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ABSTRACT

In this paper, we describe the Polaris distributed SQL query engine
in Azure Synapse. It is the result of a multi-year project to re-
architect the query processing framework in the SQL DW parallel
data warehouse service, and addresses two main goals: (i) converge
data warehousing and big data workloads, and (ii) separate compute
and state for cloud-native execution.

From a customer perspective, these goals translate into many useful
features, including the ability to resize live workloads, deliver
predictable performance at scale, and to efficiently handle both
relational and unstructured data. Achieving these goals required
many innovations, including a novel “cell” data abstraction, and
flexible, fine-grained, task monitoring and scheduling capable of
handling partial query restarts and PB-scale execution. Most
importantly, while we develop a completely new scale-out
framework, it is fully compatible with T-SQL and leverages
decades of investment in the SQL Server single-node runtime and
query optimizer. The scalability of the system is highlighted by a
1PB scale run of all 22 TPC-H queries; to our knowledge, this is
the first reported run with scale larger than 100TB.
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1. INTRODUCTION

Relational data warehousing has long been the enterprise approach
to data analytics, in conjunction with multi-dimensional business-
intelligence (BI) tools such as Power Bl and Tableau. The recent
explosion in the number and diversity of data sources, together with
the interest in machine learning, real-time analytics and other
advanced capabilities, has made it necessary to extend traditional
relational DBMS based warehouses. In contrast to the traditional
approach of carefully curating data to conform to standard
enterprise schemas and semantics, data lakes focus on rapidly
ingesting data from many sources and give users flexible analytic
tools to handle the resulting data heterogeneity and scale.

A common pattern is that data lakes are used for data preparation,
and the results are then moved to a traditional warehouse for the
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phase of interactive analysis and reporting. While this pattern
bridges the lake and warehouse paradigms and allows enterprises
to benefit from their complementary strengths, we believe that the
two approaches are converging, and that the full relational SQL tool
chain (spanning data movement, catalogs, business analytics and
reporting) must be supported directly over the diverse and large
datasets stored in a lake; users will not want to migrate all their
investments in existing tool chains.

In this paper, we present the Polaris interactive relational query
engine, a key component for converging warehouses and lakes in
Azure Synapse [1], with a cloud-native scale-out architecture that
makes novel contributions in the following areas:

Cell data abstraction: Polaris builds on the abstraction of
a data “cell” to run efficiently on a diverse collection of data
formats and storage systems. The full SQL tool chain can now
be brought to bear over files in the lake with on-demand
interactive performance at scale, eliminating the need to move
files into a warehouse. This reduces costs, simplifies data
governance, and reduces time to insight. Additionally, in
conjunction with a re-designed storage manager (Fido [2]) it
supports the full range of query and transactional performance
needed for Tier 1 warehousing workloads.

Fine-grained scale-out: The highly-available micro-
service architecture is based on (1) a careful packaging of data
and query processing into units called “tasks” that can be
readily moved across compute nodes and re-started at the task
level; (2) widely-partitioned data with a flexible distribution
model; (3) a task-level “workflow-DAG” that is novel in
spanning multiple queries, in contrast to [3, 4, 5, 6]; and (4) a
framework for fine-grained monitoring and flexible
scheduling of tasks.

Combining scale-up and scale-out: Production-ready
scale-up SQL systems offer excellent intra-partition
parallelism and have been tuned for interactive queries with
deep enhancements to query optimization and vectorized
processing of columnar data partitions, careful control flow,
and exploitation of tiered data caches. While Polaris has a new
scale-out distributed query processing architecture inspired by
big data query execution frameworks, it is unique in how it
combines this with SQL Server’s scale-up features at each
node; we thus benefit from both scale-up and scale-out.
Flexible service model: Polaris has a concept of a session,
which supports a spectrum of consumption models, ranging
from “serverless” ad-hoc queries to long-standing pools or
clusters. Leveraging the Polaris session architecture, Azure
Synapse is unique among cloud services in how it brings
together serverless and reserved pools with online scaling. All
data (e.g., files in the lake, as well as managed data in Fido
[2]) are accessible from any session, and multiple sessions can



access all underlying data concurrently. Fido supports
efficient transactional updates with data versioning.

