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ABSTRACT

This paper introduces DIAMETRICS: a novel framework for
end-to-end benchmarking and performance monitoring of
query engines. DIAMETRICS consists of a number of compo-
nents supporting tasks such as automated workload summa-
rization, data anonymization, benchmark execution, moni-
toring, regression identification, and alerting. The architec-
ture of DTAMETRICS is highly modular and supports multi-
ple systems by abstracting their implementation details and
relying on common canonical formats and pluggable soft-
ware drivers. The end result is a powerful unified frame-
work that is capable of supporting every aspect of bench-
marking production systems and workloads. DIAMETRICS
has been developed in Google and is being used to bench-
mark a number of internal query engines. In this paper,
we give an overview of DIAMETRICS and discuss its design
and implementation. Furthermore, we provide details about
its deployment and example use cases. Given the variety of
supported systems and use cases within Google, we argue
that its core concepts can be used more widely to enable
comparative end-to-end benchmarking in other industrial
environments.
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1. INTRODUCTION

The data management landscape has drastically changed
over the last few years. The majority of database systems
are no longer manually tuned and optimized for a specific
application by well-versed administrators, instead, they are
designed to support a variety of applications. To support
all of these applications, a multitude of data models, stor-
age formats and query engines have transformed the data
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management landscape from standalone, specialized deploy-
ments to entire ecosystems. Workloads are now a combi-
nation of machine-generated queries for both transactional
and analytical workloads as well as ad-hoc queries, varying
by application and use case. At the same time, the per-
formance expectations of customers remain the same: They
expect the system to be tuned for optimal performance on
their workloads. This is commonly achieved in a manual
process that first identifies the most important customer
use cases which are then used to build curated benchmarks.
This process is not principled and may not yield compre-
hensive benchmarks valid for a long period of time due to
(a) the dynamic nature of continuously changing production
workloads; (b) a tight coupling between the workload and
underlying query engine, preventing customers from iden-
tifying queries that are important across multiple engines;
and (c) a general lack of understanding how query perfor-
mance is affected by small changes to the end-to-end sys-
tem. Given such complex company-internal ecosystems, it
is increasingly difficult to determine for example how well
a specific system is performing, how it compares to alter-
native systems for the same use case, or whether modifying
one of its components will negatively impact other parts of
the system. However, answering these questions in a princi-
pled manner is crucial to companies. DIAMETRICEE] is our
answer to this problem setting: a benchmarking framework
built at Google with the goals to (@) deliver a general so-
lution that is capable of benchmarking end-to-end a variety
of query engines; (b) support every step of the benchmark-
ing life-cycle; and (c) provide insights with respect to sys-
tem performance and efficiency. It is a one-stop tool for all
benchmarking needs including complex tasks such as bench-
mark generation, execution, and result visualization.

Prior work. Benchmarking data management systems is
certainly not new; from the early efforts of the Wiscon-
sin benchmark [2, 3], to the development of the industry-
standard TPC-H [27] and TPC-DS |28] decision support
and transaction processing |26] benchmarks for relational
systems, to benchmarks for object-oriented [6] or object-
relational [7] systems, or to larger cloud-scale serving bench-
marks |11] and their derivatives [15]. All these benchmarks
have been studied extensively and the knowledge gained [4]
has been used to modify them in various ways (e.g., |[13]) or

!The name stems from the unit within Google DIAMetrics
was originally developed to provide metrics for, DIA: Data
Infrastructure and Analysis.



deliver new benchmarks altogether that address the short-
comings of the existing ones (e.g., [5]).

The two common aspects of any of these benchmarks have
always been that: (a) the benchmark workload is statically
defined: even if there are randomly seeded data and query
generators their outputs all conform to well-defined pat-
terns, i.e., schemas, value distributions, and queries; and
(b) the system being benchmarked assumes complete con-
trol of the entire data management stack, from hardware
to software configuration and to manual tuning for optimal
performance. Though existing benchmarking efforts cer-
tainly serve their purpose for standalone deployments, they
are not indicative of production-level data management use
cases of an entire ecosystem. There, a query engine does not
have control of the data and storage formats; it is expected
to evaluate a wide spectrum of queries, from single-point
lookups, to real-time analytics, to extremely large machine-
generated queries over a multitude of formats, or any mix-
ture of the above; and it has little to no statistics about the
input a priori to guide the system’s optimizer and execution
engine to deliver robust performance. Static benchmarks
can act as a measuring stick, so to speak, but only for the
use case they have been designed to address. In all other
use cases a static benchmark is often not representative of
the actual system load.

Problem motivation. Our work is motivated by the obser-
vation that benchmarking is a key necessity to determining
the efficiency and usefulness of specific systems for specific
tasks. Not having a way to benchmark a production sys-
tem in a dynamic and often unpredictable environment may
prove detrimental not only to the system developer but also
to the user. The system developer spends an inordinate
amount of time tuning the system for particular use cases
and may not have clear insight into the larger-scale problems
of the system. For instance, the developer may spend effort
optimizing a particular operator at the micro-level, whereas
a comprehensive benchmark would have shown that there
would be greater benefit optimizing a different part of the
system’s processing pipeline. Or, the developer may decide
that more computing resources are necessary for a partic-
ular workload, when a targeted benchmark could showcase
that the majority of time is spent on non-compute-intensive
execution fragments. The user, on the other hand, benefits
from knowing the level of performance a system delivers. For
example, if that performance, is suboptimal, she can provide
the system developer with examples of this suboptimality,
or even move to a different engine that may be better suited
to the workload requirements.

Problem solution. Instead of focusing on a specific bench-
mark workload and using that as the means to test perfor-
mance and efficiency, we argue that we need a benchmark-
ing framework. That is, an architecture for benchmarking
that is capable of generating indicative benchmark work-
loads over production deployments, executing them, and
measuring a system’s performance on that workload. More-
over, to avoid duplicate effort, the architecture should be in-
dependent of the query engine and it should rely on generic
reusable components that can be instantiated with mini-
mal effort for every system that is to be benchmarked. At
the same time, the framework should provide the means to
track the performance per indicative benchmark workload
and use that historical information to measure improvement
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Figure 1: Part of the Google ecosystem.

over time. DIAMETRICS provides all that functionality and
has been used within Google to benchmark and reason about
the end-to-end performance of internal query engines.

While DIAMETRICS has only been used within Google,
we posit that its architecture is powerful enough to support
any query engine, as long as a minimal set of primitives are
implemented. This is corroborated by the internal use of
DIAMETRICS: although Google is a single organization, it
exhibits all the diversity characteristics we discussed earlier.

There are at least four internal query query engines, each
designed for different use-cases: F1 [24] 25|, Dremel [21],
Spanner SQL [1], and Procella [8]. There exist specialized
storage systems such as Mesa [19] and more generic ones
such as Colossus 23] which are leveraged by different ap-
plications, supporting different storage formats. Figure
shows an overview of part of the Google-internal ecosystem
of query engines and their dependencies. If every query en-
gine would benchmark according to their own needs, there
would be no accountability across engines and no way to
determine which systems are useful for which use case. In
contrast, DIAMETRICS is specifically built to consolidate
the benchmarking needs within Google, to provide an effec-
tive way to compare engines and at the same time provide
means to improve them.

