
Db2 Event Store: A Purpose-Built IoT Database Engine
Christian Garcia-Arellano

Hamdi Roumani
Richard Sidle◇

Josh Tiefenbach
Kostas Rakopoulos

Imran Sayyid

Adam Storm
Ronald Barber◇
Fatma Ozcan◇

Daniel Zilio
Alexander Cheung
Gidon Gershinsky◇
Hamid Pirahesh◇

David Kalmuk
Yuanyuan Tian◇

Matthew Spilchen
Lan Pham

Darren Pepper
Gal Lushi◇

eventstore@ca.ibm.com
IBM Cloud and Cognitive Software ◇ IBM Research

ABSTRACT
The requirements of Internet of Things (IoT) workloads are unique
in the database space. While significant effort has been spent over
the last decade rearchitecting OLTP and Analytics workloads for
the public cloud, little has been done to rearchitect IoT workloads
for the cloud. In this paper we present IBM Db2 Event StoreTM , a
cloud-native database system designed specifically for IoT
workloads, which require extremely high-speed ingest, efficient
and open data storage, and near real-time analytics. Additionally,
by leveraging the Db2 SQL compiler, optimizer and runtime,
developed and refined over the last 30 years, we demonstrate that
rearchitecting for the public cloud doesn’t require rewriting all
components. Reusing components that have been built out and
optimized for decades dramatically reduced the development effort
and immediately provided rich SQL support and excellent run-time
query performance.

PVLDB Reference Format:
Christian Garcia-Arellano, Adam Storm, David Kalmuk. Hamdi
Roumani, Ron Barber, Yuanyuan Tian, Richard Sidle, Fatma
Ozcan, Matthew Spilchen, Josh Tiefenbach, Daniel Zilio, Lan
Pham, Kostas Rakopoulos, Alex Cheung, Darren Pepper, Imran
Sayyid, Gidon Gershinsky, Gal Lushi, Hamid Pirahesh. Db2 Event
Store: A Purpose-Built IoT Database Engine. PVLDB, 13(12):
3299-3312, 2020.
DOI: https://doi.org/10.14778/3415478.3415552

1. INTRODUCTION
1.1 The Needs of IoT systems
With the rapid proliferation of connected devices (smart phones,
vehicles, buildings, industrial machinery, etc.) there has never been
as great a need to persist data, and make it available for subsequent

analytical processing, as quickly as possible. Traditionally, the data
storage and analytics needs of the Internet of Things (IoT) space
have been serviced by relational databases, time series databases,
or more recently, elements of the Hadoop ecosystem [1].
Unfortunately, none of these technologies were designed for the
specific demands of Internet of Things use cases, which include:

• Extremely high-speed data ingestion: It is not uncommon in
IoT use cases to see data arriving at a rate of millions of data
points per second. As the data is typically machine generated,
and not generated by humans, it arrives steadily around the
clock, resulting in hundreds of billions of events per day.

• Efficient data storage: Due to the large volume at which data
is arriving, efficient storage is essential. This requires that the
system stores data in a highly compressed format, leverages
cost effective storage (such as cloud-based object storage), and
ideally automates data retention through techniques such as
Time to Live (TTL). Moreover, since IoT datasets grow so
rapidly, it is desirable to store the data in an open data format,
so that it can be directly queried by additional runtime engines
and does not require migration should the system be re-
platformed in the future.

• Real-time, near real-time and deep analytics: Persisting data
is never the end goal. IoT systems require that the data be made
available as quickly as possible to both queries which are
interested in a given data point (or collection of data points
from a given sensor), as well as more complex queries which
leverage the full power of SQL. Additionally, IoT data often
feeds ML models, such as those used for predictive
maintenance.

• Continuous Availability: IoT data stores are fed by remote
data sources, often with limited ability to store data locally. As
a result, in cases where the data store is unavailable for a
prolonged period of time, remote data sources may overflow
their local storage, resulting in data loss. Similarly, queries
being run on IoT systems are often critical to the business, and
even a small interruption could result in significant financial
impact [2]. To ensure a complete data history and consistent
business insights, IoT systems must remain continuously
available.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415552

3299

1.2 Related Work: Existing Technologies for
IoT Workloads
Traditionally, relational database management systems
(RDBMSes) have been used to handle the most challenging of data
problems. As a result, over the last four decades they have evolved
from a focus on high speed transaction processing [3], to servicing
high performance analytics [4] [5], and more recently, hybrid
transactional/analytical processing (HTAP) workloads [6], which
require both fast transactions and analytics. In this time, they have
evolved from running on a single machine, to scaling out to tens or
hundreds of machines to leverage both MPP techniques, and/or for
high availability. While this evolution has created shared data
architectures that on the surface seem similar to what we propose
in this paper [7] [8], the leveraging of shared storage in these
systems is principally for availability, and is not an attempt to
leverage cheap and plentiful storage, as is required for IoT
workloads. Furthermore, the dependence on mutable data and
strong consistency in most relational systems makes it difficult to
leverage eventually consistent cloud-based object storage.

While RDBMSes are unquestionably versatile, their generalization
prevents them from being ideal for several recently identified use
cases [9], one of which is IoT workloads. In IoT workloads,
machine generated data is often produced at a rate of millions of
events per second – orders of magnitude faster than human
generated transactions. For example, an IoT system producing 1M
events/sec (a rate common in the IoT space) will generate more
events in a single day than the total number of US stock market
trades in a year [10]. This tremendous volume of arriving data
plays against the strengths of traditional relational database systems
whose WAL techniques favour transactional consistentcy at the
expense of ingest performance. Additionally, since traditional
relational database systems update and delete in-place and require
strong consistency, they are not able to directly leverage cloud
object storage - the most cost-effective way to store large volumes
of data in the public cloud. While recent cloud-native relational
database systems are now able to leverage cloud object storage [11]
[12] and have made a concerted effort to separate compute and
storage to improve transactional availability [13], they have not yet
gained widespread adoption for IoT workloads.

Over the last decade, time series databases have dramatically
increased in popularity [14] and have become the repositories of
choice for IoT data. While time series databases are able to rapidly
ingest data and store time series data efficiently, many of them,
such as InfluxDB [15], Kdb+ [16], use a non-SQL compliant query
language [17] [18], and struggle with true continuous availability
[19]. There do exist time series databases which support SQL, such
as TimescaleDB [20], however we show in section 3 that they have
limitations in terms of ingest and query performance. Also, none of
these time series databases leverages an open data format or can
directly leverage object storage to efficiently handle the massive
volume of data generated by IoT systems.

To counter the limitations of time series databases, a wave of
Hadoop and open-source based systems, like Apache Druid [22],
have been employed for high speed data use cases with some
success [23] [24] [25]. These systems are typically architected
according to the Lambda Architecture whereby one data store is
used to persist data quickly (typically a time series database or KV
store) and provide near real-time analytics, while a second system

is used for deep analytics [26]. The Lambda Architecture however,
suffers from complexity (multiple systems to maintain), stores a
non-trivial portion of the data in two places (resulting in higher
storage costs), and is difficult to query, as application designers
have to understand which of the disparate systems to query for a
given use case. Furthermore, many of the systems, on which
Lambda is built, struggle to achieve the required ingest speeds
required for IoT workloads, without a significant hardware
footprint [27].

More recently systems have emerged which are tackling similar
requirements to those found in IoT systems. Unfortunately, these
newer systems are either restricted to internal use [28] or are opaque
[29, 30].

1.3 A Purpose-Built IoT System
To address the specific needs of IoT use cases, we built Db2 Event
Store [31], which has the following design principles:

• Make ingest as fast as possible: The system is designed to do
the minimum amount of synchronous work required to persist
data, ensure durability in the presence of node failures, and
make it available to query processing.

• Asynchronously refine and enrich data: Once data has been
ingested, it is further refined and enriched asynchronously, to
make query processing more efficient.

• Highly optimize query processing: Efficient query processing
leverages a highly optimized open data format, meta-data
constructs which allow for data skipping, and a robust and
mature query optimizer and runtime. Furthermore, queries
leverage all available hardware by running in parallel across all
nodes in the cluster and also multi-threaded within each node.

• Ensure continuous availability for both ingest and queries:
Each component of the system is designed to be fully
redundant. In the event of node failures, data is quickly
assigned new leaders amongst the surviving members to ensure
minimal disruption to ingest and queries.

In the remainder of this paper we describe the Db2 Event Store
architecture in detail, as well as some of the challenges faced in
building the system. We then compare it to two existing systems
in wide used for IoT use cases, both from a functional and
performance perspective. Finally, we discuss some of the
remaining challenges to be overcome.