1.1 Related Systems

The most closely related cloud services are AWS Redshift [7],
Athena [8], Google Big Query [9, 10], and Snowflake [11]. Of
course, on-premise data warehouses such as Exadata [12] and
Teradata [13] and big data systems such as Hadoop [3, 4, 14, 15],
Presto [16, 17] and Spark [5] target similar workloads (increasingly
migrating to the cloud) and have architectural similarities.

e Converging data lakes and warehouses. Polaris
represents data using a “cell” abstraction with two
dimensions: distributions (data alignment) and partitions
(data pruning). Each cell is self-contained with its own
statistics, used for both global and local QO. This
abstraction is the key building block enabling Polaris to
abstract data stores. Big Query and Snowflake support a
sort key (partitions) but not distribution alignment; we
discuss this further in Section 4.

Service form factor. On one hand, we have reserved-
capacity services such as AWS Redshift, and on the other
serverless offerings such as Athena and Big Query.
Snowflake and Redshift Spectrum are somewhere in the
middle, with support for online scaling of the reserved
capacity pool size. Leveraging the Polaris session
architecture, Azure Synapse is unique in supporting both
serverless and reserved pools with online scaling; the
pool form factor represents the next generation of the
current Azure SQL DW service, which is subsumed as
part of Synapse. The same data can simultaneously be
operated on from both serverless SQL and SQL pools.

Distributed cost-based query optimization over the data
lake. Related systems such as Snowflake [11], Presto [17,
18] and LLAP [14] do query optimization, but they have
not gone through the years of fine-tuning of SQL Server,
whose cost-based selection of distributed execution plans
goes back to the Chrysalis project [19]. A novel aspect of
Polaris is how it carefully re-factors the optimizer
framework in SQL Server and enhances it to be cell-
aware, in order to fully leverage the Query Optimizer
(QO), which implements a rich set of execution strategies
and sophisticated estimation techniques. We discuss
Polaris query optimization in Section 5; this is key to the
performance reported in Section 10.

Massive scale-out of state-of-the-art scale-up query
processor. Polaris has the benefit of building on one of
the most sophisticated scale-up implementations in SQL
Server, and the scale-out framework is designed
expressly to achieve this—tasks at each node are
delegated to SQL Server instances—by carefully re-
factoring SQL Server code.

Global resource-aware scheduling. The fine-grained
representation of tasks across all queries in the Polaris
workflow-graph is inspired by big data task graphs [3, 4,
5, 6], and enables much better resource utilization and
concurrency than traditional data warehouses. Polaris
advances existing big data systems in the flexibility of its
task orchestration framework, and in maintaining a
global view of multiple queries to do resource-aware
cross-query scheduling. This improves both resource
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utilization and concurrency. In future, we plan to build
on this global view with autonomous workload
management features. See Section 6.

Multi-layered data caching model. Hive LLAP [14]
showed the value of caching and pre-fetching of column
store data for big data workloads. Caching is especially
important in cloud-native architectures that separate state
from compute (Section 2), and Polaris similarly leverages
SQL Server buffer pools and SSD caching. Local nodes
cache columnar data in buffer pools, complemented by
caching of distributed data in SSD caches.

2. SEPARATING COMPUTE AND STATE

Figure 1 shows the evolution of data warehouse architectures over
the years, illustrating how state has been coupled with compute.
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Figure 1. Decoupling state from compute.

To drive the end-to-end life cycle of a SQL statement with
transactional guarantees and top tier performance, engines maintain
state, comprised of cache, metadata, transaction logs, and data. On
the left side of Figure 1, we see the typical shared-nothing on-
premises architecture where all state is in the compute layer. This
approach relies on small, highly stable and homogenous clusters
with dedicated hardware for Tier-1 performance, and is expensive,
hard to maintain, and cluster capacity is bounded by machine sizes
because of the fixed topology; hence, it has scalability limits.

The shift to the cloud moves the dial towards the right side of Figure
1 and brings key architectural changes. The first step is the
decoupling of compute and storage, providing more flexible
resource scaling. Compute and storage layers can scale up and
down independently adapting to user needs; storage is abundant
and cheaper than compute, and not all data needs to be accessed at
all times. The user does not need compute to hold all data, and only
pays for the compute needed to query a working subset of it.