Contributions. In this paper, we present an overview
of DTAMETRICS, a novel extensible framework for engine-
agnostic, repeatable benchmarking that is indicative of large-
scale production performance.

FRAMEWORK ARCHITECTURE. We present the generic ar-
chitecture of DIAMETRICS in Section We show a high-
level description of its components and discuss how its de-
sign allows for extensions with little effort while seamlessly
supporting its core functionalities. DIAMETRICS departs
from existing state-of-the-art benchmarking frameworks in
the following ways: (a) Instead of focusing on a specific
benchmark workload and using that as the means to test
performance and efficiency, DIAMETRICS provides an end-
to-end benchmarking framework. The system is capable of
generating indicative benchmark workloads over production
deployments, executing them, and measuring a system’s per-
formance on that workload. (b) In order to avoid duplicate
effort, DIAMETRICS is query engine independent and relies
on a handful of generic reusable components that can be
instantiated with minimal effort for every system that is to
be benchmarked. (¢) DIAMETRICS provides the means to
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Figure 2: An overview of the DIAMETRICS components.

track the performance per indicative benchmark workload
and use that historical information to measure improvement
over time.

MobuLAR COMPONENTS. We present the design and im-
plementation of the components of our system in detail in
Section [3] Each of the components is highly customizable
to cater to customer specific requests while being general
enough to handle a variety of use cases.

USeE CASEs. We discuss the deployment and varying use
cases of the DIAMETRICS framework within Google in Sec-
tion[d We discuss in detail the challenges faced by customer
teams, how existing benchmarking solutions fail to capture
their requirements and how DIAMETRICS is able to help
support their requirements. We outline some of the key
research challenges faced and insights from our experience
of working with our customers. Finally, we present related
work in Section [5| and conclude and identify future work
directions in Section

2. OVERVIEW

DIAMETRICS has two primary goals: (a) to be fully com-
posable and rely on enhanced reusability in order to facili-
tate benchmarking at scale; and () to be able to benchmark
and profile any internal system capable of evaluating queries
and any customer workload of that system producing these
queries. These goals are realized through two key notions:

e Canonical exchange formats: for extensive abstrac-
tion, whenever two components need to communicate,
they do so through well-defined exchange formats that
we term canonical. The formats are component-depen-
dent, but the intuition is that the module that facili-
tates the transition from one format to the other can
now be ‘plugged in’: if the component respects these
formats all DIAMETRICS pipelines remain functional.
System drivers: to interact with all supported query
engines, DIAMETRICS employs drivers, i.e., modules
that are capable of translating canonical workload rep-
resentations into query processing requests for each
supported query engine, gathering profiling metrics
from the execution of that query on the query engine,
and translating these metrics to the framework’s own
canonical profiling format for further processing.

2.1 Components

Using canonical exchange formats and system drivers, we
construct the DIAMETRICS pipeline as depicted in Figure[2]
We use five components when benchmarking a variety of
query engines and workloads: (a) the workload extractor,
(b) the query and data scrambler, (c) the data mover, (d) the
workload runner, (e) and the system monitoring and alerting
component. An overview of these components follows.
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Workload extractor. The first component extracts a rep-
resentative workload from a ‘live’ production workload. It
is often the case that customers experience a large mixture
of prepared and/or ad-hoc queries, but they cannot readily
identify which subset of queries is the best indicator for the
needs they would place on a particular database engine. To
help those users, DIAMETRICS employs a workload extrac-
tor and summarizer, which is a feature-based way to ‘mine’
the query logs of a customer and extract a subset of queries
that adequately represent the workload of the customer.

Data and query scrambler. A benchmark is not only
the query workload, but also the data that queries process.
The data, however, may be sensitive user data that cannot
be used verbatim for benchmarking. The data scrambler
anonymizes data in various ways (e.g., by masking data val-
ues, permuting column values in ways that do not alter the
value distribution of the column but break any correlations
between columns—to name but a few such ways). Once
the data has been scrambled, the query scrambler imple-
ments a similar functionality at the query level by altering
the queries so that they use the scrambled versions of the
input data.

Data mover. In practice, users may want to benchmark
is the efficiency of different storage back-ends, or different
storage formats on the same back-end, and so on. The data
mover undertakes the task of moving data between back-
ends and formats so that the same query can be executed
over multiple representations of its input.

Workload runner. The execution component within the
DIAMETRICS framework is the workload runner. In essence,
it allows users to specify various combinations of workloads
and systems to be benchmarked. For instance, we may want
to run TPC-H on various query engines over various storage
formats to see which storage format is the best option for
which engine. The workload runner periodically schedules
these runs over either specific production engines within our
infrastructure, or by bringing up a new standalone and her-
metic instance of an engine, executing the workload, and
shutting the instance down after workload completion. The
workload runner profiles the execution of each query and
exports its metrics in an internal canonical format so that
profiling metrics can be permanently stored for historical
analysis; or in a generic format used by various monitoring
systems within our infrastructure.

System monitoring and alerting. The last component
of DTAMETRICS is externally visible and responsible for pre-
senting the consolidated performance reports to users. Ad-
ditionally, its services can be used to alert interested parties
for potential performance issues. The component is divided
into a visualization framework, which brings up monitoring
dashboards for the captured profiling metrics; and an alert-
ing framework that, upon execution of a workload, compares
its performance to historical data and triggers alerts when-
ever there is cause for concern, e.g., the performance of a
query has degraded, or a query have started failing.

Each component described above can act as an entry point
to the DIAMETRICS framework. For instance, some user
may not need to create a production workload since they
may have one readily available through other means; or they
want to use a standard benchmark like TPC-H. Alterna-
tively, another user may only need to test different storage



back-ends for the same query workload, so they only need
to use the data mover to generate multiple instances of the
same workload. Essentially, the components described here
are designed in a way that they can be mixed and matched
specific to each benchmarking use case.

2.2 Workflow

Google-internal query engines are highly scalable and are
capable of serving billions of queries per day from multiple
customers, both internal and external. Each query served,
along with a number of internal system-specific information,
is logged for example in a distributed logging system run-
ning on Colossus, Google’s file system [12, [17]. The log
formats of each query engine are different, but there is a
lot of common information between them stored in different
ways. DIAMETRICS builds on top of the idea that log en-
tries in essence contain the same information, presented in
different ways. Specifically, it uses a canonical representa-
tion of a query log, which treats a query as a combination
of its query text and a number of features and their values
that describe its profile. This representation is leveraged
by DIAMETRICS to drive the workload extraction and sum-
marization process for custom benchmark generation. In
essence, the workload extractor connects to the respective
log system, extracting all relevant log entries that may con-
tribute to the benchmark. The summarizer then uses that
information to select an optimized subset of these logs that
can be used as a custom, representative query workload.