2. ARCHITECTURE
2.1 Architectural overview
Db2 Event Store leverages a hybrid MPP shared nothing / shared
disk cluster architecture . The combination of shared nothing and
shared disk architectures allows it to combine the linear scalability
attributes of a traditional MPP shared nothing data store with the
superior availability, and cloud-native characteristics of a shared
data system. The system is constructed by combining a new cloud
native storage layer with Db2’s existing BLU MPP columnar
database engine [5].

Table data is physically divided into micro-partitions based on a
user defined hash partitioning key, and stored on a reliable shared
storage medium such as cloud object storage (e.g. IBM Cloud
Object Storage [32]) , a network attached storage device (such as
IBM Cloud Block Storage [33]), or a cluster filesystem (such as

3300

Ceph [34] or IBM Spectrum Scale [35]). The entire dataset is fully
accessible by all compute nodes in the cluster, decoupling the
storage from the compute and enabling each to be scaled
independently.
MPP shared nothing scale-out for ingest and query processing is
achieved by logically dividing the leadership of micro-partitions
across the available compute nodes, coordinated through the
consistent meta-store Apache Zookeeper [36]. Each micro-partition
is logically owned by one and only one compute node at any given
point in time and any requests to read or write that micro-partition
are executed via the owning compute node, enabling query and
ingest parallelism across the cluster. By ensuring a sufficiently
large number of micro-partitions relative to the number of compute
nodes the system ensures sufficient granularity in the data
partitioning to allow an even distribution of data leadership across
the compute nodes in the presence of node failures. When handling
node failures, the affected micro-partitions are logically reassigned
amongst the remaining compute nodes that are replicas of the failed
micro-partitions, substantially reducing the failover time compared
to a model that requires data migration [37], and allowing
processing to continue with minimal disruption.

To ensure that database metadata does not become a single point of
failure and to maintain the desired continuous availability, the
system implements the concept of a “floating” catalog node where
catalog information is stored on a reliable shared filesystem and
exposed via a logical node that can be restarted on any of the
compute servers in the event of a failure.

The architecture is depicted below:

Figure 1 MPP shared nothing / shared disk architecture

Fast ingest in this architecture is achieved through a combination
of parallelism and optimized storage techniques. The system
implements a headless cluster architecture where all compute nodes
play the dual role of head and data nodes. This allows ingest to be
parallelized across the entire cluster and removes any potential for
a head node ingest bottleneck. Within the server, ingested records
are mapped to specific micro-partitions by Db2’s MPP hash
partitioning function and shipped to the owning members via Db2’s
internal cluster communication infrastructure.

On the storage side, data is written into fast local storage (SSD or
NVMe) devices present on each of the compute nodes, and it is
further replicated and written to the local storage on at least two
other compute nodes before acknowledging commits. This ensures
availability of the data in the event of a compute node failure. The

data is then asynchronously written to durable shared storage. This
model allows the system to avoid any extra latency that might
otherwise be incurred from the shared storage medium (particularly
in the case of high latency cloud object storage) and allows the
architecture to efficiently accommodate both small and large
inserts. It should be noted that this model implies that micro-
partition leadership must be aligned with the replica locations, but
this affinity is also desirable as it has the beneficial side effect of
enabling better data cache locality. Ingested data can be optionally
aged out of the system via a time-to-live (TTL) mechanism,
configured at the table level.

The ingested data is stored in an open data format (Apache Parquet
[38]) which leverages a compressed PAX storage format which can
be efficiently utilized for analytics processing by Db2’s BLU
columnar runtime engine. The use of an immutable open data
format also allows for the data to be queried directly by external
runtime engines (e.g. Hive, Spark, Presto). In order to support the
cost and scalability benefits of cloud object storage, which may not
have strong consistency guarantees for modified data, the system
leverages an append-only immutable storage model where data
blocks are never re-written. Synopsis metadata information, which
allows for data skipping during query processing, is automatically
generated as part of the ingest process and is written in separate
Parquet files, allowing for synopsis data to be accessed and cached
separately from the table data. Indexing is also supported and is
implemented as an UMZI index [39] leveraging an LSM-tree style
format to adhere to the append-only requirement. Indexes are
generated asynchronously as part of the data sharing process to
minimize the latency on ingest processing. This also means that
duplicate key elimination occurs during data sharing processing.
Db2 Event Store implements a first-writer-wins (FWW) semantic
when ingesting into tables with primary keys defined. FWW
ensures that the first landed version of a row (where a distinct row
is defined by its associated primary key) is never replaced if in the
future different versions of the same row (i.e. the primary key is the
same) are ingested.

Db2 Event Store query processing is SQL based, and is enabled
through Db2’s industrial grade Common SQL Engine (CSE) which
includes its cost-based SQL optimizer and BLU columnar runtime
[4]. The Db2 CSE is integrated into the Db2 Event Store storage
layer and allows for the ability to exploit Db2 Event Store’s
synopsis-based data skipping as well as its indexes. This integration
allows Db2 Event Store to offer high speed analytics using parallel
SQL processing, JDBC/ODBC connectivity, and full Db2 SQL
compatibility.

Last but not least, efficient data access is achieved through a multi-
tiered caching layer that caches frequently accessed data, synopsis
and index blocks in-memory, and also on fast local storage on the
compute nodes, in order to absorb latencies that would otherwise
be incurred when exploiting cloud object.

2.2 Data format and meta-data
2.2.1 Leveraging an open data format - Apache
Parquet
When choosing a data storage format, it was desirable to leverage
one that was columnar organized, due to the performance
advantages when processing analytics workloads. In addition, it

3301

was highly desirable to utilize an open format, that would allow
access by external readers and avoid data lock in. In search for an
open column organized format we decided on Apache Parquet [38],
as it is widely adopted and supported by many readers (e.g. Spark,
Hive, Presto [40]). In addition, Apache Parquet is a self-describing
format, which is accomplished by including the schema (column
name and type) in each of the files.
Db2 Event Store uses Snappy [41] compression to reduce the
storage footprint. Snappy compression was chosen as it
represented the best trade-off between storage size and ingest/query
impact. GZIP [42] and LZ4 [43] were also considered as options,
but GZIP incurred a much higher overhead for both ingest and
query performance, and at the time of our initial evaluation LZ4
was new to the Parquet specification and did not have widespread
adoption in some of the Parquet readers. We plan to reinvestigate
LZ4 compression now that it is more prevalent in the Parquet
ecosystem.
As described above, the Db2 Event Store architecture leverages a
micro-partitioned data model. With this architecture the finest
granularity of a table is a table micro-partition. Parquet files
belong to micro-partitions and thus a given Parquet file contains the
data of exactly one table micro-partition. The Parquet files are
immutable once written. Each Parquet file for a table micro-
partition is assigned a monotonically increasing number, referred
to as its tablet identifier. The Db2 Event Store runtime engine and
external readers use this to infer that higher tablet identifiers
represent newer data. The metadata for the Parquet files in shared
storage is maintained in Apache Zookeeper. This includes the high
watermark tablet identifier of each micro-partition.
Within the Db2 Event Store engine, tuples are identified through a
Tuple Sequence Number (TSN), an integer that may be used to
locate a given tuple within a table. A TSN in Db2 Event Store
includes the tablet identifier, the zone (Pre-Shared vs Shared; when
data is ingested it moves through several zones which are described
in detail in section 2.3), and the offset of the tuple within the
Parquet file.
Writing and reading of Parquet files within the database engine is
done using an open source C++ parquet library [44]. To minimize
the amount of read IO we implemented a custom reader in the C++
parquet library that serves read requests from a local cache. The
local cache is discussed in more detail in Section 2.4 Multi-tiered
caching.

2.2.1.1 Encrypting Parquet Data
Db2 Event Store is able to securely handle sensitive user data. Since
data is kept in the Apache Parquet format, we have worked with the
Parquet community to design and implement a security mechanism,
built into the format itself. The specification of Parquet Modular
Encryption [45] was released in the Apache Parquet Format
repository, and its C++ open source implementation was merged in
the Apache Arrow repository [46] and released as part of version
0.16.0.
Parquet is a complex format, comprised of different data and
metadata modules that enable efficient filtering (columnar
projection and predicate push-down) by the analytic engines that
process the data. Parquet Modular Encryption encrypts each
module separately, thus preserving the filtering capabilities and
analytics efficiency with the encrypted data. It leverages the AES
GCM cipher [47], supported in CPU hardware, in order to perform
module encryption operations without slowing down the overall

workflow. Besides protection of data privacy, AES GCM also
allows to protect the integrity of the stored data, making it tamper-
proof against malicious attempts to modify the file’s contents. The
size overhead of Parquet encryption is negligible, since only the
modules (such as compressed data pages) are encrypted, and not
the individual data values.
Encryption keys, used for securing privacy and integrity of Db2
Event Store data, are managed by the native Db2 Key Management
System [48], that handles safe storage and rotation operations for
these keys. Parquet files are encrypted before being sent to the
shared storage – therefore, the encryption keys and the plaintext
data are not visible to the storage backend. After retrieval of
encrypted files from the shared storage, DB2 Even Store verifies
cryptographic integrity of the processed data, using the Parquet
Modular Encryption libraries. Additionally, the SSD/NVMe
caching layer also uses the Parquet encryption format, ensuring that
locally persisted files are protected against privacy and integrity
attacks.

