future different versions of the same row (i.e. the primary key is the 
same) are ingested.   
 
Db2 Event Store query processing is SQL based, and is enabled 
through Db2’s industrial grade Common SQL Engine (CSE) which 
includes its cost-based SQL optimizer and BLU columnar runtime 
[4].  The Db2  CSE is integrated into the Db2 Event Store storage 
layer and allows for the ability to exploit Db2 Event Store’s 
synopsis-based data skipping as well as its indexes. This integration 
allows Db2 Event Store to offer high speed analytics using parallel 
SQL processing, JDBC/ODBC connectivity, and full Db2 SQL 
compatibility.  
 
Last but not least, efficient data access is achieved through a multi-
tiered caching layer that caches frequently accessed data, synopsis 
and index blocks in-memory, and also on fast local storage on the 
compute nodes, in order to absorb latencies that would otherwise 
be incurred when exploiting cloud object. 
 

2.2 Data format and meta-data 
2.2.1 Leveraging an open data format - Apache 
Parquet 
When choosing a data storage format, it was desirable to leverage 
one that was columnar organized, due to the performance 
advantages when processing analytics workloads. In addition, it 
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was highly desirable to utilize an open format, that would allow 
access by external readers and avoid data lock in. In search for an 
open column organized format we decided on Apache Parquet [38], 
as it is widely adopted and supported by many readers (e.g. Spark, 
Hive, Presto [40]). In addition, Apache Parquet is a self-describing 
format, which is accomplished by including the schema (column 
name and type) in each of the files. 
Db2 Event Store uses Snappy [41] compression to reduce the 
storage footprint.  Snappy compression was chosen as it 
represented the best trade-off between storage size and ingest/query 
impact.  GZIP [42] and LZ4 [43] were also considered as options, 
but GZIP incurred a much higher overhead for both ingest and 
query performance, and at the time of our initial evaluation LZ4 
was new to the Parquet specification and did not have widespread 
adoption in some of the Parquet readers.  We plan to reinvestigate 
LZ4 compression now that it is more prevalent in the Parquet 
ecosystem. 
As described above, the Db2 Event Store architecture leverages a 
micro-partitioned data model.  With this architecture the finest 
granularity of a table is a table micro-partition.  Parquet files 
belong to micro-partitions and thus a given Parquet file contains the 
data of exactly one table micro-partition. The Parquet files are 
immutable once written.  Each Parquet file for a table micro-
partition is assigned a monotonically increasing number, referred 
to as its tablet identifier.  The Db2 Event Store runtime engine and 
external readers use this to infer that higher tablet identifiers 
represent newer data. The metadata for the Parquet files in shared 
storage is maintained in Apache Zookeeper. This includes the high 
watermark tablet identifier of each micro-partition. 
Within the Db2 Event Store engine, tuples are identified through a 
Tuple Sequence Number (TSN), an integer that may be used to 
locate a given tuple within a table. A TSN in Db2 Event Store 
includes the tablet identifier, the zone (Pre-Shared vs Shared; when 
data is ingested it moves through several zones which are described 
in detail in section 2.3), and the offset of the tuple within the 
Parquet file. 
Writing and reading of Parquet files within the database engine is 
done using an open source C++ parquet library [44].  To minimize 
the amount of read IO we implemented a custom reader in the C++ 
parquet library that serves read requests from a local cache.  The 
local cache is discussed in more detail in Section 2.4 Multi-tiered 
caching. 

2.2.1.1 Encrypting Parquet Data 
Db2 Event Store is able to securely handle sensitive user data. Since 
data is kept in the Apache Parquet format, we have worked with the 
Parquet community to design and implement a security mechanism, 
built into the format itself. The specification of Parquet Modular 
Encryption [45] was released in the Apache Parquet Format 
repository, and its C++ open source implementation was merged in 
the Apache Arrow repository [46] and released as part of version 
0.16.0. 
Parquet is a complex format, comprised of different data and 
metadata modules that enable efficient filtering (columnar 
projection and predicate push-down) by the analytic engines that 
process the data. Parquet Modular Encryption encrypts each 
module separately, thus preserving the filtering capabilities and 
analytics efficiency with the encrypted data. It leverages the AES 
GCM cipher [47], supported in CPU hardware, in order to perform 
module encryption operations without slowing down the overall 

workflow. Besides protection of data privacy, AES GCM also 
allows to protect the integrity of the stored data, making it tamper-
proof against malicious attempts to modify the file’s contents. The 
size overhead of Parquet encryption is negligible, since only the 
modules (such as compressed data pages) are encrypted, and not 
the individual data values. 
Encryption keys, used for securing privacy and integrity of Db2 
Event Store data, are managed by the native Db2 Key Management 
System [48], that handles safe storage and rotation operations for 
these keys. Parquet files are encrypted before being sent to the 
shared storage – therefore, the encryption keys and the plaintext 
data are not visible to the storage backend. After retrieval of 
encrypted files from the shared storage, DB2 Even Store verifies 
cryptographic integrity of the processed data, using the Parquet 
Modular Encryption libraries. Additionally, the SSD/NVMe 
caching layer also uses the Parquet encryption format, ensuring that 
locally persisted files are protected against privacy and integrity 
attacks. 

2.3 Ensuring fast ingestion  
One of the key design characteristics to allow Db2 Event Store to 
handle the fast ingestion rate common in IoT scenarios is that it 
organizes the data in a table into multiple zones, and it evolves the 
data asynchronously from one zone to the next as the data ages. As 
described in Section 2.1, the data is first ingested into fast local 
storage. This is the first data zone called the Log Zone. Data in this 
zone is replicated to remote nodes to ensure durability and high 
availability.  From the Log Zone, the data is moved to additional 
zones with the goal to persist it on cost effective shared storage, 
make it available to external readers, and most importantly, 
continuously optimize it for query performance. There are two 
additional zones: the data is first moved from the Log Zone to the 
Pre-Shared Zone, and then from the Pre-Shared Zone to the Shared 
Zone. All of these zones are transparent to the end user, who sees a 
single view of the table without having to worry about the 
continuous evolution of the data through the zones. All of these 
zones are immutable. One critical design point is that the log is the 
database – the Log Zone is not just written to local storage to 
guarantee durability like in traditional database systems that 
implement write-ahead logging, but is also directly utilized to 
service query results. Figure 2 shows a high-level view of the zones 
and the evolution of the data from one to the next one. 