However, these queries are often based on sensitive user
data and are thus not available to any outside application
or benchmarking system. To address this problem, users
can choose to anonymize their data using DIAMETRICS’s
data scrambler. The data scrambler scans the original cus-
tomer data and applies various anonymization techniques
on it in order to ensure no sensitive information is leaked
to the benchmark dataset. In the simplest case, the data
scrambler will arbitrarily permute the values of a column
independently of other columns. Such permutation will en-
sure that per-column value distributions remain the same,
but correlations across columns are broken, thereby reduc-
ing the likelihood of disclosure. Additionally, the scrambler
may further obfuscate values by hashing them, by mapping
them to a different domain, or by adding a small amount
of noise so that the resulting dataset has approximately the
same statistical properties but over different values; and so
on. Finally, depending on the user’s benchmarking use case,
they might choose to compare their benchmark on a vari-
ety of storage layers or with different file formats. The data
mover allows DIAMETRICS to prepare the benchmark for
execution on a variety of back-ends, allowing the user to get
a comprehensive understanding of their execution patterns.

Once queries and data are stored in the correct place(s),
independent of whether they are derived from the above
pipeline or provided by the user, we deploy a workload run-
ner that reads a set of configuration files describing the ex-
ecution parameters and automatically runs the benchmarks
on the specified systems with the specified execution con-
straints. Following the modular principles explained above,
we allow users to write pluggable configurations, i.e., the
same system configuration may be used for a set of differ-
ent benchmarks. Note that by defining these configurations,
the user determines the parameters of the benchmark. For
example, they can decide to run the benchmark on a pro-
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Figure 3: Overview of the workload summarizer.

duction server or in isolation by using different system se-
tups. Similarly, they may choose to compare the generic
execution of the TPC-H workload to a platform-optimized
version to examine choices made by the query optimizer. In
all of DIAMETRICS’s benchmark executions, we follow stan-
dard experimental procedure and allow users to execute the
same workload and system configurations multiple times to
provide realistic results.

Finally, the last step in the end-to-end workflow is the in-
terpretation of the execution results. The monitoring com-
ponent of DIAMETRICS provides dashboards to the frame-
work users that allow them to easily interpret the historic
results of their benchmarks. It is triggered periodically and
automatically updates its dashboards whenever new execu-
tion results have become available. If desired, users can
furthermore use alerts to get notified when their execution
patterns change significantly from previously observed or
expected patterns. Our end-to-end framework for workload
benchmarking has simplified and streamlined benchmark-
ing within Google across different systems. It allows users
to set up automatic benchmarking in a matter of minutes
without needing to worry about the specific implementa-
tion details of executing repeatable benchmarks. In essence,
DIAMETRICS enables efficient and consistent benchmarking
at scale within Google.

3. FRAMEWORK COMPONENTS

We next present the components of the DIAMETRICS
framework in detail. Each component can be thought of as
a stand-alone facility, but it is their interaction that delivers
an end-to-end solution.

3.1 Workload extractor

One of the main problems when benchmarking any sys-
tem is defining the benchmark that appropriately evaluates
the system. Indeed, a single system may experience multi-
ple types of workload at different times. For instance, the
majority of queries may be long-running resource-intensive
analytics queries; or they may be single point lookup queries
for record retrieval; or anything in between when a user is
using a database in exploratory mode. These can be cre-
ated by a single or multiple customer(s) using the system
for different types of applications. Traditionally, system de-
ployments have been tailored for different application needs,
each deployment being optimized for the types of queries it



is expected to evaluate. With the move to distributed, large-
scale, federated, and cloud-based deployments, however, the
advantage of fully controlling the architecture of a system
is no longer given. A query engine is treated simply as an
end-point and is expected to be able to process user queries
with little to no optimization from the user. It is there-
fore a requirement for the query engine providers to cater
to different needs at the same time, which makes it impera-
tive to have a way to gauge the system’s performance on the
user’s workload. Whereas for relational systems we have had
benchmarks like TPC-H, TPC-C, or TPC-DS, mostly stem-
ming from the general division of relational workloads into
OLTP and OLAP, there are no representative benchmarks
for these (user-specific) mixed workloads.

To process not only standardized benchmarks but also
user-specific benchmarks, we developed techniques that com-
press a user’s workload into a small set of representative
queries that can then be used as a benchmark workload [14].
Our framework for workload extraction and summarization
roughly undertakes the following tasks:

Log canonicalization. To create a user-specific bench-
mark, log entries are first extracted and transformed to a
canonical representation that contains a set of features nec-
essary to drive summarization. Features can be anything
that characterizes the specifics of a query that are deemed
useful for benchmark creation. In DIAMETRICS, we sup-
port two types of features: syntactic and profiling features.
Syntactic features can be extracted by parsing the query,
e.g., the number of joins in the query statements or the
aggregate functions used in the query. Profiling features on
the other hand may encompass characteristics such as query
latency, CPU usage or amount of data read/written to disk.

Workload summarization. Once the workload features
have been extracted, we can leverage them to identify a sub-
set of queries for benchmarking this workload. The choice
of queries in the subset is driven by two metrics: repre-
sentativity and coverage. Representativity determines how
closely the distribution of features in the subset matches
the original workload. In contrast, coverage determines how
well the features in the subset cover the features observed
in the original workload. To an extent, coverage describes
the completeness of the benchmark. During workload sum-
marization, we optimize the selection of queries according to
these metrics and greedily pick the benchmark queries which
can then be used for realistic production benchmarking.

3.1.1 Summarization algorithm

In essence, the summarization problem described above is
an optimization problem. To solve it, we first define the
metrics that drive the optimization, representativity and
coverage as follows. Consider a feature f and let dom(W, f)
(respectively dom(S, f)) denote the domain of f in the in-
put workload W (respectively summary workload S). Cov-
erage oy is defined as the fraction of domain values cov-
ered by the compressed workload for feature f, i.e, oy =
|dom(S, f)|/|dom(W, f)| and the overall coverage « is the
average of ay over all features f. Observe that o and a5 are
always in [0, 1] where a score of 1 means that the coverage
is perfect. At the same time, workload W induces a discrete
distribution pw (-) over the tokens present in the features
of the queries in the workload. Let mw (¢, f) (multiplicity
of t in W) denote the number of times a domain value ¢ of
feature f appears in the entire workload W. Then, for any
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domain value ¢ of some feature f,

Zf Zdedom(W,f) mw (d, f)

In other words, pw(t) denotes the probability of selecting
token ¢ if we choose a token from W uniformly at random.
The workload summary S will induce a distribution ps(-);
the representativity metric then measures the distance be-
tween ps and pw.