2.3 Ensuring fast ingestion
One of the key design characteristics to allow Db2 Event Store to
handle the fast ingestion rate common in IoT scenarios is that it
organizes the data in a table into multiple zones, and it evolves the
data asynchronously from one zone to the next as the data ages. As
described in Section 2.1, the data is first ingested into fast local
storage. This is the first data zone called the Log Zone. Data in this
zone is replicated to remote nodes to ensure durability and high
availability. From the Log Zone, the data is moved to additional
zones with the goal to persist it on cost effective shared storage,
make it available to external readers, and most importantly,
continuously optimize it for query performance. There are two
additional zones: the data is first moved from the Log Zone to the
Pre-Shared Zone, and then from the Pre-Shared Zone to the Shared
Zone. All of these zones are transparent to the end user, who sees a
single view of the table without having to worry about the
continuous evolution of the data through the zones. All of these
zones are immutable. One critical design point is that the log is the
database – the Log Zone is not just written to local storage to
guarantee durability like in traditional database systems that
implement write-ahead logging, but is also directly utilized to
service query results. Figure 2 shows a high-level view of the zones
and the evolution of the data from one to the next one.

Figure 2 Data evolution through zones

2.3.1 Logging ingestion
Ingest processing starts with the Db2 Event Store client, which
provides an API for asynchronous batch inserts. This client can
connect to any of the nodes to perform ingest, and in the case of
failures will automatically resubmit the batch insert to any of the
other nodes. The node that the client is connected to is referred to
as the “ingest coordinator”. The role of the node acting as a
coordinator for the batch is to perform the hash partitioning of the
batch into the corresponding micro-partitions, and then direct the
micro-partition batch to one of the micro-partition replicas. When
the micro-partition batch is received by a micro-partition replica it

3302

is placed in the Log Zone in the form of log buffers, that are
persisted to local storage and replicated to multiple remote replicas,
each of which persist to local storage before acknowledging, to
guarantee durability and availability.
Each micro-partition maintains its own set of replicas and the insert
is only considered successful once it has been acknowledged by a
quorum of replicas (R/2+1) for each micro-partition impacted. By
default, the replication factor R is 3. Both replication and
acknowledgements are batched to improve the efficiency of the
replication and to guarantee both the persistence and availability of
the ingested data. This data is available for querying as soon as it is
replicated to a quorum of nodes (i.e. before the data is enriched
through synopsis or indexing).
To ensure high performance ingest, log data must be stored on fast
local storage (SSD or NVMe devices) to ensure low latency for the
only synchronous portion of the data persistence lifecycle.

2.3.2 Data enrichment
The Log Zone enables quick persistence and durability, but it is not
optimal for querying. As a result, recently ingested data must be
moved to a more query friendly format as soon as possible and be
enriched with additional data structures, like indexes and synopsis.
This allows for more efficient querying, at the expense of the
additional latency (in the order of seconds), which is sufficient for
most IoT applications.
The next zone after the Log Zone is the Pre-Shared Zone, which is
stored in shared storage. The process of “sharing” a table micro-
partition can be done by any of the replicas, as all have a copy of
all the log buffers, but Db2 Event Store gives preference to the
micro-partition leader, which can be re-assigned dynamically on
failures or due to load re-balancing. As an iteration of data
persistence to the Pre-Shared Zone is completed, the transition
point between zones, and the Pre-Shared Zone tablet metadata, is
tracked in the consistent meta-store Apache Zookeeper. This
allows for a seamless transfer of leadership between nodes and
enables consistency of the objects in shared storage. Data that has
been pre-shared is subsequently purged from the Log Zone, which
is completed when Log Zone readers are drained out from the
already persisted area (queries that are reading this data from the
Log Zone must complete before the data can be purged).
Moving data from the Log Zone to the Pre-Shared Zone is fast
(typically on the order of seconds). As a result, Parquet files written
to the Pre-Shared Zone may be small, as each Pre-Share iteration
can only consider the data written since the last Pre-Share iteration,
and therefore not optimally sized for query processing (where large
files – on the order of 10s or 100s of MBs are ideal). For this
reason, once there is enough volume of data in the Pre-Shared Zone,
the small files are consolidated to generate much larger Parquet
files in what is called the Shared Zone. Larger files enable more
efficient query processing and better overall data compression so
typical consolidated files are in the range of 64MB in size. The
Shared Zone is the final zone and so files remain there forever (or
until the expiration time is reached if TTL is configured for the
table). Finally, to avoid having multiple copies of data, the Pre-
Shared Zone is also purged, like the Log Zone, once a set of files
from the Pre-Shared Zone have been written successfully to the
Shared Zone, the sharing state is registered in the consistent meta-
store, and the pre-shared files purge is initiated once they are
drained of concurrent queries.

2.3.3 Persistence to cheap storage
The database engine was designed to exploit a storage hierarchy
that includes memory, fast local storage within each node for fast
persistence, and finally cost-efficient storage to maintain the very
large volume of data.
One of the challenges of supporting cost-efficient object stores is
that their consistency guarantees vary. For that reason, the files
written by Db2 Event Store are never updated, and Apache
Zookeeper is used as consistent data store to record the state of
objects in the cost-efficient object store. The other challenge of
cost-efficient object stores is their performance, and for this reason
in Section 2.4 we discuss the multi-tiered caching, that significantly
reduces the performance impact of accessing files in persistent
storage.

2.3.4 Building Indexes and Synopsis
Providing an indexing structure for an IoT data store is challenging
for multiple reasons. First of all, at the rate of ingest that Db2 Event
Store was designed to support, the volume of data grows rapidly.
As an example, for a 3-node cluster, at 1 million inserts per second
per node, with 40-byte events, the volume grows by 3.5 PB/year or
9.5 TB/day of uncompressed data. This volume of data is one of the
motivating factors for supporting cost-efficient object storage, but
this brings about new challenges: dealing with eventual
consistency, and the high latency reads and writes discussed above.
To get around the eventual consistency limitation of updates to
object storage, index files must be written once, and never
overwritten. A final challenge is to provide a unified index structure
that can index the data across the multi-zone architecture. All of
these requirements must be satisfied while still providing very fast
index access for both range and point queries.
The index in Db2 Event Store is a multi-zone index, covering the
Pre-Shared and Shared Zones. The index does not cover the Log
Zone as it would require synchronous maintenance and maintaining
the index synchronously would increase insert latency.
Furthermore, it is more efficient to maintain the index
asynchronously when large amounts of data are moved to the Pre-
Shared Zone, which happens only seconds after being ingested into
the Log Zone.
The index within a zone follows an LSM-like structure with both
multiple runs and multiple levels, based on the UMZI index [39].
This kind of indexing structure is well suited for the high volume
of writes, as it can be constantly re-optimized.
As the data pre-sharing is generating an Apache Parquet file from
the data in the Log Zone, it also generates the corresponding
compressed index run (See Figure 3 Index Runs together with the
pre-sharing processing). Generating the index run at this time is
also very efficient, as the complete run generation is done in
memory, from the data in the Log Zone, which is also in memory.