 
Figure 2 Data evolution through zones 

2.3.1 Logging ingestion 
Ingest processing starts with the Db2 Event Store client, which 
provides an API for asynchronous batch inserts. This client can 
connect to any of the nodes to perform ingest, and in the case of 
failures will automatically resubmit the batch insert to any of the 
other nodes. The node that the client is connected to is referred to 
as the “ingest coordinator”.  The role of the node acting as a 
coordinator for the batch is to perform the hash partitioning of the 
batch into the corresponding micro-partitions, and then direct the 
micro-partition batch to one of the micro-partition replicas. When 
the micro-partition batch is received by a micro-partition replica it 
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is placed in the Log Zone in the form of log buffers, that are 
persisted to local storage and replicated to multiple remote replicas, 
each of which persist to local storage before acknowledging, to 
guarantee durability and availability.  
Each micro-partition maintains its own set of replicas and the insert 
is only considered successful once it has been acknowledged by a 
quorum of replicas (R/2+1) for each micro-partition impacted. By 
default, the replication factor R is 3. Both replication and 
acknowledgements are batched to improve the efficiency of the 
replication and to guarantee both the persistence and availability of 
the ingested data. This data is available for querying as soon as it is 
replicated to a quorum of nodes (i.e. before the data is enriched 
through synopsis or indexing).    
To ensure high performance ingest, log data must be stored on fast 
local storage (SSD or NVMe devices) to ensure low latency for the 
only synchronous portion of the data persistence lifecycle.   

2.3.2 Data enrichment 
The Log Zone enables quick persistence and durability, but it is not 
optimal for querying. As a result, recently ingested data must be 
moved to a more query friendly format as soon as possible and be 
enriched with additional data structures, like indexes and synopsis. 
This allows for more efficient querying, at the expense of the 
additional latency (in the order of seconds), which is sufficient for 
most IoT applications.  
The next zone after the Log Zone is the Pre-Shared Zone, which is 
stored in shared storage. The process of “sharing” a table micro-
partition can be done by any of the replicas, as all have a copy of 
all the log buffers, but Db2 Event Store gives preference to the 
micro-partition leader, which can be re-assigned dynamically on 
failures or due to load re-balancing. As an iteration of data 
persistence to the Pre-Shared Zone is completed, the transition 
point between zones, and the Pre-Shared Zone tablet metadata, is 
tracked in the consistent meta-store Apache Zookeeper.  This 
allows for a seamless transfer of leadership between nodes and 
enables consistency of the objects in shared storage. Data that has 
been pre-shared is subsequently purged from the Log Zone, which 
is completed when Log Zone readers are drained out from the 
already persisted area (queries that are reading this data from the 
Log Zone must complete before the data can be purged).  
Moving data from the Log Zone to the Pre-Shared Zone is fast 
(typically on the order of seconds).  As a result, Parquet files written 
to the Pre-Shared Zone may be small, as each Pre-Share iteration 
can only consider the data written since the last Pre-Share iteration, 
and therefore not optimally sized for query processing (where large 
files –  on the order of 10s or 100s of MBs are ideal).   For this 
reason, once there is enough volume of data in the Pre-Shared Zone, 
the small files are consolidated to generate much larger Parquet 
files in what is called the Shared Zone. Larger files enable more 
efficient query processing and better overall data compression so 
typical consolidated files are in the range of 64MB in size. The 
Shared Zone is the final zone and so files remain there forever (or 
until the expiration time is reached if TTL is configured for the 
table). Finally, to avoid having multiple copies of data, the Pre-
Shared Zone is also purged, like the Log Zone, once a set of files 
from the Pre-Shared Zone have been written successfully to the 
Shared Zone, the sharing state is registered in the consistent meta-
store, and the pre-shared files purge is initiated once they are 
drained of concurrent queries. 

2.3.3 Persistence to cheap storage 
The database engine was designed to exploit a storage hierarchy 
that includes memory, fast local storage within each node for fast 
persistence, and finally cost-efficient storage to maintain the very 
large volume of data.   
One of the challenges of supporting cost-efficient object stores is 
that their consistency guarantees vary. For that reason, the files 
written by Db2 Event Store are never updated, and Apache 
Zookeeper is used as consistent data store to record the state of 
objects in the cost-efficient object store. The other challenge of 
cost-efficient object stores is their performance, and for this reason 
in Section 2.4 we discuss the multi-tiered caching, that significantly 
reduces the performance impact of accessing files in persistent 
storage.  