Analogous to coverage, the representativity score is in
[0,1] where a score of 1 signifies that the summary work-
load is perfectly representative. For numeric features, we
discretize the entire space by normalizing the numerical val-
ues into histogram buckets within the range [B] for some
predefined constant B which becomes dom(W, f) for the nu-
merical feature.

pw (1)

Key algorithmic ideas. Our goal is to generate the sum-
marized workload S C W while maximizing coverage and
representativity, subject to budgetary constraints (such as
[W| = k). We accomplish this by employing a novel in-
stantiation of a submodular maximization algorithm that
minimizes the KL divergence between input workload distri-
bution p(-) and the compressed workload target distribution
d(-). Note that d(-) can be arbitrary and can be specified
by the user. The case when d(-) is the same as input distri-
bution, it is simply a specific instantiation of the algorithm.
Our algorithm is easily parallelizable and supports incre-
mental computation. A full description of the algorithm is
beyond the scope of this paper and we refer the interested
reader to [14] for more details.

Summarization desiderata. To accommodate different
types of benchmarks, the following desiderata describe the
design space of workload summarization as leveraged in prac-
tice by DTAMETRICS.

High Coverage and Representativity. High coverage is desir-
able to ensure that long-tail feature values are included
in the summary workload whereas high representativ-
ity ensures that the compressed workload must faith-
fully reproduce the target distribution which can be
either derived from the input workload’s feature dis-
tribution or specified by the user.

Scalability. Efficient computation of the summary workload
is a key requirement for any framework to be deployed
in practice. Ideally, the summarization algorithm must
compute the summary workload fast and scale effec-
tively to large input workloads.

Customizability. Note that the two metrics may well be com-
peting: high representativity may imply low coverage
if the original workload is skewed. The non-skewed
subset of the original workload will most likely contain
outliers in terms of our distance function, i.e., queries
with low representativity. Thus, we allow users to con-
trol the trade-off between these two metrics.

Constraints. Users may want to specify constraints on some
property of the summary workload like the number
of queries that form the benchmark; expected execu-
tion duration; or input/output size restrictions that
the benchmark is executed under.



Table 1: Summarization experiments.

Algorithm | | |S| — 50 100 200 500 1000
DIAMetrics 6 10 26 60 125
random sampling 10 12 15 22 25
k-medoids (syntax) 20177 20315 11739 12221 10396
k-medoids (profile) 1311 706 327 188 50

hierarchical (syntax) 21194 21283 21020 21574 21123
hierarchical (profile) 866 888 886 879 873

(a) Runtime (in s), |W| = 5000

Algorithm | | Metrics -+ coverage representativity

DIAMetrics 0.30 0.94
random sampling 0.09 0.99
k-medoids (syntax) 0.38 0.55
k-medoids (profile) 0.31 0.51
hierarchical (syntax) 0.27 0.51
hierarchical (profile) 0.32 0.45

(b) Metrics, |W| = 5000 and |S| = 100.

3.1.2  Summarization experiments

We next highlight some key experimental results compar-
ing our algorithm to state-of-the-art summarization algo-
rithms, namely K-Medoids, hierarchical clustering [9) |10]
and random sampling. Table shows the runtime for all
algorithms on a small sample of 5000 production queries.
Our algorithm is only marginally more expensive than ran-
dom sampling and up to two orders of magnitude faster than
clustering algorithms are in Q(N?). Further experiments
have shown that our technique can easily handle millions of
queries as input and is thus highly scalable. This is a key
requirement for our use case, allowing users to customize
their benchmarks iteratively. Going back to Table we
observe a difference in runtime when using syntactic vs. pro-
file features for clustering algorithms. In essence, distance
computation for profile features is cheaper than computing
the Jaccard distance between sets obtained from syntactic
features. Random sampling and our submodular algorithm
do not suffer from this drawback since they do not use a dis-
tance metric for comparing two queries. Table compares
the trade-off between coverage and representativity for sum-
mary size |S| = 100. While clustering algorithms achieve
good coverage but low representativity, random sampling
results in low coverage but high representativity. Our algo-
rithm is able to maximize for both and can achieve a better
cumulative result than any alternative method.

To understand how well an input workload matches a
summary workload, we leverage the same visualization ca-
pabilities of DIAMETRICS that are described in detail in
Section [3.5] Figure [fa] shows the dashboard when we maxi-
mize representativity for profile features execution time and
CPU time of a production workload while Figure @ shows
the histograms when we maximize coverage instead of rep-
resentativity. The x-axis shows the domain of a particular
feature (denoted 0,1,2... to anonymize) and the y-axis de-
notes the fraction of queries that contain the correspond-
ing feature value. Comparing these two visualizations, we
observe that the summary in Figure [{a] more closely repre-
sents the input while maximizing coverage requires picking
queries to maximize domain coverage which in turn mani-
fests as low representativity leading to a wider gap in the
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Figure 4: Dashboards for visualizing workload distribu-
tions of varying features.

histogram bars. A user can utilize these dashboards to ad-
just the input configuration, modifying the targeted metrics
until the desired outcome is achieved.

3.2 Data and query scrambler

In addition to finding a representative set of queries to ex-
ecute for benchmarking, DIAMETRICS also needs to ensure
that the data it is using for these benchmarks is represen-
tative. The choice of dataset will drive storage and query
processing decisions depending on the query patterns being
executed, the storage back-end, the complexity of the data,
and the data value distributions, to name but a few factors.

The data scrambler is a step towards addressing the prob-
lem of representative data generation, as it provides a simple
and efficient way to use production data for query bench-
marking. The intent is to have a facility that would allow
one to quickly sanitize a representative production dataset
and use actual production queries over the sanitized version
for performance benchmarking. Once workload summariza-
tion identifies the queries that are representative of a work-
load, we can use the inputs these queries process to snapshot
the production data and use that snapshot to build a ver-
sion of the input data to be used for benchmarking. This is
not always straightforward, mainly because production data
may contain fields, values and correlations between them
that are sensitive and should not be used for benchmark-
ing purposes. In the data scrambler we solve that prob-
lem by breaking correlations between values; by protecting
data through hashing their values to obfuscate them; and by
adding small amounts of noise to the data so that their dis-
tributions are not significantly altered, whereas their orig-
inal values airare. While the scrambler does not provide
formal guarantees with respect to privacy or non-disclosure,
it has been found to alter the input data in a reasonable way
that might be good enough for performance benchmarking
in a secure industry setting. No formal guarantees notwith-
standing, the scrambler is also extremely customizable and
may well provide these guarantees implicitly if configured
properly by data owners.
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Employee Employee (scrambled)

Age | City Salary Age | City Salary
25 | Madison 130,000 35 | Madison 300,000
85 Seattle 145,000 28 San Francisco | 280,000
42 San Francisco | 300,000 25 Mountain View | 145,000
28 | Mountain View | 280.000 42 | Seattle 130,000
32 Denver 180,000 22 Palo Alto 190,000
55 New York 190,000 39 Boston 180,000
22 Boston 120,000 55 Denver 190,000
39 Palo Alto 190,000 32 New York 120,000

Figure 5: The data scrambler in action: the input table
is split into chunks and the values in each column of each
chunk are individually permuted.