Figure 3 Index Runs together with the pre-sharing processing

With IoT data, duplicate values are relatively uncommon, and are
typically the result of a sensor sending the same data value multiple

3303

times (often in close succession). For this reason, duplicates are
most commonly found in the recently ingested data, which is still
resident in memory. To ensure no duplicate data, when a new index
run is being generated from the Log Zone, the system performs
index lookups to ensure the primary key uniqueness is maintained.
The system keeps the most recent index runs and an index synopsis
for older runs in the local cache. The index synopsis data, which
contains primary key ranges that for IoT systems always include a
timestamp, is particularly helpful in ensuring efficient primary key
uniqueness lookups since the bulk of the data already loaded into
the table will have older timestamp values. Since the local cache is
multi-level to exploit the storage hierarchy, the index runs are
maintained both in memory and in the local SSD/NVMe devices,
and the most efficient look ups are for runs that are still in the in-
memory level of the cache. We will discuss the details of the multi-
level cache management in Section 2.4.
In the same way that the data is evolved from the Pre-Shared to the
Shared Zone, the index is also evolved, by merging multiple index
runs into a single and much larger index run. As the volume of data
grows, and the number of runs grows, the performance of the index
would degrade without merging as more runs must be consulted for
each index lookup. For this reason, the system maintains multiple
levels of the index, continuously merging runs from one level into
larger runs in the next level to reduce the number of overall runs.
As new runs are generated in the next level, the runs in the previous
level are purged by a background garbage collection process, to
reduce the storage cost. All of this is done while still maintaining
the consistency of the index, both for in-flight queries and in the
persisted copy, so that the index can be rebuilt on restart.
Another important point to note is that all the runs from all levels
are persisted to shared storage. This is required as the micro-
partition assignment to nodes is dynamic, so the persistence of runs
to shared storage is required to allow the transfer of micro-
partitions from one node to another. When a micro-partition is re-
assigned, the database engine initiates a background process to
warm up the local cache of the new micro-partition leader, therefore
enabling index access to reach top performance again as quickly as
possible.
To enable data skipping in table scans, Db2 Event Store
automatically creates and maintains an internal synopsis table for
each user-created table. Similar to the data synopsis of Db2 BLU
[4] and IBM Cloud SQL Query [49], each row of the data synopsis
table covers a range of rows of the corresponding user table and
contains the minimum and maximum values of the columns over
that row range. Blocks of the data synopsis are also in Parquet
format. Note that the data synopsis, when applicable, is likely to be
cached (see Section 2.4) as it is small and accessed fully in each
table scan that qualifies for data skipping. This data synopsis, which
is distinct from the index synopsis, is populated as data are
consolidated into the Shared Zone and so does not cover the data of
the Pre-Shared and Log Zones. Maintaining data synopsis content
for these zones would come at considerable additional cost (extra
writes to shared storage) and would provide little value from data
skipping given that the volume of data in these zones is small.

2.4 Multi-tiered caching
Traditionally modern high-performance DBMS systems either are
in-memory, and thus rely on RAM for performance, with resiliency
coming from multi-node replication and a weak story on power
outages (with either slow full cache rebuilds or worse yet, data
loss), or use high performance network storage like IBM Cloud

Block Storage [33]. Given that cheap cloud Object Storage, on the
order of $0.01 USD/GB/month [50] is high latency, and high-
performance storage is generally at least 10X the cost of object
storage, the challenge is how to leverage inexpensive storage and
still provide optimal performance. The approach taken by Db2
Event Store is multi-tiered caching for both data and index objects,
that is able to leverage both memory and fast local storage to
insulate the system from the high-latencies of Object Storage.

Figure 4 Caching Stages and Migration

Note that the DIMM memory indicated at the top of this figure
shows the cache managed RAM memory. Naturally there is other
memory used for processing and transient buffering.

2.4.1 Challenges of leveraging high-latency storage
Db2 Event Store employs many mechanisms to take full advantage
of caching within its Cache Manager component.

• Multi-layered Caching: To insulate the system from Object
Storage latencies, both local SSD/NVMe devices and RAM are
used for caching of data block and index objects. While
utilizing a main memory cache is of course not new, mixing it
with SSD/NVMe and the introduction of an epoch-based lock
free eviction technique does introduce novelty.

• Directed Caching: The multi-tiered caching offers several
access methods as outlined above in Figure 4. Data and index
block construction creates the objects in both the cache and
object storage. Cache access may be directed based on request
type to either RAM only, as is used by some short-lived index
structures in the LSM tree, or directed to local SSD/NVMe
devices with optional placement in the RAM cache as well. The
cache manager also allows for non-RAM cached reads,
utilizing only SSD/NVMe for which callers supply a private
buffer when it is known that retrieved content is unlikely to be
re-used, such as for retrieval of data that will be rewritten soon
into a more concise format or data that is copied to data
structures outside the cache manager (e.g. synopsis information
for query acceleration). Also, the caching tiers may be bypassed
completely allowing direct cloud storage access when
accessing potentially cold table data. This is generally related
to probabilistic caching described below.

• Probabilistic Caching: To deal with a limited cache size as
compared with the table or index data, the Cache Manager
utilizes probabilistic techniques similar to those used in Db2
BLU [4]. These techniques avoid the cache flooding issue when
high volume accesses like large table scans occur, but will still
build up a cache of the hot objects over time. The subsystem

3304

leverages statistics on the total sizes of the different table and
index data for the objects being accessed, and computes a
probability of caching block requests relative to data used by a
given query, and the total managed cache space. The decision
is performed by the block storage layer utilizing statistics
maintained by the cache manager. Making the decision up-
stream allows for taking into account semantic information like
a priority for synopsis caching vs. traditional table data caching.

• Soft & Hard Limits: The caching infrastructure uses a soft
limit for memory while imposing a hard limit on non-volatile
storage usage. RAM based caching evictions (discussed below)
happen generally in a relaxed fashion, engaging a background
process at 100% of target utilization and attempting to bring
memory utilization to 80% before resting again. However,
should the RAM target be found to exceed 125%, which may
occur in a very busy system, then a more aggressive eviction
technique is utilized by performing immediate releases upon
dereference of any memory objects. For SSD/NVMe the Cache
Manager provides extensions of space up to a requested target
limit, but when that is reached, caching requests are blocked,
and the users of the subsystem will fall back to RAM only
caching, or skip caching altogether depending on the use case.

• Epoch based eviction: The eviction of both the RAM data and
the SSD/NVMe data is managed by a lock free epoch-based
technique that utilizes a small, on the order if 1 byte, epoch id.
This both saves metadata storage space and allows for quick
scans with fewer TLB misses. Atomic operations that obtain
reference counts protect objects from going away at
inopportune moments without the costs of mutex operations.
More detail on the LRU cache replacement algorithm is
provided in the next section.

2.4.2 Batchwise-LRU Cache Replacement
Caching for a cloud-native database system such as Db2 Event
Store introduces distinct challenges:

• Object sizes vary widely in Db2 Event Store, from small
objects such as index run meta-data objects (small number of
KBs) and the small data blocks of the most recently data in the
Pre-Shared Zone, to the large consolidated data blocks of the
Shared Zone and the blocks of higher level runs of the index
(both of which are on the order of 100 MBs). Existing cache
replacement algorithms, such as those used in traditional
DBMS buffer pools and operating systems, are designed to
handle small, fixed-size pages and are reactive in nature,
evicting a page on demand when a new page is needed. Such
page replacement methods are not well-suited to handling
objects of widely varying sizes.

• Adaptive cache replacement algorithms, such as LRU, LRU-2
[51] and ARC [52], that are known to work well for a wide
variety of workloads, often require global locks at object access
and/or eviction time. Such global locks limit scalability in the
presence of concurrent accesses.

To address these caching challenges, Db2 Event Store implements
a batchwise-LRU eviction algorithm using epochs, that is scalable
and works well for variable-sized objects.
Cache eviction in Db2 Event Store is done by background threads,
with one thread for object eviction from cache-managed RAM and
a second thread for eviction from cache persistent node-local
storage. Object eviction is triggered when cache usage for the given

storage type reaches a configurable start threshold (e.g. 95%) and
objects are evicted until usage is reduced to the stop threshold (e.g.
90%). This pro-active eviction ensures that there is space in the
cache at all times for objects of all sizes at the cost of a small loss
of cache space (<10%). Tracking of object accesses is done using
epochs. The epochs (which wrap over time) are much smaller than
full timestamps, with only 1 byte needed to be able to evict in 1%
of cache size increments. The use of small epoch values minimizes
the memory overhead for tracking object accesses. In addition, for
objects in persistent cache storage, the access epochs are recorded
contiguously in an array in the object directory memory of the
cache. Contiguous storage and small epoch size enable the LRU
objects to be identified efficiently via a scan for the purge epoch,
which is the oldest active epoch in the system. At eviction time,
objects last accessed in the purge epoch are evicted until either none
remain, or the target threshold is reached. If more cache space is to
be freed, the purge epoch is incremented, and objects last accessed
in this epoch are evicted. Given that there is a single background
thread, no global lock is needed for eviction. Epochs are
implemented as atomics and as they are updated relatively
infrequently, recording object accesses does not limit scalability.