Decoupling of compute and storage is not, however, the same as
decoupling compute and state. If any of the remaining state held in
compute cannot be reconstructed from external services, then
compute remains stateful. In stateful architectures, state for in-
flight transactions is stored in the compute node and is not hardened
into persistent storage until the transaction commits. As such, when
a compute node fails, the state of non-committed transactions is
lost, and there is no alternative but to fail in-flight transactions.
Stateful architectures often also couple metadata describing data
distributions and mappings to compute nodes, and thus, a compute
node effectively owns responsibility for processing a subset of the
data and its ownership cannot be transferred without a cluster re-
start. In summary, resilience to compute node failure and elastic
assignment of data to compute are not possible in stateful
architectures. Several cloud services and on-prem data warehouse
architectures fall into this category, including Red Shift, SQL DW,
Teradata, Oracle, etc.



Stateless compute architectures require that compute nodes hold no
state information, i.e., all data, transactional logs and metadata need
to be externalized. This allows the application to partially restart
the execution of queries in the event of compute node failures, and
to adapt to online changes of the cluster topology without failing
in-flight transactions. Caches need to be as close to the compute as
possible, and since they can be lazily reconstructed from persisted
data they don’t necessarily need to be decoupled from compute.
Therefore, the coupling of caches and compute does not make the
architecture stateful.

Polaris is a cloud-native distributed analytics system that follows a
stateless architecture. In the remainder of the paper we go through
the technical highlights of the architecture, and finally, we present
results of running all 22 TPC-H queries at 1PB scale on Azure.

3. THE POLARIS DATA ABSTRACTION

A key objective for Polaris is to be a scale-out query engine for
relational data as well as heterogeneous datasets stored in
distributed file systems such as HDFS. The Polaris data model is
therefore designed with the following considerations in mind:

e Abstraction from the data format. Polaris, as an
analytical query engine over the data lake, must be able
to query any data, relational or unstructured, whether in
a transactionally updatable managed store or an
unmanaged file system. Hence, we need a clean
abstraction over the underlying data type and format,
capturing just what’s needed for efficiently parallelizing
data processing. A dataset in Polaris is logically
abstracted as a collection of cells that can be arbitrarily
assigned to compute nodes to achieve parallelism. The
Polaris distributed query processing framework (DQP),
operates at the cell level and is agnostic to the details of
the data within a cell. Data extraction from a cell is the
responsibility of the (single node) query execution
engine, which is primarily SQL Server, and is extensible
for new data types.

Wide distribution. For scale-out processing, each
dataset must be distributed across thousands of buckets,
or subsets of data objects, such that they can be processed
in parallel across nodes. In Polaris, this can be expressed
as the requirement that a dataset must be uniformly
distributed across a large number of cells.

3.1 Data Cells

As shown in Figure 2, a collection (e.g., table) of data objects (e.g.,
rows) in Polaris can be logically abstracted as a collection of cells
Cij containing all objects r such that p(r) =i and h(r) =j.

The hash-distribution h(r) is a system-defined function applied to
(a user-defined composite key ¢ of) r that returns the hash bucket
number, or distribution, that r belongs to. The hash-distribution h
is used to map cells to compute nodes, and the system chooses h to
hash datasets across a large number of buckets so that cells (and
thus, computation) can be distributed across as many compute
nodes as needed. Further, computationally expensive operations
such as joins and vector aggregation can be performed at the cell
level without incurring data movement if either the join keys or
grouping keys are aligned on the hash-distribution key.
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The partitioning function p(r) is a user-defined function that takes
as input an object r and returns the partition i in which r is
positioned. This is useful for aggressive partition pruning when
range or equality predicates are defined over the partitioning key.
(If the user does not specify p for a dataset, the partition pruning
optimization is not applicable.)

Cells can be grouped physically in storage however we choose
(examples of groupings are shown as dotted rectangles in Figure 2),
so long as we can efficiently access Cij. Queries can selectively
reference either cell dimension or even individual cells depending
on predicates and type of operations present in the query.