3.2.1 Scrambling techniques

The data scrambler, at its core, performs a column-wise,
row-bounded, permutation of data values across the fields
of a table. That is, a table is first split into chunks each
with the same number of rows. For each column of each
row in the chunk, its values are permuted arbitrarily and
independently of one another. The chunks are then col-
lated to produce a new version of the original table. The
scrambler is shown in Figure [f] where we show a potential
scrambling of an example Employee table. In the example,
we assume a chunk-size of four rows. The values of the
columns within a chunk will be independently permuted.
We call the mapping between old and new positions of the
values of a single column a permutation order for that col-
umn. For instance, the Age column in the first chunk has
a different permutation order than the Age column in the
second chunk: the permutation order in the first chunk is
[1 — 3,2 - 1,3 — 4,4 — 1], whereas the permutation
order in the second chunk is [1 — 4,2 — 3,3 — 1,4 — 2].
Moreover, the permutation order across columns of the same
chunk is not the same. For the City column of the first chunk,
its permutation order is [+ 1,2 — 4,3 — 2,4 — 3], which,
again, is different than the permutation order of the Age
column for the same chunk.

Key algorithmic ideas. There are two advantages to the
approach we follow. The first one is that the value dis-
tributions per column in the scrambled table will remain
exactly the same as those in the original table. The values
themselves will not change; they will merely appear in a dif-
ferent order. The second advantage is that any correlations
between columns will be broken, as the values of the two
columns will be permuted independently of one another. In
the example of Figure |5} if we knew that there was only one
single 22-year old employee in Boston we could have iden-
tified their salary; whereas in the scrambled version that
correlation has not been preserved, therefore it is not pos-
sible to make that association. Note that depending on the
use case for the benchmarked dataset, this is not necessarily
a good idea, as these correlations may be important. If that
is the case, the scrambler can be configured so that groups of
columns have the same permutation order and correlations
are preserved in the output, while it can still guarantee the
property of the correlations being split between a group of
correlated columns and the rest of the columns of the row.
In essence, the scrambler works as follows:

1. Split the input into chunks of some pre-determined
number of records.
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2. Within each chunk, we scan its records maintaining the
current path with each traversal within the record.

e Whenever we come across a value, if the path
that this value corresponds to is to be scrambled,
we enumerate the value by storing it in a map
of the appropriate type. The map is a mapping
from the path expression to a pair of value and
frequency count (i.e., if we come across a value for
the second time we only increment its counter).

If the value is not to be scrambled, we either ig-
nore or obfuscate it, depending on configuration.

3. Once the chunk is exhausted and all its values have
been enumerated, the chunk is scanned again and scram-
bled. For every path to be scrambled and whenever we
come across a value in that path, we draw a random
number to land in the enumeration map; that will be
the new value of the field. We update the map accord-
ingly, decrementing the frequency for every value we
use and removing exhausted values.

After all records in the chunk have been exhausted, we
output the chunk and move on to the next one.

Note that the process described above works for both se-
quential and parallel scrambling, since it is trivial to process
each chunk in parallel. The sequential and parallel imple-
mentations will produce identical results as long as the sizes
of the chunks are the same and the same random number
generators per chunk are used. Additionally, the scrambler
can be used to sample from an input, or expand it with-
out changing its statistical properties. While scrambling
each chunk, and when processing a single row, we can either
sample the row with some probability; or re-scramble it a
number of times to reach a desired output size.

Scrambling desiderata. The approach outlined above
works for flat data, in addition to arbitrarily nested datasets.
For instance, consider a table with an array field. We can ap-
ply the permutation-based approach by collapsing all values
across all array fields of a chunk of rows, and then perform-
ing the permutation. An additional advantage here is that
the length distribution of the array fields will not change, so
the output will still be a representative version of the input.
In addition to permuting data values, it is possible to add
extra functionality across three other dimensions:

e Leaving values unchanged, perhaps because the fields
containing them are insignificant to a particular work-
load and are therefore irrelevant to scrambling.
Adding small amounts of noise to values, potentially
in addition to permuting them, in a way that does not
significantly alter their distribution.

Obfuscating input values by hashing them, again po-
tentially in addition to permuting them, since the val-
ues themselves are significant and should not appear
in the scrambled output verbatim.

We identify the parts of an input to apply specific trans-
formations on through path expressions from root to leaf.
Working with path expressions is necessary to account for
the complexity of production schemas, which have array
fields, or nested relations at arbitrary depths. For instance,
if we blacklist path /root/to/value/left/unchanged/, then
whenever we come across values that belong to that path we
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Figure 6: Overview of the workload runner’s components.

can leave them unchanged. Likewise, we can use a path ex-
pression to designate that the values of other paths will have
small amounts of noise added to them, or obfuscated.

3.3 Data mover

The data mover acts as an intermediary between formats.
The intuition behind the data mover is to give DIAMETRICS
the ability to generate multiple benchmarks from the same
workload by converting the same input source to fit differ-
ent storage back-ends. This is far from trivial as there are
multiple aspects to take into account when designing data
transformation mechanisms. First, different storage formats
imply different schema definitions, which in turn implies po-
tential type conflicts. For instance, the target format sup-
ports dates only as milliseconds in the epoch, whereas the
format we want to move data from stores these dates as
strings; thus, the data mover needs to apply the transforma-
tion from one format to another. Second, some input format
may have additional statistical information embedded into
its sources, or even value indexes incorporated. If that is
the case, the data mover deploys a best-effort mechanism to
replicate the original input structure with as many auxiliary
structures transferred to the output as possible. Other infor-
mation that the data mover attempts to preserve is sharding
information, e.g., the number of shards and the partition-
ing scheme; input storage properties like the input being
sorted; data definition properties like functional dependen-
cies if these are supported by the target storage back-end;
and, in general, any optimizations that are present in the
input dataset and might affect the performance of the stor-
age back-end if they are not preserved. Once the requested
data movements have taken place, the input workload will be
rewritten so that instead of using the original input sources,
it uses the newly generated data sources.

3.4 Workload runner

The benchmark execution component of DIAMETRICS is
the workload runner. The runner accepts multiple execution
configurations as input, with each execution configuration
containing the following four elements: (a) a number of sys-
tems and their configurations to use for benchmarking; (b) a
number of benchmark configurations; (¢) a number of work-
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loads to benchmark; (d) a number of alert configurations
to trigger if there are any issues detected when running a
benchmark. The workload runner will then run each execu-
tion configuration by deploying every workload over every
benchmark configuration and over every system configura-
tion. We next describe each of these configurations in detail:

System configuration. This configuration encapsulates the
endpoint of a query engine in the Google infrastruc-
ture. This may be a production instance of a query
engine, or a configuration for a new hermetic instance.
In the latter case, the workload runner will bring up
the instance before proceeding and tear it down upon
completion of the benchmark. In both cases, if there
are any system-specific options to pass along to the
endpoint, they are embedded into this configuration
and passed on to the system at benchmark-time.