2.5 Optimized query processing
For query processing Db2 Event Store leverages Db2’s BLU MPP
cluster query engine, combining the power of Db2’s cost-based
SQL optimizer [53] and the accelerated analytic processing of
Db2’s BLU acceleration columnar engine [4], with the fast ingest
and cloud native storage capabilities of the Db2 Event Store data
management layer. The BLU MPP engine was chosen due to its
ability to efficiently process both low latency and complex queries,
its mature query compilation/rewrite/optimization capabilities, and
of course, its accessibility within IBM. At the project’s outset (and
for Db2 Event Store’s first few releases) the system leveraged
Apache Spark as a query engine but we found that it could not
efficiently handle low latency queries, and its performance trailed
traditional data warehouses as query complexity increased
(principally because of its relatively immature query optimizer).
The use of Db2’s BLU MPP SQL engine allows the system to offer
a rich set of standards compliant SQL capabilities including full
distributed joins, grouping + aggregation, ordering, and OLAP
functions. Given this range of SQL functionality, it is relatively
straightforward to leverage Db2’s date and timestamp manipulation
functions to group events into buckets of a desired time granularity
and then leverage Db2’s grouping and OLAP analytic functions to
perform all manner of real-time, near-real-time or deep analytics on
time series data.

2.5.1 Client Interfacing
Db2 Event Store’s SQL interfacing is done through Db2’s existing
JDBC / ODBC client infrastructure supporting the full range of Db2
connectivity. Incoming statements are compiled and optimized
through Db2’s cost based multi-stage SQL optimizer [53] and
leverage Db2’s access plan caching infrastructure to avoid the need
to recompile plans on every execution.

2.5.2 MPP Plan Generation and Optimization
The Db2 optimizer generates columnar query plans that are fully
MPP aware producing a series of “subsections” (executable
subplans) that are distributed across active compute members and
executed in parallel. MPP specific optimization decisions include
selecting appropriate distributed join strategies (collocated,

3305

broadcast, hash directed), application of partial vs. final
aggregation and ordering, in addition to decisions on join strategies,
join ordering, and predicate pushdown decisions, as well as the
application of semantically equivalent query rewrites to improve
performance.

2.5.3 Query Execution
The parallel execution of query plans is performed by Db2’s MPP
BLU runtime layer which allows us to take advantage of its existing
highly parallelized column-store processing strategies. Execution
in the BLU runtime layer is broken down into multiple stages where
a stage consists of the sequential execution of a series of operators
called “evaluators”. Each stage takes a single table / column scan
as input and employs vectorized processing where input data is
passed in as column-oriented vectors, and each evaluator performs
data transformations producing one or more output vectors as
results. Each query thread has its own distinct evaluator chain and
executes in parallel. Query threads perform work-stealing on the
single input and fully process a batch of input rows through all
evaluators before obtaining another batch. Constructs such as joins
that combine input streams from multiple tables are executed in
multiple stages – for example the build phase of a join taking input
from one table would be executed as one stage and the probe stage
of the join taking input from the other table would be executed as a
subsequent stage. Cross-member communications during
processing is achieved through several different classes of table-
queue evaluators which act as either an input stream of columnar
data from one or more members or an output stream of columnar
data to one or more members distributing data based on the
distribution required by the plan (e.g. broadcast vs. hash directed).
Data is exchanged in a network optimized columnar format and the
underlying communications infrastructure is optimized for highly
parallel batch data exchange.

2.5.4 Interfacing with the Micro-Partitioned Storage
At the data management layer, the Db2 BLU runtime has been
extended to support hash directed data flows, table / columns scans,
and index lookups on the micro-partitioned storage layer.
In order to support distributed sub-section processing and hash
directed data exchange, the logical micro-partition leadership is
represented internally as a Db2 “partition map” which abstracts the
mapping of hash key values to individual members. Interfacing at
this layer enabled us to transparently leverage the existing Db2
MPP runtime without requiring significant changes. The partition
mapping itself is generated by first generating a fixed mapping of
keys to micro-partitions based on the Db2 MPP hash partitioning
function, and then resolving the member associated with each
micro-partition based on current ownership, producing a key to
member mapping. Since the mapping of micro-partitions is logical
and can change dynamically upon node failure / failback, the
system also associates a version number with a given partition map.
This number corresponds to a parallel version number maintained
in Apache ZooKeeper which is incremented any time the micro-
partition mapping is altered. By comparing the two versions it can
quickly determine if the partition map is out of date and needs to be
refreshed. At section initialization time the partition map version
that a query is executing is stored to allow validation that the
partition mapping remains current throughout the execution. In the
event that a partition map version change is detected during query
execution, the query execution will be aborted, but the query can
be immediately re-submitted and will execute using updated
mappings.

Table / column scans have been implemented by adapting the
corresponding evaluators in BLU to scan column data from the set
of micro-partitions associated with the member executing the scan
and producing standard BLU column vectors as input to the BLU
runtime. The lower level scanning is done through the multi-tier
caching layer abstractions and also leverages the available synopsis
data in order to do data skipping.
Index lookups are similarly implemented by adapting the existing
index scan logic in Db2 to interface with the UMZI indexes and
produce rows in the output format that the Db2 runtime expects.
The physical scan of a given index starts in the smaller runs that
have been most recently generated, and as it moves through it, it
jumps from level to level as it finds the transition points.

Figure 5 Scan of Index Runs

There is one other element that Db2 Event Store implements to be
able to provide accelerated query performance when using the
index: for each run it also maintains an in-memory synopsis of the
index run, that allows it to quickly eliminate the run without
actually performing any IO. This could be considered an additional
level in the index, but unlike the others, this is a level that is only
kept in memory.

2.6 Continuous Availability
One of the key design principles for Db2 Event Store was to create
a database system that would be able to provide continuous
availability. This required not only designing a system without
single points of failure, but also one that was always available even
during planned outages. Since all replicas of a table micro-partition
are able to process ingest, the ingest processing is minimally
impacted when a replica node is lost, as long as a majority of
replicas are still available. The main impact for clients that were
connected directly to the failed node is that the client must handle
such a failure and re-try the operation in a different node.

The rest of the operations on a table micro-partition have a higher
dependency on the availability of the table micro-partition leader.
These include queries and background tasks, like data movement
between zones, data enrichment and index optimization processes.
For these, through decoupling table micro-partitions from the nodes
that act both as replicas and replica leaders, Db2 Event Store is able
to maintain the availability, as long as a majority of replicas are still
available to guarantee that only durable data is processed. By
maintaining the node states and database meta-data in a consistent
meta-store like Apache Zookeeper, the system is able to quickly
identify table micro-partition leaders that become unavailable and
seamlessly transfer the leadership of micro-partitions to other nodes
to continue processing both queries and background tasks.

The graph in Figure 6 shows an example of the impact to both
ingest and query processing during a single node failure for a 3-
node cluster. The impact to ingest processing is partial, as only
those clients connected to the failed node are impacted. In the case
of queries, they are impacted until the table micro-partitioning

3306

leadership is restored for all micro-partitions. In this diagram, the
failed node recovers with minimal impact to the workloads.

Figure 6 Performance during node failure
The other components of the system are also designed for
continuous availability. In the case of the database catalog node,
the system is able to continue processing ingest and queries when
the catalog service is down, as the table metadata is cached by data
nodes and they only depend on the catalog node to perform initial
cache population. The database catalog node uses shared storage
for persistence, which allows it to fail over to any of the hosts that
are part of the cluster. In the case of Apache Zookeeper, it is also
continuously available as long as a majority of the Apache
Zookeeper nodes are still active.

3. PERFORMANCE
In this section we examine the performance of Db2 Event Store in
two dimensions. First, we illustrate the scalability characteristics of
Db2 Event Store, comparing the load and query performance for
different cluster sizes against a single node baseline. Second, we
compare Db2 Event Store with competitors in the time series
DBMS space.