2.3.4 Building Indexes and Synopsis 
Providing an indexing structure for an IoT data store is challenging 
for multiple reasons. First of all, at the rate of ingest that Db2 Event 
Store was designed to support, the volume of data grows rapidly. 
As an example, for a 3-node cluster, at 1 million inserts per second 
per node, with 40-byte events, the volume grows by 3.5 PB/year or 
9.5 TB/day of uncompressed data. This volume of data is one of the 
motivating factors for supporting cost-efficient object storage, but 
this brings about new challenges: dealing with eventual 
consistency, and the high latency reads and writes discussed above. 
To get around the eventual consistency limitation of updates to 
object storage, index files must be written once, and never 
overwritten. A final challenge is to provide a unified index structure 
that can index the data across the multi-zone architecture. All of 
these requirements must be satisfied while still providing very fast 
index access for both range and point queries.  
The index in Db2 Event Store is a multi-zone index, covering the 
Pre-Shared and Shared Zones. The index does not cover the Log 
Zone as it would require synchronous maintenance and maintaining 
the index synchronously would increase insert latency.  
Furthermore, it is more efficient to maintain the index 
asynchronously when large amounts of data are moved to the Pre-
Shared Zone, which happens only seconds after being ingested into 
the Log Zone. 
The  index within a zone follows an LSM-like structure with both 
multiple runs and multiple levels, based on the UMZI index [39]. 
This kind of indexing structure is well suited for the high volume 
of writes, as it can be constantly re-optimized. 
As the data pre-sharing is generating an Apache Parquet file from 
the data in the Log Zone, it also generates the corresponding 
compressed index run (See Figure 3 Index Runs together with the 
pre-sharing processing). Generating the index run at this time is 
also very efficient, as the complete run generation is done in 
memory, from the data in the Log Zone, which is also in memory. 

 
Figure 3 Index Runs together with the pre-sharing processing 

With IoT data, duplicate values are relatively uncommon, and are 
typically the result of a sensor sending the same data value multiple 
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times (often in close succession).  For this reason, duplicates are 
most commonly found in the recently ingested data, which is still 
resident in memory. To ensure no duplicate data, when a new index 
run is being generated from the Log Zone, the system performs 
index lookups to ensure the primary key uniqueness is maintained. 
The system keeps the most recent index runs and an index synopsis 
for older runs in the local cache. The index synopsis data, which 
contains primary key ranges that for IoT systems always include a 
timestamp, is particularly helpful in ensuring efficient primary key 
uniqueness lookups since the bulk of the data already loaded into 
the table will have older timestamp values. Since the local cache is 
multi-level to exploit the storage hierarchy, the index runs are 
maintained both in memory and in the local SSD/NVMe devices, 
and the most efficient look ups are for runs that are still in the in-
memory level of the cache. We will discuss the details of the multi-
level cache management in Section 2.4. 
In the same way that the data is evolved from the Pre-Shared to the 
Shared Zone, the index is also evolved, by merging multiple index 
runs into a single and much larger index run. As the volume of data 
grows, and the number of runs grows, the performance of the index 
would degrade without merging as more runs must be consulted for 
each index lookup. For this reason, the system maintains multiple 
levels of the index, continuously merging runs from one level into 
larger runs in the next level to reduce the number of overall runs. 
As new runs are generated in the next level, the runs in the previous 
level are purged by a background garbage collection process, to 
reduce the storage cost. All of this is done while still maintaining 
the consistency of the index, both for in-flight queries and in the 
persisted copy, so that the index can be rebuilt on restart.  
Another important point to note is that all the runs from all levels 
are persisted to shared storage. This is required as the micro-
partition assignment to nodes is dynamic, so the persistence of runs 
to shared storage is required to allow the transfer of micro-
partitions from one node to another. When a micro-partition is re-
assigned, the database engine initiates a background process to 
warm up the local cache of the new micro-partition leader, therefore 
enabling index access to reach top performance again as quickly as 
possible. 
To enable data skipping in table scans, Db2 Event Store 
automatically creates and maintains an internal synopsis table for 
each user-created table. Similar to the data synopsis of Db2 BLU 
[4] and IBM Cloud SQL Query [49], each row of the data synopsis 
table covers a range of rows of the corresponding user table and 
contains the minimum and maximum values of the columns over 
that row range. Blocks of the data synopsis are also in Parquet 
format. Note that the data synopsis, when applicable, is likely to be 
cached (see Section 2.4) as it is small and accessed fully in each 
table scan that qualifies for data skipping. This data synopsis, which 
is distinct from the index synopsis, is populated as data are 
consolidated into the Shared Zone and so does not cover the data of 
the Pre-Shared and Log Zones. Maintaining data synopsis content 
for these zones would come at considerable additional cost (extra 
writes to shared storage) and would provide little value from data 
skipping given that the volume of data in these zones is small.       

2.4 Multi-tiered caching 
Traditionally modern high-performance DBMS systems either are 
in-memory, and thus rely on RAM for performance, with resiliency 
coming from multi-node replication and a weak story on power 
outages (with either slow full cache rebuilds or worse yet, data 
loss), or use high performance network storage like IBM Cloud 

Block Storage [33]. Given that cheap cloud Object Storage, on the 
order of $0.01 USD/GB/month [50] is high latency, and high-
performance storage is generally at least 10X the cost of object 
storage, the challenge is how to leverage inexpensive storage and 
still provide optimal performance. The approach taken by Db2 
Event Store is multi-tiered caching for both data and index objects, 
that is able to leverage both memory and fast local storage to 
insulate the system from the high-latencies of Object Storage. 

 
Figure 4 Caching Stages and Migration 

Note that the DIMM memory indicated at the top of this figure 
shows the cache managed RAM memory. Naturally there is other 
memory used for processing and transient buffering. 

2.4.1 Challenges of leveraging high-latency storage 
Db2 Event Store employs many mechanisms to take full advantage 
of caching within its Cache Manager component. 

• Multi-layered Caching: To insulate the system from Object 
Storage latencies, both local SSD/NVMe devices and RAM are 
used for caching of data block and index objects. While 
utilizing a main memory cache is of course not new, mixing it 
with SSD/NVMe and the introduction of an epoch-based lock 
free eviction technique does introduce novelty. 

• Directed Caching: The multi-tiered caching offers several 
access methods as outlined above in Figure 4. Data and index 
block construction creates the objects in both the cache and 
object storage. Cache access may be directed based on request 
type to either RAM only, as is used by some short-lived index 
structures in the LSM tree, or directed to local SSD/NVMe 
devices with optional placement in the RAM cache as well. The 
cache manager also allows for non-RAM cached reads, 
utilizing only SSD/NVMe for which callers supply a private 
buffer when it is known that retrieved content is unlikely to be 
re-used, such as for retrieval of data that will be rewritten soon 
into a more concise format or data that is copied to data 
structures outside the cache manager (e.g. synopsis information 
for query acceleration). Also, the caching tiers may be bypassed 
completely allowing direct cloud storage access when 
accessing potentially cold table data. This is generally related 
to probabilistic caching described below. 