Benchmark configuration. This configuration describes var-
ious benchmark-specific parameters like the number of
iterations for each query, a location to store the profil-
ing metrics for the benchmarked workloads, or query-
specific options to apply before sending a benchmark
query for execution.

Workload configuration. The workload is effectively a set of
self-contained queries that every system referred to in
the overall execution configuration is assumed to be
capable of evaluating. Each query has certain iden-
tifying information, along with a set of potential pa-
rameter values that are instantiated at query execu-
tion time. Parameters allow for a single query tem-
plate to result in multiple concrete queries at run-time,
which, in some cases, drastically reduces the length of
a workload configuration. Workloads may be further
divided in logical entities termed query sets if the user
of the system wants to have a high-level grouping of
the benchmark queries.

Alert configuration. The alert configuration places conditions
on the metrics captured during query execution and,
if that condition is true after workload completion, the
runner will fire off the alert. We will present the alert-
ing framework in more detail in Section [3:5

All of these configurations are uniquely identifiable in the
system as well as reusable. For instance, one may have the
same system configuration referred to from multiple execu-
tion configurations; or the same workload executed on mul-
tiple systems. Configurations are stored in the metadata
database of DIAMETRICS. When the workload runner is re-
quested to process an execution configuration, it determines
the specifics of that configuration in the metadata database,
and retrieves all required system, benchmark, workload, and
alert configurations it refers to. Next, the runner will de-
ploy an intermediate orchestrator to configure systems and
benchmark, run queries, save their profiling metrics, and
evaluate any potential alerts as shown in Figure [f] While
the default execution is sequential, the workload runner also
offers various degrees of parallelism at any point of a con-
figuration. For example, the runner may send the same
workload of all targeted systems for execution in parallel;
but within a system it can be configured to issue queries
sequentially for better isolation.



Key framework ideas. The workload runner connects to
a variety of query engines through system drivers. That is,
given a query, the runner needs to issue that query against
a target system. It will therefore need to use a system-
specific client to generate a processing request for that sys-
tem. Once the query is evaluated, it will return various
profiling information for its execution. That profiling infor-
mation may contain irrelevant information for further pro-
cessing within DIAMETRICS, but the system driver will dis-
till it into a canonical representation that is common across
all supported systems, aiming to support as many elements
of that canonical representation as possible. Captured pro-
filing information includes, but is not limited to: latency,
resource consumption, scheduling and planning time, time
the query spent queuing for execution slots, number of exe-
cution fragments, number of input bytes, number of output
bytes, number of input tables, number of physical input files,
number of remote procedure calls generated during query
execution, types of operators in the query and their count.
In general, there is a multitude of information each system
may export; the driver of the system captures that infor-
mation and, where applicable, converts it into the canonical
profiling format.

Finally, the benchmarking results are persistently stored
for system monitoring and historical analysis, and addition-
ally to drive the alerting framework. To better aid with
the analysis, the results of a benchmark execution not only
contain the profiling metrics, but also all references to all pa-
rameters of the execution like the system configuration that
was used, the benchmark configuration, the queries them-
selves and the values of any parameters expanded during
query set up. The results themselves can be analyzed using
any of the database engines DIAMETRICS itself benchmarks:
they have a well-defined schema and are stored in a format
accessible through any of Google’s query engines.

3.5 System monitoring and alerting

After the workload runner has executed a workload, we ex-
port the output into DIAMETRICS-specific logs. These logs
are then used to (a) allowing users to monitor benchmark-
ing performance through result visualization, and (b) auto-
matically monitor performance regressions and issue alerts.
System monitoring is a core objective of DIAMETRICS, as it
helps users to track the performance of the system. At the
same time, it is useful to system developers to track incre-
mental changes of the same workload, visualizing whether
changes to the codebase improved a system’s performance.
Alerting, on the other hand, can signal to developers and
workload owners if there exists a significant performance
degradation in the most recent snapshot of the system, if
there were any failures, and so on.

3.5.1 Performance monitoring

DIAMETRICS automatically retrieves the logs that the
workload runner generates and uses the logged profiling met-
rics for visualization. Specifically, we use static dashboards
to visualize the workload execution over time in terms of es-
sential statistics such as latency, CPU time, spilled bytes and
any other metric that is captured by the executed system
and deemed important by the client. An example of perfor-
mance tracking of execution time using the same benchmark
for various systems is shown in Figure[7a] Here, we observe
the execution of three different systems, one of which is exe-
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Figure 7: Example dashboards for per-benchmark perfor-
mance monitoring.

cuted with two different system settings. Their performance
is tracked over a timespan of ten days and the average ex-
ecution time is reported. We primarily monitor aggregate
metrics like the geometric mean of Figure for latency,
but this is not the only capability of the monitoring sub-
strate of DIAMETRICS. The dashboard visualizations allow
for an intuitive comparison of the different systems and, at
the very least, signal (a) how stable a system is, and (b) how
a system fares in comparison to alternative deployments of
the same system, or other internal query engines.

In addition to simple tracking dashboards, we also devel-
oped more insightful dashboards, such as dashboards that
look at the scalability of a system. Recall from Section [3.1
and Section [3:2] that we can compress workloads and input
data to different sizes. We can therefore use these different
samples of the same workload to observe the relative differ-
ence of performance as we scale the input size. In Figure
we show such a dashboard for CPU time. Here, we observe
that the same three systems scale differently in terms of
their CPU time. Ideally, we would want to scale a system
(sub-)linearly. If the ratio of the scaling factors is equivalent
to the ratio of the CPU time, the scalability plot will center
around one. If the ratio is below one, the system scales sub-
linearly. In this specific case, we observe that only ‘System
X v2’ and ‘System Y’ show the desirable scaling performance
and are able to alert users of ‘System X v1’ accordingly.

Finally, DIAMETRICS is able to show the per-query per-
formance breakdown for each query in the workload. This
is essential information, as shown in Figure where the
execution time for this specific query is noisy for some of
the systems. A historical performance tracking framework
allows system designers to see these kind of inconsistencies
and eventually correct them. Note that these inconsistencies
are only apparent if we drill down into the per-query execu-
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Figure 8: Examples dashboards for per-query benchmark
performance monitoring.

tion of the workload and may be cushioned when looking at
the overall performance of a system.

Exploring this direction even further, DIAMETRICS is able
to break down per query performance by query operation,
in this case using a SQL engine, too. In Figure 8D we visu-
alize two different systems that run the same query on two
different data layouts to compare performance. We observe
that System X performs comparatively better on data layout
1 while System Y is preferable on data layout 2. Further-
more, these different data layouts lead to different utiliza-
tion of SQL operators: While data layout 1 results in query
execution being dominated by aggregation operations, data
layout 2 results in join operations also taking a comparative
fraction of query execution. This type of information is in-
valuable when evaluating different systems as well as storage
layers, optimization mechanisms, and so on.