3.1 Db2 Event Store Cluster Scalability
For the Db2 Event Store scalability experiments workload we used
the Time Series Benchmark Suite (TSBS) [54, 55], created by
TimescaleDB [20]. TSBS is a complete IoT benchmarking suite
that is based on a model of a trucking company. The TSBS IoT
schema consists of three tables, shown in Table 1 TSBS Schema
Fields. Tags is a dimension table containing metadata about the
trucks. Readings and Diagnostics are large fact tables containing
sensor metrics from the trucks. Readings contains the current truck
location metrics, and Diagnostics the current truck status metrics.
The data size can be scaled through three parameters: the number
of trucks, the data sample rate (seconds between metrics), and the
time duration, where the first parameter determines the size of Tags
and all three determine the sizes of Readings and Diagnostics. Also
provided is a suite of 13 queries, described in Table 3 that each
examine one of the fact tables and the dimension table, to answer
different styles of questions. To ease the comparisons, we chose to
categorize these queries into three clusters: global analysis,
localized analysis and targeted queries. Global analysis queries
(Q1-Q6) consider data over the life of the vehicle, for example
average driver driving duration per day or average versus projected
fuel consumption per fleet. Localized analysis queries (Q7-Q11)
filter more on specific events like trucks with high load or trucks
with longer driving sessions. The last category is targeted analysis
(Q12-Q13) where these queries focus on a narrow selection of data,

for example last location by specific truck and stationary trucks at
a specified interval. We made one change to the TSBS query set by
adding a low-bound time predicate to the localized analysis queries.
This is explained in more detail below.
In the Db2 Event Store scalability test we created a large workload
using parameters based on a major shipping vendor, with 84,700
trucks, 10 days of data, and sensor metrics every 10 seconds,
resulting in 13.16 Billion rows.

Table 1 TSBS Schema Fields

The multi-node tests were performed on clusters of 3, 6, and 9
physical machines, each with 20 2.8GHz cores, 386GBs of RAM,
1 local SSD (NVMe) and using a remote NFS server using a RAID
array of 4 SSDs. The single node test was performed on a larger
node of 28 2.4GHz cores, 1.5TB of RAM and 3 direct attached
SSDs. This system was configured for Db2 Event Store cache to
use 200GB SSD and 100GB memory. For TimescaleDB the buffer
pool was restricted to 100GB.
First, we look at the scalability of ingestion by collecting timings
from a single node system and comparing this to clusters of 3, 6,
and 9 nodes. These results show over 75% scalability when looking
at 3, 6 and 9 nodes. The single node system exhibits the best per-
node performance as it has the advantage of not performing log
replication on ingest. Cluster configurations, on the other hand,
provide triple log replication for durability, as described in Section
2.3.1.

Figure 7 TSBS Scaled Load on Db2 Event Store

Second, we look at the scalability of query processing in a cluster
by collecting timings from the single node system and comparing
this to a cluster of 3, 6, and 9 nodes. These results show good
scaling at up to 6.9X for 9 nodes, as well as the same benefits of a
single node system, which has the advantage of no network
overhead when running the queries.

3307

Figure 8 DB2 Event Store Query Scalability

3.2 Comparison with Other DBMSes
As described previously, there are many existing database
management systems (DBMSes) that can be used to service IoT
workloads [56, 16]. In our experience however, time series
databases are most commonly used for IoT workloads and as a
result, they serve as the most suitable comparison point. We chose
two of the more popular time series database, Apache Druid and
TimescaleDB for the evaluation [22] [20]. Apache Druid is in
widescale use at many large-scale customers. TimescaleDB has
both devoted significant effort to benchmarking, developing and
publishing a complete IoT benchmarking suite which we leverage
in our scalability tests in Section 3.1, as well as publishing
benchmark results against other time series DBMSes. A recent
report comparing TimescaleDB with InfluxDB [57] demonstrated
that TimescaleDB outperforms InfluxDB (currently the most
popular open source time series database <reference db-engines>)
in both ingest and query performance.

3.2.1 Comparison with TimescaleDB
When comparing with TimescaleDB, we use the TSBS benchmark
but this time at a smaller scale and focus on a single node setup for
comparison of both Db2 Event Store and TimescaleDB, as at the
current time, TimescaleDB does not support clustering. We built a
data set with 4,000 trucks and 3 days of data with sensor metrics
every 10 seconds resulting in 187M rows.
In terms of load time we found that TimescaleDB performed best
using a 10K row batch size and 6 workers. We also loaded Db2
Event Store using a 10K row batch size and 6 clients with 18 shards.
This comparison showed Db2 Event Store to load data in less than
2 minutes vs the 37 minutes, representing a 21X performance
advantage.

Table 2 Ingest Time - Db2 Event Store vs TimecaleDB

Next, for the query test, we took one representative query instance
from each of the 13 query types and ran it 5 times, after a warmup
run, which allowed data to be in memory for both Db2 Event Store
and TimescaleDB, and then we computed an average time over the
5 runs. The query descriptions, and performance results, are shown
in Table 3. The results show that Db2 Event Store is approximately
2X faster than TimescaleDB on all but a few of the very low latency
queries.

Figure 9 Query Time - Db2 Event Store vs TimescaleDB

Table 3 TSBS Benchmark Query Results

Description Query
Db2 Event
Store (ms)

TimescaleDB
(ms)

Average driver driving duration per day Q1 3,843.35 8,622.34
Average driver driving session without
stopping per day Q2 4,253.82 10,221.31

Average load per truck model per fleet Q3 1,396.73 4,527.74
Average vs projected fuel consumption per
fleet Q4 4,265.14 8,376.96
Truck breakdown frequency per model Q5 5,452.62 10,275.07

Daily truck activity per fleet per model Q6 6,037.50 10,183.94

Trucks with high load Q7 90.39 15.68
Last location per truck Q8 129.32 15.61

Trucks with longer daily sessions Q9 1,947.86 4,478.34

Trucks with longer driving sessions Q10 90.39 1,143.39
Trucks with low fuel Q11 129.32 16.51

Last location for specific truck Q12 105.45 0.44

Stationary trucks in an interval Q13 48.84 85.76

On these very low latency queries (all of which complete in less
than 150ms) TimescaleDB benefited from its partitioned
Hypertable indexes, while Db2 Event Store was not able to leverage
its index due to an existing limitation with its index plan generation.
We plan to address this limitation in the future.
We chose to add a low-bound time predicate to the queries
analyzing the latest truck status (Q7, Q8, Q11, Q12) as we have
found that having such bounds is common in customer scenarios,
either driven by a UI that shows status for a selected window of
time, or by query guarantees like all queries being limited to
activity in the last hour. The lower bound can be easily obtained by
periodically running a query to find the minimum report time from
the set of maximum report times of the desired vehicles. We ran
these slightly modified queries in Db2 Event Store and
TimescaleDB for all our comparisons.

3.2.2 Benchmark with Apache Druid
Apache Druid is similar to Db2 Event Store in its mandate to ingest
large volumes of data and perform near real-time analytics.
Additionally, it is also designed for high availability, and built to
scale to very large clusters. Finally, Apache Druid has been around
for a number of years, has been performance optimized in that time,
outperforms other Hadoop-based options by a large margin [21],
and has become increasingly popular for a number of large use
cases in that time [22].

3308

For the performance comparison with Apache Druid we also
leveraged an existing benchmark, in this case a benchmark that was
developed by the Apache Druid team [27] to compare their
performance to MySQL. The benchmark contains nine single table
SQL queries based on the LINEITEM table from the TPC-H
benchmark. Each of the queries either perform a count, sum, group
by, or order by, commonly found in IoT workloads.

-- count_star_interval

SELECT COUNT(*) FROM LINEITEM WHERE L_SHIPDATE BETWEEN
'1992-01-03' AND '1998-11-30';

-- sum_price

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM;

-- sum_all

SELECT SUM(L_EXTENDEDPRICE), SUM(L_DISCOUNT), SUM(L_TAX),
SUM(L_QUANTITY) FROM LINEITEM;

-- sum_all_year

SELECT YEAR(L_SHIPDATE), SUM(L_EXTENDEDPRICE),
SUM(L_DISCOUNT), SUM(L_TAX), SUM(L_QUANTITY) FROM
LINEITEM GROUP BY YEAR(L_SHIPDATE);

-- sum_all_filter

SELECT SUM(L_EXTENDEDPRICE), SUM(L_DISCOUNT), SUM(L_TAX),
SUM(L_QUANTITY) FROM LINEITEM WHERE L_SHIPMODE LIKE
'%AIR%';

-- top_100_parts

SELECT L_PARTKEY, SUM(L_QUANTITY) FROM LINEITEM GROUP BY
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100;

-- top_100_parts_details

SELECT L_PARTKEY, SUM(L_QUANTITY), SUM(L_EXTENDEDPRICE),
MIN(L_DISCOUNT), MAX(L_DISCOUNT) FROM LINEITEM GROUP BY
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100;

-- top_100_parts_filter

SELECT L_PARTKEY, SUM(L_QUANTITY), SUM(L_EXTENDEDPRICE),
MIN(L_DISCOUNT), MAX(L_DISCOUNT) FROM LINEITEM WHERE
L_SHIPDATE BETWEEN '1996-01-15' AND '1998-03-15' GROUP BY
L_PARTKEY ORDER BY SUM(L_QUANTITY) DESC LIMIT 100;

-- top_100_commitdate

SELECT L_COMMITDATE, SUM(L_QUANTITY) FROM LINEITEM GROUP
BY L_COMMITDATE ORDER BY SUM(L_QUANTITY) DESC LIMIT 100;

3.2.2.1 Initial Benchmark and Results
While results exist for Druid runs on this benchmark, none are
recent, so we reran the workload with Druid before comparing with
Db2 Event Store. To do this we setup an Apache Druid cluster
(using Hortonworks HDP version 3.1.0 which contains Druid
version 0.12.1) on 3 physical machines, each with 28 2GHz cores,
386 GBs of RAM and 2 direct attached SSDs running HDFS. On
the same hardware, we setup Db2 Event Store version 2.0 using the
same directly attached SSDs for local storage, and an NFS storage
target also on SSDs to closely match the I/O characteristics of the
Druid system. We then configured Druid for the environment by
moving the segment cache location to the locally attached SSDs
and increasing the number of processing threads to 55. Db2 Event
Store used its default configuration, without any modifications.