• Probabilistic Caching: To deal with a limited cache size as 
compared with the table or index data, the Cache Manager 
utilizes probabilistic techniques similar to those used in Db2 
BLU [4]. These techniques avoid the cache flooding issue when 
high volume accesses like large table scans occur, but will still 
build up a cache of the hot objects over time. The subsystem 
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leverages statistics on the total sizes of the different table and 
index data for the objects being accessed, and computes a 
probability of caching block requests relative to data used by a 
given query, and the total managed cache space. The decision 
is performed by the block storage layer utilizing statistics 
maintained by the cache manager. Making the decision  up-
stream allows for taking into account semantic information like 
a priority for synopsis caching vs. traditional table data caching. 

• Soft & Hard Limits: The caching infrastructure uses a soft 
limit for memory while imposing a hard limit on non-volatile 
storage usage. RAM based caching evictions (discussed below) 
happen generally in a relaxed fashion, engaging a background 
process at 100% of target utilization and attempting to bring 
memory utilization to 80% before resting again. However, 
should the RAM target be found to exceed 125%, which may 
occur in a very busy system, then a more aggressive eviction 
technique is utilized by performing immediate releases upon 
dereference of any memory objects. For SSD/NVMe the Cache 
Manager provides extensions of space up to a requested target 
limit, but when that is reached, caching requests are blocked, 
and the users of the subsystem will fall back to RAM only 
caching, or skip caching altogether depending on the use case. 

• Epoch based eviction: The eviction of both the RAM data and 
the SSD/NVMe data is managed by a lock free epoch-based 
technique that utilizes a small, on the order if 1 byte, epoch id. 
This both saves metadata storage space and allows for quick 
scans with fewer TLB misses. Atomic operations that obtain 
reference counts protect objects from going away at 
inopportune moments without the costs of mutex operations. 
More detail on the LRU cache replacement algorithm is 
provided in the next section. 

2.4.2 Batchwise-LRU Cache Replacement 
Caching for a cloud-native database system such as Db2 Event 
Store introduces distinct challenges: 

• Object sizes vary widely in Db2 Event Store, from small 
objects such as index run meta-data objects (small number of 
KBs) and the small data blocks of the most recently data in the 
Pre-Shared Zone, to the large consolidated data blocks of the 
Shared Zone and the blocks of higher level runs of the index 
(both of which are on the order of 100 MBs). Existing cache 
replacement algorithms, such as those used in traditional 
DBMS buffer pools and operating systems, are designed to 
handle small, fixed-size pages and are reactive in nature, 
evicting a page on demand when a new page is needed. Such 
page replacement methods are not well-suited to handling 
objects of widely varying sizes.  

• Adaptive cache replacement algorithms, such as LRU, LRU-2 
[51] and ARC [52], that are known to work well for a wide 
variety of workloads, often require global locks at object access 
and/or eviction time. Such global locks limit scalability in the 
presence of concurrent accesses. 

To address these caching challenges, Db2 Event Store implements 
a batchwise-LRU eviction algorithm using epochs, that is scalable 
and works well for variable-sized objects. 
Cache eviction in Db2 Event Store is done by background threads, 
with one thread for object eviction from cache-managed RAM and 
a second thread for eviction from cache persistent node-local 
storage. Object eviction is triggered when cache usage for the given 

storage type reaches a configurable start threshold (e.g. 95%) and 
objects are evicted until usage is reduced to the stop threshold (e.g. 
90%). This pro-active eviction ensures that there is space in the 
cache at all times for objects of all sizes at the cost of a small loss 
of cache space (<10%). Tracking of object accesses is done using 
epochs. The epochs (which wrap over time) are much smaller than 
full timestamps, with only 1 byte needed to be able to evict in 1% 
of cache size increments. The use of small epoch values minimizes 
the memory overhead for tracking object accesses. In addition, for 
objects in persistent cache storage, the access epochs are recorded 
contiguously in an array in the object directory memory of the 
cache. Contiguous storage and small epoch size enable the LRU 
objects to be identified efficiently via a scan for the purge epoch, 
which is the oldest active epoch in the system. At eviction time, 
objects last accessed in the purge epoch are evicted until either none 
remain, or the target threshold is reached. If more cache space is to 
be freed, the purge epoch is incremented, and objects last accessed 
in this epoch are evicted. Given that there is a single background 
thread, no global lock is needed for eviction. Epochs are 
implemented as atomics and as they are updated relatively 
infrequently, recording object accesses does not limit scalability. 

2.5 Optimized query processing 
For query processing Db2 Event Store leverages Db2’s BLU MPP 
cluster query engine, combining the power of Db2’s cost-based 
SQL optimizer [53] and the accelerated analytic processing of 
Db2’s BLU acceleration columnar engine [4], with the fast ingest 
and cloud native storage capabilities of the Db2 Event Store data 
management layer.   The BLU MPP engine was chosen due to its 
ability to efficiently process both low latency and complex queries, 
its mature query compilation/rewrite/optimization capabilities, and 
of course, its accessibility within IBM.  At the project’s outset (and 
for Db2 Event Store’s first few releases) the system leveraged 
Apache Spark as a query engine but we found that it could not 
efficiently handle low latency queries, and its performance trailed 
traditional data warehouses as query complexity increased 
(principally because of its relatively immature query optimizer).  
The use of Db2’s BLU MPP SQL engine allows the system to offer 
a rich set of standards compliant SQL capabilities including full 
distributed joins, grouping + aggregation, ordering, and OLAP 
functions. Given this range of SQL functionality, it is relatively 
straightforward to leverage Db2’s date and timestamp manipulation 
functions to group events into buckets of a desired time granularity 
and then leverage Db2’s grouping and OLAP analytic functions to 
perform all manner of real-time, near-real-time or deep analytics on 
time series data.   