3.5.2 Alerts

DIAMETRICS implements an alerting framework that is
inherently coupled to system monitoring. At an abstract
level, the alerting framework uses the metrics produced by
the latest run of an execution configuration and compares
them to their historical behavior to identify potential regres-
sions. Alert triggers are configured at a per-metric level. For
instance, the most frequently used alert compares the latest
value of a metric with the aggregate value of the metric over
the last time period; if the difference between the last mea-
sured value and the historical aggregate exceeds some user-
defined threshold, then the alert is triggered. Another type
of alert only looks at the latest measured value and checks
that is within specific bounds—usually set up to simulate
the service-level objectives of the system on the benchmark
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being evaluated. Upon an alert being triggered, the system
generates a record containing the alert itself, its triggering
conditions, and the pointers to the queries that caused the
alert to be triggered in the first place so the recipient of the
alert can quickly identify the offending query and triage the
issue. The alert record is then delivered to various interested
parties either immediately, by being embedded in an email
to the team that owns the benchmark, or by being filed as
an issue for immediate attention. Additionally, the alert
record itself is also stored so that other consumers of the
alert can pick it up asynchronously by monitoring the alert
log. At the same time, and in addition to the framework’s
own alert evaluation primitives, DIAMETRICS exports in an
internal monitoring format all the metrics gathered during
benchmarking to external production monitoring systems
for other teams. Production monitoring teams can then use
these metrics to set their own monitoring. One added pro-
visioning of DIAMETRICS is that the historical performance
data can be used for further analysis like statistical process-
ing, or identifying correlations between metrics, or any other
type of more complicated regression analysis. Overall, alerts
are an important facility of DIAMETRICS in order to iden-
tify any deviations from the expected norm and focus the
attention of the development, production, and benchmark-
owning teams to problematic situations that can be exem-
plified through a handful of queries exhibiting the problem.

4. DEPLOYMENT & LESSONS LEARNED

DIAMETRICS is capable of benchmarking all production-
ready generally-available SQL engines within Google as well
as selected internal, non-SQL engines. With every work-
load run it evaluates thousands of queries across multiple
systems, gathering and storing performance metrics for im-
mediate and later analysis. It has enabled query engine pro-
duction teams to set performance goals and know where they
stand with respect to alternative systems, while it has also
helped teams to migrate between query engines by identify-
ing problematic cases and setting up roadmaps for the mi-
gration. In what follows, we will sketch out the most widely
encountered use cases for DIAMETRICS, some of them ex-
pected, but others being off the beaten track with respect
to its original design.

4.1 Benchmarking

The core idea behind DIAMETRICS is to provide users
with an intuitive means to benchmark their systems. To
that effect, we have developed DIAMETRICS to be modular,
customizing the benchmarking experience to the team’s use
case. Tooling for daily benchmarking is currently used by
a variety of Google query engines such as F1, Procella, or
Dremel. Comparing the performance of these engines but
also being able to reason about the performance of each sys-
tem has become a crucial part of evaluating the success of
these engines. When using DIAMETRICS for benchmarking
within Google, we have specifically encountered the follow-
ing use cases:

Workload characterization. One of the highest barriers
of entry to DTAMETRICS has been that teams often do not
have a clear grasp on what their query workload looks like;
or, if they know all the query patterns that they employ,
they have no clear way to identify which patterns are more



important than others. In some cases, a simple frequency-
based clustering of queries is enough to identify a rough
approximation of the workload; but in the majority of cases
that is not possible. Workload summarization is a powerful
method to compress a workload into a benchmark, providing
guarantees about the output in terms of its representativity
and coverage. Moreover, the summarizer is capable of de-
livering the benchmark workload under specific constraints
in terms of the profile of the extracted benchmark. Having
such a facility in place allows teams to quickly turn their
workload into a benchmark with minimal manual log min-
ing and configuration on their part. As such, it allows these
teams to focus on their own mission without having to in-
ternally benchmark the performance of their query engine.

Workload optimization. DIAMETRICS is capable of pro-
ducing tracking dashboards for various combinations of sys-
tem configurations over different versions of the same work-
load. As a result, workload owners can measure the impact
of these configurations on their workload. Internal teams
have used DIAMETRICS to test their optimizer’s perfor-
mance by comparing out-of-the-box and manually optimized
versions of a workload; or to compare the performance of dif-
ferent storage configurations; or to measure the impact of a
feature upon a workload by comparing system performance
with the feature being turned on or off. Having the ability
to do this with minimal configuration and over production
workloads in addition to standard benchmarks, improves the
confidence of development teams in their decisions and not
only optimizes specific use cases, but also reduces the man-
agement and financial cost of deploying these workloads.
Moreover, being able to do so on a compressed version of a
workload that is representative of the original one with ro-
bustness guarantees allows the data owners to quickly per-
form these optimizations at scale and extrapolate from the
performance of the compressed workload to the expected
performance of the system on the actual workload.

Performance accountability. Tracking the historical per-
formance of a query engine on a workload is a two-way street.
Not only is it useful for a query engine to track how well it
performs on a specific workload, it also works in the inverse
direction: the developers of an application using a query
engine can hold the engine accountable for the performance
it delivers on their application. DIAMETRICS can be used
to deliver compliance benchmarks for service level objec-
tives between data owners and query engine users, and the
production team of the query engine. Such accountability
bridges the gap between teams and leads to a common un-
derstanding of the expected level of performance. Whenever
there is any cause for concern, tracking dashboards act as
the proof for that concern and aid towards its resolution.

Data anonymization. The DIAMETRICS framework en-
ables the use of actual production-like data for benchmark-
ing, thus eschewing the need to come up with synthetic data
generators or not being able to benchmark a system with
production-like workloads altogether. Often, internal teams
have a good idea of benchmark queries, but it is impossible
to run these queries over production data as the data con-
tains sensitive user information that only the owning team
should be able to access; adding DTAMETRICS as a data ac-
cessor is simply not an option, nor is it an option to provide
access to the data through some other role. The data scram-
bler can help in these cases as it can reformat the data in
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various ways and with user-controlled degrees of anonymiza-
tion. Moreover, scrambling takes place in ways that preserve
the input value distributions, thus making the scrambled
data a good representation of the original production data.

4.2 Software development

In addition to traditional benchmarking, we also offer sup-
port for developers to run their benchmarks on experimen-
tal instances. DIAMETRICS has improved awareness of how
different changes to the codebase impact different query en-
gines and has started to integrate large-scale benchmarking
into the developer’s workflow. Our tool has impacted prod-
uct development as follows:

System comparison and choice. Our original intention
was not to compare the performance of query engines but
to provide a single benchmarking framework that supports
all internal implementations with the ability to provide his-
torical tracking of multiple performance metrics. As the im-
plementation of DIAMETRICS progressed, a new use case
emerged: helping new teams decide on the most appro-
priate query engine for their workload. Whereas for well-
established teams it is hard to migrate to a new query en-
gine, newer teams do not have such tie-ins. It is therefore
possible for a team to come along with a representative work-
load and test that workload on the internal query engines
that can support it. They can then make an informed deci-
sion as to which query engine provides the best support for
their workload. Additionally, if they are keen to work with
a specific query engine but that engine is not optimized for
the workoad, they can provide the engine’s developers with
example queries where performance suffers. The developers
can then integrate these performance enhancement requests
into their own roadmaps and have an immediate way to
measure their progress towards satisfying these requests.