3.2.2.2 Ingesting data
We completed the data load using the TPC-H Scale Factor 100 data
set (100 GB, over 600 million rows), which we generated using the
publicly available tools for TPC-H [58], and ingested it into both
Druid (using the Hadoop Batch method) and Db2 Event Store (via
insert-sub-select from an external table in CSV format).

The ingest performance difference between Druid and Db2 Event
Store was significant. Inserting the data into Druid took 2 hours and
8 minutes while the insert into Db2 Event Store took 12 minutes
and 10 seconds — a 10.6x difference.

Figure 10 100 GB data set ingestion vs DRUID

3.2.2.3 Initial query performance
We then ran the nine benchmark queries in a batch and found that
Druid took 76.4 seconds to complete the run, while Db2 Event
Store completed in only 40.4 seconds - nearly 1.9x faster than
Druid, as shown below.

Figure 11 Query performance with 9 query workload vs

DRUID

When we looked at the queries one-by-one, we found that in all but
two queries, Db2 Event Store outperformed Druid, often
significantly. In the case of Q1, the query includes a count(*), and
Druid can make use of metadata it keeps to more efficiently
compute the result. It is also important to note that for the queries
that use LIMIT 100 to produce an exact result in Db2 Event Store
(Q6, Q7, Q8, and Q9), the same queries in DRUID are written using
their TopN function, which uses an approximation algorithm that is
not guaranteed to produce the exact query results and must be
configured explicitly [59]. The benchmark with the query response
time of each of the queries can be seen in Figure 12.

Figure 12 Query response time vs DRUID

3309

3.2.2.4 Adding more complex queries
Analysis of the benchmark’s queries revealed that from an analytics
workload perspective, the queries had fairly low complexity. As a
result, we supplemented the workload with two additional queries
which would provide slightly more significant complexity
(grouping by one or two non-key columns):

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM GROUP BY
L_ORDERKEY ORDER BY SUM(L_EXTENDEDPRICE) DESC FETCH FIRST
100 ROWS ONLY

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM GROUP BY
L_PARTKEY, L_ORDERKEY ORDER BY SUM(L_EXTENDEDPRICE) DESC
FETCH FIRST 100 ROWS ONLY

When these queries were run against Db2 Event Store and Druid,
we found that Db2 Event Store further outperformed Druid. The
first more complex query took 31 seconds to run on Db2 Event
Store and 861 seconds to run on Druid (a difference of more than
27x), while the second query took 159 seconds to run on Db2 Event
Store, and 1819 seconds to run on Druid (a difference of more than
11x). See the comparison in Figure 13. These results illustrate the
benefits of leveraging Db2’s mature query compilation,
optimization and runtime layers as query complexity increases.

Figure 13 Complex query response time vs DRUID

While these additional queries are slightly more complex than the
original benchmark’s queries, they are by no means complex. For
truly complex queries we’d need to include joins, which are
generally not supported by IoT databases, including Apache Druid
[60].

4. FUTURE WORK
There are several improvements we are considering for future
releases of Db2 Event Store.

Faster queries, enhanced by secondary indexes - Currently Db2
Event Store tables only support a single unique index, created using
a primary key. While this serves most IoT queries well, there are
some queries which benefit from index access on columns not
included in the primary key. To improve the performance of these
types of queries we're investigating secondary index approaches
which achieve the desired query performance gains, while not
sacrificing the system's ability to rapidly ingest data.

Online scalability - While Db2 Event Store can scale from a single
node to larger clusters, it currently hardens cluster size at
installation. We are currently investigating the modifications
required to allow Db2 Event Store clusters to scale both up and

down instantly. As the system was architected for scalability, this
work is largely an engineering effort.

Fine grained update/delete - As described in section 2.3.2, Db2
Event Store currently only supports removal of data through a time-
to-live mechanism (TTL). To allow for a broader set of use cases,
we have work underway to modify our data format to allow for fine
grained update and deletes. This work is challenging as we plan to
continue to use Apache Parquet (which does not natively support
data modification), continue to support cloud-based object storage
which is eventually consistent, and allow for high performance fine
grained updates and deletes which may only modify a single row in
a given file.

5. CONCLUSIONS
In this paper we present a novel, cloud-native database system
designed specifically for IoT workloads to provide extremely high
speed ingest, efficient data storage, and near real-time analytics.
The system is continuously available to both ingestion and queries
in the presence of node failures, and stores data in an encrypted
open data format on cloud native object storage. By leveraging the
Db2 compiler, optimizer and runtime layers, the system
significantly outperforms existing IoT database systems –
especially as queries get more complex – and is able to perform
complex analytics queries which include joins, sorting and
aggregation. Future work will enhance the system to allow it to
scale online and provide fine grained updates and deletes.

6. ACKNOWLEDGMENTS
The Parquet encryption work in this paper has been funded in part
by the EU Horizon2020 ProTego project (n 826284).

7. REFERENCES

[1] Cloudera, "Apache Hadoop Ecosystem," [Online]. Available:
https://www.cloudera.com/products/open-source/apache-
hadoop.html. [Accessed 2 March 2020].

[2] N. Cravotta, "IoT unavailable impact to the business
reference," 28 October 2019. [Online]. Available:
https://www.embedded-computing.com/guest-
blogs/redundancy-in-the-internet-of-things. [Accessed 1
March 2020].

[3] P. Selinger, M. Astrahan, D. D. Chamberlin, R. Lorie and T.
Price, "Access Path Selection in a Relational Database
Management System," In Proceedings of the 1979 ACM
SIGMOD international conference on Management of data
(SIGMOD ’79), p. 23–34, 1979.

[4] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V.
KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M.
Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer, D.
Sharpe, R. Sidle, A. Storm and L. Zhang, "DB2 with BLU
acceleration: so much more than just a column store," PVLDB,
6(11):1080–1091, 2013.

[5] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L.
Doshi and C. Bear, "The vertica analytic database: C-store 7
years later.," PVLDB, 5(12):1790–1801, 2012.

3310

[6] F. Farber, N. May, W. Lehner, P. Große, I. Muller, H. Rauhe
and J. Dees, "The SAP HANA database - An architecture
overview.," IEEE Data Eng. Bull., vol. 35, no. 1, p. 28–33,
2012.

[7] "Oracle Real Application Clusters (RAC)," [Online].
Available:
https://www.oracle.com/database/technologies/rac.html.
[Accessed 18 May 2020].

[8] J. M. Nick, J.-Y. Chung and N. S. Bowen, "Overview of IBM
system/390 parallel sysplex-a commercial parallel processing
system," in Proceedings of International Conference on
Parallel Processing, Honolulu, HI, USA, 1996.

[9] M. Stonebraker and U. Cetintemel, "One Size Fits All: An Idea
Whose Time Has Come and Gone," In Proceedings of the 21st
International Conference on Data Engineering (ICDE ’05), p.
2–11, 2005.

[10] Cboe, "Market History Monthly - 2019," [Online]. Available:
https://markets.cboe.com/us/equities/market_statistics/historic
al_market_volume/market_history_monthly_2019.csv-dl.
[Accessed 18 May 2019].

[11] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A.
Avanes, J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J.
Huang, A. W. Lee, A. Motivala, A. Q. Munir, S. Pelley, P.
Povinec, G. Rahn, S. Triantafyllis and P. Unterbrunner, "The
Snowflake Elastic Data Warehouse," In Proceedings of the
2016 International Conference on Management of Data
(SIGMOD ’16), p. 215–226, 2016.