2.5.1 Client Interfacing 
Db2 Event Store’s SQL interfacing is done through Db2’s existing 
JDBC / ODBC client infrastructure supporting the full range of Db2 
connectivity. Incoming statements are compiled and optimized 
through Db2’s cost based multi-stage SQL optimizer [53] and 
leverage Db2’s access plan caching infrastructure to avoid the need 
to recompile plans on every execution. 

2.5.2 MPP Plan Generation and Optimization 
The Db2 optimizer generates columnar query plans that are fully 
MPP aware producing a series of “subsections” (executable 
subplans) that are distributed across active compute members and 
executed in parallel. MPP specific optimization decisions include 
selecting appropriate distributed join strategies (collocated, 
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broadcast, hash directed), application of partial vs. final 
aggregation and ordering, in addition to decisions on join strategies, 
join ordering, and predicate pushdown decisions, as well as the 
application of semantically equivalent query rewrites to improve 
performance. 

2.5.3 Query Execution 
The parallel execution of query plans is performed by Db2’s MPP 
BLU runtime layer which allows us to take advantage of its existing 
highly parallelized column-store processing strategies. Execution 
in the BLU runtime layer is broken down into multiple stages where 
a stage consists of the sequential execution of a series of operators 
called “evaluators”. Each stage takes a single table / column scan 
as input and employs vectorized processing where input data is 
passed in as column-oriented vectors, and each evaluator performs 
data transformations producing one or more output vectors as 
results. Each query thread has its own distinct evaluator chain and 
executes in parallel. Query threads perform work-stealing on the 
single input and fully process a batch of input rows through all 
evaluators before obtaining another batch. Constructs such as joins 
that combine input streams from multiple tables are executed in 
multiple stages – for example the build phase of a join taking input 
from one table would be executed as one stage and the probe stage 
of the join taking input from the other table would be executed as a 
subsequent stage. Cross-member communications during 
processing is achieved through several different classes of table-
queue evaluators which act as either an input stream of columnar 
data from one or more members or an output stream of columnar 
data to one or more members distributing data based on the 
distribution required by the plan (e.g. broadcast vs. hash directed). 
Data is exchanged in a network optimized columnar format and the 
underlying communications infrastructure is optimized for highly 
parallel batch data exchange. 

2.5.4 Interfacing with the Micro-Partitioned Storage  
At the data management layer, the Db2 BLU runtime has been 
extended to support hash directed data flows, table / columns scans, 
and index lookups on the micro-partitioned storage layer.  
In order to support distributed sub-section processing and hash 
directed data exchange, the logical micro-partition leadership is 
represented internally as a Db2 “partition map” which abstracts the 
mapping of hash key values to individual members. Interfacing at 
this layer enabled us to transparently leverage the existing Db2 
MPP runtime without requiring significant changes. The partition 
mapping itself is generated by first generating a fixed mapping of 
keys to micro-partitions based on the Db2 MPP hash partitioning 
function, and then resolving the member associated with each 
micro-partition based on current ownership, producing a key to 
member mapping. Since the mapping of micro-partitions is logical 
and can change dynamically upon node failure / failback, the 
system also associates a version number with a given partition map. 
This number corresponds to a parallel version number maintained 
in Apache ZooKeeper which is incremented any time the micro-
partition mapping is altered. By comparing the two versions it can 
quickly determine if the partition map is out of date and needs to be 
refreshed. At section initialization time the partition map version 
that a query is executing is stored to allow validation that the 
partition mapping remains current throughout the execution. In the 
event that a partition map version change is detected during query 
execution, the query execution will be aborted, but the query can 
be immediately re-submitted and will execute using updated 
mappings. 

Table / column scans have been implemented by adapting the 
corresponding evaluators in BLU to scan column data from the set 
of micro-partitions associated with the member executing the scan 
and producing standard BLU column vectors as input to the BLU 
runtime. The lower level scanning is done through the multi-tier 
caching layer abstractions and also leverages the available synopsis 
data in order to do data skipping. 
Index lookups are similarly implemented by adapting the existing 
index scan logic in Db2 to interface with the UMZI indexes and 
produce rows in the output format that the Db2 runtime expects. 
The physical scan of a given index starts in the smaller runs that 
have been most recently generated, and as it moves through it, it 
jumps from level to level as it finds the transition points.  

 
Figure 5 Scan of Index Runs 

There is one other element that Db2 Event Store implements to be 
able to provide accelerated query performance when using the 
index: for each run it also maintains an in-memory synopsis of the 
index run, that allows it to quickly eliminate the run without 
actually performing any IO. This could be considered an additional 
level in the index, but unlike the others, this is a level that is only 
kept in memory. 

2.6 Continuous Availability  
One of the key design principles for Db2 Event Store was to create 
a database system that would be able to provide continuous 
availability. This required not only designing a system without 
single points of failure, but also one that was always available even 
during planned outages.  Since all replicas of a table micro-partition 
are able to process ingest, the ingest processing is minimally 
impacted when a replica node is lost, as long as a majority of 
replicas are still available. The main impact for clients that were 
connected directly to the failed node is that the client must handle 
such a failure and re-try the operation in a different node.  

The rest of the operations on a table micro-partition have a higher 
dependency on the availability of the table micro-partition leader. 
These include queries and background tasks, like data movement 
between zones, data enrichment and index optimization processes. 
For these, through decoupling table micro-partitions from the nodes 
that act both as replicas and replica leaders, Db2 Event Store is able 
to maintain the availability, as long as a majority of replicas are still 
available to guarantee that only durable data is processed. By 
maintaining the node states and database meta-data in a consistent 
meta-store like Apache Zookeeper, the system is able to quickly 
identify table micro-partition leaders that become unavailable and 
seamlessly transfer the leadership of micro-partitions to other nodes 
to continue processing both queries and background tasks.  