Performance-driven development. DIAMETRICS has
been frequently used to set performance goals for develop-
ment teams. One of the typical use cases is to identify prob-
lematic worklads for a particular query engine and then set
a roadmap for implementing improvements for these work-
loads. Development teams will then use DIAMETRICS to
track their performance on those workloads, observing how
their modifications improve the system’s performance. At
the same time, and given that DTAMETRICS may be using
other workloads for benchmarking as well, the development
team has assurances that newly introduced improvements
do not degrade the performance of other workloads.

Release blocking. Monitoring and alerting give rise to the
production of compliance tests for the query engines that
DIAMETRICS supports. Recall that our framework can tar-
get any existing query engine deployment. Some of these
deployments may be staging ones, running a version of the
system’s binary that is different to the official one; most
frequently the latter is a release candidate version. By com-
paring the performance of a benchmark on the current bi-
nary with that of the release candidate, teams can identify
potential problems before releasing the candidate and block
the release in the presence of a potential regression. Again,
one of the welcome side-effects of DIAMETRICS is that it
exemplifies the regression through a handful of queries in
which the regression manifests. By having this informa-
tion, development teams can quickly start addressing the
regression, continuously checking the convergence between



the degraded and expected performance. At the same time,
avoiding a bad release has measurable performance and fi-
nancial impact.

5. RELATED WORK

Benchmarking is not a novel problem, especially in the
context of data management |2} |3, |4l |5 16, |7} |11} |13} [15]
206, |27, 28], but has become increasingly important over the
last years with the increase in available data, the move to
hosted management and data services, and the need for low
latency processing regardless of data size. All systems need
to be robust, i.e., they need to consistently execute their
workloads without performance degradation due to changes
in the data or the underlying codebase. Robustness has been
discussed in several lines of research in the broader context
of database systems. For example, [22| discusses robustness
for changing datasets while |32| addresses robustness in the
context of query plan optimization. Our use-case is not so
much data-driven as it is development-driven. Code changes
have similar, if not worse, impact on the performance of
data management systems if not tested appropriately and
continuously. This is especially true in environments with
rapid code development and release iterations.

From a research perspective, the work that is closest to
some of the ideas implemented in DIAMETRICS is workload
compression [9] and particularly its application to index se-
lection for relational databases [10]. This is merely part
of what our framework supports and any compression al-
gorithm can be ‘plugged in’ to DIAMETRICS so long as its
inputs and outputs are translated to the canonical repre-
sentations the various components of DIAMETRICS expect.
At the same time, DTAMETRICS does not aim to provide
insight into different storage configurations of a dataset to
optimize its run time; rather, it provides the support nec-
essary to compare and contrast the performance of a query
engine on these configurations. Similarly, while workload
characterization has received attention from the database
community, it has often been used for limited-scope pur-
poses: (a) as a tool to help with physical design [31]; (b) as
a means to identify interesting queries to help in debugging
SQL performance [18]; or (¢) as a way to identify data clean-
ing primitives in large datasets [20].

Industry-wise, there exist commercial products that al-
low customers to replay entire workloads [16] in order to
analyze performance [29]. The users of these products are
expected to replay an entire workload, whereas we can filter
it through our summarizer, in order to have something to
measure the performance of an SQL engine on. The goal is
to completely replay a workload trace down to the sequence
and timing of queries issued. This is not our focus: instead,
we aim to provide repeatable benchmarking for a variety of
systems and not the means to debug any performance is-
sues faced by a particular deployment. Additionally, prod-
ucts like [16} [29] are specific to a system and lack the ability
to compare and contrast multiple metrics across systems.
Overall, and while certainly related to some of the compo-
nents of DTAMETRICS, that line of products is less general
and focuses at reactive optimization as opposed to proactive
end-to-end benchmarking, which is our intention.

The effort that is most related to ours is Snowtrail [30].
While the objective is similar, i.e., testing with production
data to identify performance regressions, the approach is
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much more limited in scope compared to DIAMETRICS. Per-
formance regression is but one of the use-cases supported by
DIAMETRICS, which is (a) far more general in its architec-
ture, (b) provides more stand-alone components, each allevi-
ating a particular benchmarking problem, as opposed to the
monolithic design of Snowtrail, (¢) is capable of supporting
more metrics than latency, and (d) supports cross-system
benchmarking. To the best of our knowledge, DTAMETRICS
is the first system to provide a disciplined and generic end-
to-end solution for benchmarking multiple query engines in
a single framework.

6. CONCLUSIONS AND OUTLOOK

We presented DIAMETRICS: a framework for benchmark-
ing query engines within Google. DIAMETRICS employs
a modular architecture of fully reusable components and
configurations to simplify the deployment of benchmarks in
production environments. Its capabilities extend from gen-
erating benchmarking workloads from representative sub-
sets of customer queries, to anonymizing production data
for benchmarking purposes, to scheduling the execution of
these workloads across multiple query engines and storage
backends, and, finally, to system monitoring and alerting. It
has been used in various ways within Google, including, but
not limited to, historical benchmark performance tracking,
system performance comparison, performance-driven devel-
opment, and release blocking.

DIAMETRICS is a relatively new effort, that has already
shown strong potential and we believe could be used in var-
ious more ways than it was originally designed for. For
starters, it would be interesting to apply these techniques
not only to internal customers, but also to external cus-
tomers using Google’s infrastracture and query engines that
are interested in custom benchmarks to track the perfor-
mance of Google systems on their workloads. Although in-
ternal workloads can be immensely complicated they are
also under our complete control. So if there are any issues
with any part of the DIAMETRICS pipeline we can manually
intervene and ensure progress; this is not always the case
with external customers. Another interesting application
of DIAMETRICS would be to use it to make configuration
recommendations for new customer workloads. By measur-
ing the similarity of a new customer’s workload to existing
ones we can set expectations for the performance an internal
query engine will deliver. These expectations can be used to
set service-level objectives for the engine itself with respect
to the customer’s workload. Furthermore, workload simi-
larity may imply configuration similarity so a new customer
can have a head-start with respect to optimizing a query en-
gine’s performance on their workload. Alternatively, various
sample sizes of a target summarized workload can be used
to estimate the scalability of an engine for that workload,
and even extrapolate to the performance of the engine as the
size of the workload grows; such capability is very helpful
for provisioning and planning.

Overall, DIAMETRICS solves the key problem of system
benchmarking at the query engine level by providing a uni-
form way to develop benchmarks for multiple systems with-
out worrying about the intricacies of each individual system.
It does so in a scalable and extensible way and we believe
that its modular architecture renders it as a framework that
is truly greater than the sum of its parts.
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