[12] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani
and a. V. Srinivasan, "Amazon Redshift and the Case for
Simpler Data Warehouses," In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’15), p. 1917–1923, 2015.

[13] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili and
X. Bao, "Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases," In
Proceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD ’17), p. 1041–1052, 2017.

[14] "DB-Engines," [Online]. Available: https://db-
engines.com/en/ranking_categories. [Accessed 1 March 2020].

[15] "InfluxDB," [Online]. Available: https://www.influxdata.com.
[Accessed 18 May 2020].

[16] "Kdb+," [Online]. Available: https://kx.com/why-kx/.
[Accessed 1 March 2020].

[17] "Queries: q-sql," [Online]. Available:
https://code.kx.com/q4m3/9_Queries_q-sql/. [Accessed 1
March 2020].

[18] "Influx Query Language (InfluxQL)," [Online]. Available:
https://docs.influxdata.com/influxdb/v1.7/query_language.
[Accessed 1 March 2020].

[19] "Disaster-recovery planning for kdb+ tick systems," [Online].
Available: https://code.kx.com/q/wp/disaster-recovery/.
[Accessed 1 March 2020].

[20] "TimescaleDB," [Online]. Available:
https://www.timescale.com. [Accessed 18 May 2020].

[21] J. Correia, C. Costa and M. Y. Santos, "Challenging SQL-on-
Hadoop Performance with Apache Druid," Lecture Notes in
Business Information Processing, vol. 353, 2019.

[22] "Powered by Apache Druid," [Online]. Available:
https://druid.apache.org/druid-powered. [Accessed 1 March
2020].

[23] R. Shiftehfar, "Uber’s Big Data Platform: 100+ Petabytes with
Minute Latency," 17 10 2018. [Online]. Available:
https://eng.uber.com/uber-big-data-platform/. [Accessed 1 3
2020].

[24] S. Krishnan, "Genie is out of the bottle!," 21 June 2013.
[Online]. Available: https://netflixtechblog.com/genie-is-out-
of-the-bottle-66b01784752a. [Accessed 1 March 2020].

[25] K. Weil, "Hadoop at Twitter," 8 4 2010. [Online]. Available:
https://blog.twitter.com/engineering/en_us/a/2010/hadoop-at-
twitter.html. [Accessed 1 March 2020].

[26] "Lambda Architecture," [Online]. Available: http://lambda-
architecture.net/. [Accessed 1 March 2020].

[27] X. Léauté, "Benchmarking Druid," Druid, 17 03 2014.
[Online]. Available:
https://druid.apache.org/blog/2014/03/17/benchmarking-
druid.html. [Accessed 14 07 2020].

[28] B. Chattopadhyay, P. Dutta, W. Liu, O. Tinn, A. Mccormick,
A. Mokashi, P. Harvey, H. Gonzalez, D. Lomax, S. Mittal, R.
Ebenstein, H. Lee, X. Zhao, T. Xu, L. Perez, F.
Shahmohammadi, T. Bui, N. McKay, N. Mikhaylin, S. Aya
and V. Lychagina, "Procella: Unifying serving and analytical
data at YouTube," PVLDB, 12(12):2022-2034, 2019.

[29] "Amazon Timestream," [Online]. Available:
https://aws.amazon.com/timestream/. [Accessed 1 March
2020].

[30] "Amazon S3 pricing," [Online]. Available:
https://aws.amazon.com/s3/pricing/. [Accessed 1 March
2020].

[31] IBM, "IBM Db2 Event Store product page," [Online].
Available: https://www.ibm.com/products/db2-event-store.
[Accessed 2 March 2020].

[32] IBM, "IBM Cloud Object Storage," IBM, [Online]. Available:
https://www.ibm.com/products/cloud-object-storage-system.
[Accessed 14 07 2020].

[33] IBM, "IBM Cloud Block Storage," IBM, [Online]. Available:
https://www.ibm.com/cloud/block-storage. [Accessed 14 07
2020].

[34] The Ceph Foundation, "Ceph," [Online]. Available:
https://ceph.io/. [Accessed 14 07 2020].

[35] IBM, "IBM Spectrum Scale," IBM, [Online]. Available:
https://www.ibm.com/products/scale-out-file-and-object-
storage. [Accessed 14 07 2020].

3311

[36] "Apache ZooKeeper," [Online]. Available:
https://zookeeper.apache.org/. [Accessed 1 March 2020].

[37] Amazon, "Amazon Redshift FAQs," Amazon, [Online].
Available: https://www.amazonaws.cn/en/redshift/faqs/.
[Accessed 14 07 2020].

[38] "Apache Parquet," [Online]. Available:
https://parquet.apache.org/. [Accessed 1 March 2020].

[39] C. Luo, P. Tözün, Y. Tian, R. Barber, V. Raman and R. &
Sidle, "Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP," in EDBT '19, 2019.

[40] "Parquet Files," [Online]. Available:
https://spark.apache.org/docs/latest/sql-data-sources-
parquet.html. [Accessed 1 March 2020].

[41] "Snappy, a fast compressor/decompressor," [Online].
Available: https://github.com/google/snappy. [Accessed 1
March 2020].

[42] "GNU Gzip," [Online]. Available:
https://www.gnu.org/software/gzip/. [Accessed 1 March
2020].

[43] "LZ4 - Extremely fast compression," [Online]. Available:
https://github.com/lz4/lz4. [Accessed 1 March 2020].

[44] "Apache Parquet for C++: a C++ library to read and write the
Apache Parquet," [Online]. Available:
https://github.com/apache/parquet-cpp. [Accessed 1 March
2020].

[45] "Parquet modular encryption," [Online]. Available:
https://issues.apache.org/jira/browse/PARQUET-1300.
[Accessed 1 March 2020].

[46] "Implement encrypted Parquet read and write support,"
[Online]. Available:
https://github.com/apache/arrow/pull/2555. [Accessed 2
March 2020].

[47] J. Salowey, A. Choudhury and D. McGrew, "AES Galois
Counter Mode (GCM) Cipher Suites for TLS," August 2008.
[Online]. Available: https://tools.ietf.org/html/rfc5288.
[Accessed 1 March 2020].

[48] "Db2 native encryption," [Online]. Available:
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.
5.0/com.ibm.db2.luw.admin.sec.doc/doc/c0061758.html.
[Accessed 1 March 2020].

[49] IBM, "Data Skipping for IBM Cloud SQL Query," IBM,
[Online]. Available: Query

https://www.ibm.com/cloud/blog/data-skipping-for-ibm-
cloud-sql-query. [Accessed 14 07 2020].

[50] IBM, "IBM Cloud Object Storage Pricing," [Online].
Available: https://www.ibm.com/cloud/object-storage/pricing.
[Accessed 14 07 2020].

[51] E. O'Neil J., P. E. O'Neil and G. Weikum, "The LRU-K page
replacement algorithm for database disk buffering," In
Proceedings of the 1993 ACM SIGMOD international
conference on Management of data (SIGMOD ’93), p. 297–
306, 1993.

[52] N. Megiddo and D. S. Modha, "ARC: A Self-Tuning, Low
Overhead Replacement Cache," in In Proceedings of the 2nd
Usenix Conference on File and Storage Technologies (FAST
'03), San Francisco, CA, USA, 2003.

[53] P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie
and T. G. Price, "Access Path Selection in a Relational
Database Management System," In Proceedings of the 1979
ACM SIGMOD international conference on Management of
data (SIGMOD ’79), p. 23–34, 1979.

[54] "Time Series Benchmark Suite (TSBS) github page," [Online].
Available: https://github.com/timescale/tsbs.

[55] "Time Series Benchmark Suite (TSBS)," 28 Aug 2019.
[Online]. Available: https://blog.timescale.com/blog/how-to-
benchmark-iot-time-series-workloads-in-a-production-
environment/.

[56] Apache Software Foundation, "Apache Cassandra," [Online].
Available: http://cassandra.apache.org/. [Accessed 2 March
2020].

[57] "TimescaleDB vs. InfluxDB: Purpose built differently for
time-series data," 15 June 2019. [Online]. Available:
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-
time-series-data-timescale-influx-sql-nosql-36489299877/.
[Accessed 18 May 2020].

[58] "TPC-H," [Online]. Available: http://www.tpc.org/tpch/.
[Accessed 1 March 2020].

[59] A. Druid, "Apache Druid TopN operator," [Online]. Available:
https://druid.apache.org/docs/latest/querying/topnquery.html .
[Accessed 21 05 2020].

[60] "Druid Joins," [Online]. Available:
https://druid.apache.org/docs/latest/querying/joins.html.
[Accessed 1 March 2020].

3312