The graph in Figure 6 shows an example of the impact to both 
ingest and query processing during a single node failure for a 3-
node cluster. The impact to ingest processing is partial, as only 
those clients connected to the failed node are impacted. In the case 
of queries, they are impacted until the table micro-partitioning 
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leadership is restored for all micro-partitions. In this diagram, the 
failed node recovers with minimal impact to the workloads. 

 

Figure 6 Performance during node failure 
The other components of the system are also designed for 
continuous availability. In the case of the database catalog node, 
the system is able to continue processing ingest and queries when 
the catalog service is down, as the table metadata is cached by data 
nodes and they only depend on the catalog node to perform initial 
cache population. The database catalog node uses shared storage 
for persistence, which allows it to fail over to any of the hosts that 
are part of the cluster. In the case of Apache Zookeeper, it is also 
continuously available as long as a majority of the Apache 
Zookeeper nodes are still active.  

3. PERFORMANCE 
In this section we examine the performance of Db2 Event Store in 
two dimensions. First, we illustrate the scalability characteristics of 
Db2 Event Store, comparing the load and query performance for 
different cluster sizes against a single node baseline. Second, we 
compare Db2 Event Store with competitors in the time series 
DBMS space. 

3.1 Db2 Event Store Cluster Scalability 
For the Db2 Event Store scalability experiments workload we used 
the Time Series Benchmark Suite (TSBS) [54, 55], created by 
TimescaleDB [20]. TSBS is a complete IoT benchmarking suite 
that is based on a model of a trucking company. The TSBS IoT 
schema consists of three tables, shown in Table 1 TSBS Schema 
Fields. Tags is a dimension table containing metadata about the 
trucks. Readings and Diagnostics are large fact tables containing 
sensor metrics from the trucks. Readings contains the current truck 
location metrics, and Diagnostics the current truck status metrics. 
The data size can be scaled through three parameters: the number 
of trucks, the data sample rate (seconds between metrics), and the 
time duration, where the first parameter determines the size of Tags 
and all three determine the sizes of Readings and Diagnostics. Also 
provided is a suite of 13 queries, described in Table 3 that each 
examine one of the fact tables and the dimension table, to answer 
different styles of questions. To ease the comparisons, we chose to 
categorize these queries into three clusters: global analysis, 
localized analysis and targeted queries. Global analysis queries 
(Q1-Q6) consider data over the life of the vehicle, for example 
average driver driving duration per day or average versus projected 
fuel consumption per fleet. Localized analysis queries (Q7-Q11) 
filter more on specific events like trucks with high load or trucks 
with longer driving sessions. The last category is targeted analysis 
(Q12-Q13) where these queries focus on a narrow selection of data, 

for example last location by specific truck and stationary trucks at 
a specified interval. We made one change to the TSBS query set by 
adding a low-bound time predicate to the localized analysis queries. 
This is explained in more detail below. 
In the Db2 Event Store scalability test we created a large workload 
using parameters based on a major shipping vendor, with 84,700 
trucks, 10 days of data, and sensor metrics every 10 seconds, 
resulting in 13.16 Billion rows.  
 

Table 1 TSBS Schema Fields 

 
 
The multi-node tests were performed on clusters of 3, 6, and 9 
physical machines, each with 20 2.8GHz cores, 386GBs of RAM, 
1 local SSD (NVMe) and using a remote NFS server using a RAID 
array of 4 SSDs. The single node test was performed on a larger 
node of 28 2.4GHz cores, 1.5TB of RAM and 3 direct attached 
SSDs. This system was configured for Db2 Event Store cache to 
use 200GB SSD and 100GB memory. For TimescaleDB the buffer 
pool was restricted to 100GB. 
First, we look at the scalability of ingestion by collecting timings 
from a single node system and comparing this to clusters of 3, 6, 
and 9 nodes. These results show over 75% scalability when looking 
at 3, 6 and 9 nodes. The single node system exhibits the best per-
node performance as it has the advantage of not performing log 
replication on ingest. Cluster configurations, on the other hand, 
provide triple log replication for durability, as described in Section 
2.3.1. 
 

 
Figure 7 TSBS Scaled Load on Db2 Event Store 

 
Second, we look at the scalability of query processing in a cluster 
by collecting timings from the single node system and comparing 
this to a cluster of 3, 6, and 9 nodes. These results show good 
scaling at up to 6.9X for 9 nodes, as well as the same benefits of a 
single node system, which has the advantage of no network 
overhead when running the queries.  
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Figure 8 DB2 Event Store Query Scalability 

 

3.2 Comparison with Other DBMSes 
As described previously, there are many existing database 
management systems (DBMSes) that can be used to service IoT 
workloads [56, 16]. In our experience however, time series 
databases are most commonly used for IoT workloads and as a 
result, they serve as the most suitable comparison point. We chose 
two of the more popular time series database, Apache Druid and 
TimescaleDB for the evaluation [22] [20].  Apache Druid is in 
widescale use at many large-scale customers.  TimescaleDB has 
both devoted significant effort to benchmarking, developing and 
publishing a complete IoT benchmarking suite which we leverage 
in our scalability tests in Section 3.1, as well as publishing 
benchmark results against other time series DBMSes. A recent 
report comparing TimescaleDB with InfluxDB [57] demonstrated 
that TimescaleDB outperforms InfluxDB (currently the most 
popular open source time series database <reference db-engines>) 
in both ingest and query performance.  
 

3.2.1 Comparison with TimescaleDB 
When comparing with TimescaleDB, we use the TSBS benchmark 
but this time at a smaller scale and focus on a single node setup for 
comparison of both Db2 Event Store and TimescaleDB, as at the 
current time, TimescaleDB does not support clustering. We built a 
data set with 4,000 trucks and 3 days of data with sensor metrics 
every 10 seconds resulting in 187M rows. 
In terms of load time we found that TimescaleDB performed best 
using a 10K row batch size and 6 workers.  We also loaded Db2 
Event Store using a 10K row batch size and 6 clients with 18 shards. 
This comparison showed Db2 Event Store to load data in less than 
2 minutes vs the 37 minutes, representing a 21X performance 
advantage. 

Table 2 Ingest Time - Db2 Event Store vs TimecaleDB 

 
Next, for the query test, we took one representative query instance 
from each of the 13 query types and ran it 5 times, after a warmup 
run, which allowed data to be in memory for both Db2 Event Store 
and TimescaleDB, and then we computed an average time over the 
5 runs. The query descriptions, and performance results, are shown 
in Table 3. The results show that Db2 Event Store is approximately 
2X faster than TimescaleDB on all but a few of the very low latency 
queries. 

 

 
Figure 9 Query Time - Db2 Event Store vs TimescaleDB 

 
Table 3 TSBS Benchmark Query Results 

Description Query 
Db2 Event 
Store (ms) 

TimescaleDB 
(ms) 

Average driver driving duration per day Q1 3,843.35 8,622.34 
Average driver driving session without 
stopping per day Q2 4,253.82 10,221.31 

Average load per truck model per fleet Q3 1,396.73 4,527.74 
Average vs projected fuel consumption per 
fleet Q4 4,265.14 8,376.96 
Truck breakdown frequency per model Q5 5,452.62 10,275.07 

Daily truck activity per fleet per model Q6 6,037.50 10,183.94 

Trucks with high load Q7 90.39 15.68 
Last location per truck Q8 129.32 15.61 

Trucks with longer daily sessions Q9 1,947.86 4,478.34 

Trucks with longer driving sessions Q10 90.39 1,143.39 
Trucks with low fuel Q11 129.32 16.51 

Last location for specific truck Q12 105.45 0.44 

Stationary trucks in an interval Q13 48.84 85.76 

 
On these very low latency queries (all of which complete in less 
than 150ms) TimescaleDB benefited from its partitioned 
Hypertable indexes, while Db2 Event Store was not able to leverage 
its index due to an existing limitation with its index plan generation.  
We plan to address this limitation in the future. 
We chose to add a low-bound time predicate to the queries 
analyzing the latest truck status (Q7, Q8, Q11, Q12) as we have 
found that having such bounds is common in customer scenarios, 
either driven by a UI that shows status for a selected window of 
time, or by query guarantees like all queries being limited to 
activity in the last hour. The lower bound can be easily obtained by 
periodically running a query to find the minimum report time from 
the set of maximum report times of the desired vehicles. We ran 
these slightly modified queries in Db2 Event Store and 
TimescaleDB for all our comparisons. 
 
3.2.2 Benchmark with Apache Druid 
Apache Druid is similar to Db2 Event Store in its mandate to ingest 
large volumes of data and perform near real-time analytics. 
Additionally, it is also designed for high availability, and built to 
scale to very large clusters. Finally, Apache Druid has been around 
for a number of years, has been performance optimized in that time, 
outperforms other Hadoop-based options by a large margin [21], 
and has become increasingly popular for a number of large use 
cases in that time [22]. 
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For the performance comparison with Apache Druid we also 
leveraged an existing benchmark, in this case a benchmark that was 
developed by the Apache Druid team [27] to compare their 
performance to MySQL. The benchmark contains nine single table 
SQL queries based on the LINEITEM table from the TPC-H 
benchmark. Each of the queries either perform a count, sum, group 
by, or order by, commonly found in IoT workloads. 
 
-- count_star_interval 

SELECT COUNT(*) FROM LINEITEM WHERE L_SHIPDATE BETWEEN 
'1992-01-03' AND '1998-11-30'; 

-- sum_price 

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM; 

-- sum_all 

SELECT SUM(L_EXTENDEDPRICE), SUM(L_DISCOUNT), SUM(L_TAX), 
SUM(L_QUANTITY) FROM LINEITEM; 

-- sum_all_year 

SELECT YEAR(L_SHIPDATE), SUM(L_EXTENDEDPRICE), 
SUM(L_DISCOUNT), SUM(L_TAX), SUM(L_QUANTITY) FROM 
LINEITEM GROUP BY YEAR(L_SHIPDATE); 

-- sum_all_filter 

SELECT SUM(L_EXTENDEDPRICE), SUM(L_DISCOUNT), SUM(L_TAX), 
SUM(L_QUANTITY) FROM LINEITEM WHERE L_SHIPMODE LIKE 
'%AIR%'; 

-- top_100_parts 

SELECT L_PARTKEY, SUM(L_QUANTITY) FROM LINEITEM GROUP BY 
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100; 

-- top_100_parts_details 

SELECT L_PARTKEY, SUM(L_QUANTITY), SUM(L_EXTENDEDPRICE), 
MIN(L_DISCOUNT), MAX(L_DISCOUNT) FROM LINEITEM GROUP BY 
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100; 

-- top_100_parts_filter 

SELECT L_PARTKEY, SUM(L_QUANTITY), SUM(L_EXTENDEDPRICE), 
MIN(L_DISCOUNT), MAX(L_DISCOUNT) FROM LINEITEM WHERE 
L_SHIPDATE BETWEEN '1996-01-15' AND '1998-03-15' GROUP BY 
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100; 

-- top_100_commitdate 

SELECT L_COMMITDATE, SUM(L_QUANTITY) FROM LINEITEM GROUP 
BY L_COMMITDATE ORDER BY SUM(L_QUANTITY) DESC LIMIT 100; 

 
3.2.2.1 Initial Benchmark and Results 
While results exist for Druid runs on this benchmark, none are 
recent, so we reran the workload with Druid before comparing with 
Db2 Event Store.  To do this we setup an Apache Druid cluster 
(using Hortonworks HDP version 3.1.0 which contains Druid 
version 0.12.1) on 3 physical machines, each with 28 2GHz cores, 
386 GBs of RAM and 2 direct attached SSDs running HDFS. On 
the same hardware, we setup Db2 Event Store version 2.0 using the 
same directly attached SSDs for local storage, and an NFS storage 
target also on SSDs to closely match the I/O characteristics of the 
Druid system. We then configured Druid for the environment by 
moving the segment cache location to the locally attached SSDs 
and increasing the number of processing threads to 55. Db2 Event 
Store used its default configuration, without any modifications. 

3.2.2.2 Ingesting data 
We completed the data load using the TPC-H Scale Factor 100 data 
set (100 GB, over 600 million rows), which we generated using the 
publicly available tools for TPC-H [58], and ingested it into both 
Druid (using the Hadoop Batch method) and Db2 Event Store (via 
insert-sub-select from an external table in CSV format). 

The ingest performance difference between Druid and Db2 Event 
Store was significant. Inserting the data into Druid took 2 hours and 
8 minutes while the insert into Db2 Event Store took 12 minutes 
and 10 seconds — a 10.6x difference. 

 
Figure 10 100 GB data set ingestion vs DRUID 

3.2.2.3 Initial query performance 
We then ran the nine benchmark queries in a batch and found that 
Druid took 76.4 seconds to complete the run, while Db2 Event 
Store completed in only 40.4 seconds - nearly 1.9x faster than 
Druid, as shown below. 

 
Figure 11 Query performance with 9 query workload vs 

DRUID 

When we looked at the queries one-by-one, we found that in all but 
two queries, Db2 Event Store outperformed Druid, often 
significantly. In the case of Q1, the query includes a count(*), and 
Druid can make use of metadata it keeps to more efficiently 
compute the result. It is also important to note that for the queries 
that use LIMIT 100 to produce an exact result in Db2 Event Store 
(Q6, Q7, Q8, and Q9), the same queries in DRUID are written using 
their TopN function, which uses an approximation algorithm that is 
not guaranteed to produce the exact query results and must be 
configured explicitly [59]. The benchmark with the query response 
time of each of the queries can be seen in Figure 12.  
 

 
Figure 12 Query response time vs DRUID 
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3.2.2.4 Adding more complex queries 
Analysis of the benchmark’s queries revealed that from an analytics 
workload perspective, the queries had fairly low complexity.  As a 
result, we supplemented the workload with two additional queries 
which would provide slightly more significant complexity 
(grouping by one or two non-key columns): 

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM GROUP BY 
L_ORDERKEY ORDER BY SUM(L_EXTENDEDPRICE) DESC FETCH FIRST 
100 ROWS ONLY 

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM GROUP BY 
L_PARTKEY, L_ORDERKEY ORDER BY SUM(L_EXTENDEDPRICE) DESC 
FETCH FIRST 100 ROWS ONLY 

When these queries were run against Db2 Event Store and Druid, 
we found that Db2 Event Store further outperformed Druid. The 
first more complex query took 31 seconds to run on Db2 Event 
Store and 861 seconds to run on Druid (a difference of more than 
27x), while the second query took 159 seconds to run on Db2 Event 
Store, and 1819 seconds to run on Druid (a difference of more than 
11x). See the comparison in Figure 13. These results illustrate the 
benefits of leveraging Db2’s mature query compilation, 
optimization and runtime layers as query complexity increases.  
 

 
Figure 13 Complex query response time vs DRUID 

 
While these additional queries are slightly more complex than the 
original benchmark’s queries, they are by no means complex. For 
truly complex queries we’d need to include joins, which are 
generally not supported by IoT databases, including Apache Druid 
[60]. 
 

4. FUTURE WORK 
There are several improvements we are considering for future 
releases of Db2 Event Store. 
 

Faster queries, enhanced by secondary indexes - Currently Db2 
Event Store tables only support a single unique index, created using 
a primary key.  While this serves most IoT queries well, there are 
some queries which benefit from index access on columns not 
included in the primary key.  To improve the performance of these 
types of queries we're investigating secondary index approaches 
which achieve the desired query performance gains, while not 
sacrificing the system's ability to rapidly ingest data. 

Online scalability - While Db2 Event Store can scale from a single 
node to larger clusters, it currently hardens cluster size at 
installation.  We are currently investigating the modifications 
required to allow Db2 Event Store clusters to scale both up and 

down instantly.  As the system was architected for scalability, this 
work is largely an engineering effort. 

Fine grained update/delete - As described in section 2.3.2, Db2 
Event Store currently only supports removal of data through a time-
to-live mechanism (TTL).  To allow for a broader set of use cases, 
we have work underway to modify our data format to allow for fine 
grained update and deletes.  This work is challenging as we plan to 
continue to use Apache Parquet (which does not natively support 
data modification), continue to support cloud-based object storage 
which is eventually consistent, and allow for high performance fine 
grained updates and deletes which may only modify a single row in 
a given file. 

5. CONCLUSIONS 
In this paper we present a novel, cloud-native database system 
designed specifically for IoT workloads to provide extremely high 
speed ingest, efficient data storage, and near real-time analytics.  
The system is continuously available to both ingestion and queries 
in the presence of node failures, and stores data in an encrypted 
open data format on cloud native object storage.  By leveraging the 
Db2 compiler, optimizer and runtime layers, the system 
significantly outperforms existing IoT database systems – 
especially as queries get more complex – and is able to perform 
complex analytics queries which include joins, sorting and 
aggregation.  Future work will enhance the system to allow it to 
scale online and provide fine grained updates and deletes. 
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