Data Cells
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Figure 2. Polaris Data Model

Flexible Assignment of Cells to Compute

Query processing across thousands of machines requires query
resilience to node failures. For this, the data model needs to support
a flexible allocation of cells to compute, such that upon node failure
or topology change, we can re-assign cells of the lost node to the
remainder of the topology. This flexible assignment of cells to
compute is ensured by maintaining metadata state (specifically, the
assignment of cells to compute nodes at any given time) in a
durable manner outside the compute nodes.
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Figure 3. Store Abstraction via Data Cells

Socrates Cosmos DB}

Transactional Stores

Storage Abstraction

Polaris abstracts distributed query processing from the underlying
store via data cells. As shown in Figure 3, any dataset can be
mapped to a collection of cells, which allows Polaris to do
distributed query processing over data in diverse formats, and in
any underlying store, as long as efficient access to individual cells
is provided by the storage server. As such, Polaris can perform



highly scalable distributed query processing over analytical stores
such as ADLS [20], Fido [2], and Delta [21], as well as
transactional stores such as Socrates [22] and Cosmos DB [23]. Of
course, when data is stored in columnar formats tailored for
vectorized processing, this further improves relational query
performance.

A Note on Queries

In this paper, we mostly focus on relational queries (with the
exception of Section 10.4). Data objects are assumed to have
attributes required by relational operators to which they are input.
That said, the generality of the data abstraction underlying Polaris’s
query processing means that we can handle datasets represented in
diverse formats and stored in different repositories. For example,
Polaris can run directly over data in HDFS and in managed
transactional stores. Further, different objects in a dataset could
differ in the attributes attached to them, and objects could have
additional uninterpreted attributes.

4. MAPPING CELLS TO COMPUTE

A fundamental aspect in distributed execution is how we map cells
(of source datasets as well as intermediate results) to compute
nodes for various operations involved in the execution of a query.
As noted above, we map cells to nodes using the hash-distribution
h. We now discuss this in more detail.

4.1 Distribution Properties

As discussed above, data objects (e.g., tuples or rows) in a cell are
hash aligned, i.e., if c is the composite key, all objects that hash to
the same cell have the same hash value or distribution h(c).
Further, if two objects hash to different distribution values, they
must differ on the composite key c. As degenerate cases, objects
may be distributed round-robin or mapped to a single cell. We
introduce the following notation for how objects in a dataset are
hashed (or not) across cells:

1. h[c]: Objects in a dataset P are mapped to cells using a
hash-distribution on column c. Also denoted as: PLel.

2. All objects in the dataset are hashed to the same value,
i.e., there is a single hash-bucket: P!

3. Objects in dataset P are not hash-distributed across

cells; this situation arises sometimes for intermediate
results. Also denoted as: P?

The above distribution properties are used by the Polaris
Distributed Query Optimizer (DQO) for two fundamental
purposes: (1) to guarantee functional correctness of parallel
execution of operations such as joins and vector aggregations, and
(2) they are used as interesting properties by the DQO while
enumerating physical distributed alternatives in the search space.

Distribution Properties as Correctness Filters

The input distribution properties of a relational operator are used to
guarantee functional correctness when enumerating the physical
execution alternatives across multiple compute nodes. For instance,
an inner join requires both of its inputs to be hash aligned on the
join column, or one input to be mapped to a single hash-bucket, in
order to return the correct results while operating only on input cells
available locally at each node:

P p@=b 0: {{P[a] A Q[b]} v {P}v {Ql}}

We refer to such correctness criteria on inputs as required
distribution properties. During the enumeration of the alternative
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physical distributed plans in the search space, the DQO uses
required distribution properties on operators to discard alternatives.
The list of required properties for each relational algebra operation
is listed in the appendix of this paper.

Distribution Properties as “Interesting Properties”

System R [24] introduced the concept of interesting properties,
namely physical properties (e.g., sort order) such that the best plan
for producing (intermediate) tables with each interesting property
is saved during the enumeration of the search space. Thus, the
cheapest plan for producing an intermediate table in sorted order by
the first column would be saved even if there is a cheaper plan to
produce the same table unsorted or in a different sort order.
Similarly, in the distributed search space, the Polaris DQO uses the
required distribution properties of relational algebra operators as
interesting properties. When enumerating the physical plan
alternatives bottom-up, the best plan for each property and the best
plan overall based on cost are kept.

4.2 Data Move Enforcers
Polaris provides physical operators called data move enforcers that
can read data from a source dataset and produce a target dataset
with different distribution properties:

e  Hash operator, Ha. Re-distributes every object (in every

cell of the dataset) by hashing on column d. The number

of cells in the output dataset can differ from the input.
Hy(Plehy = pldl

= pldl

= pld]

Broadcast operator, B. Maps the input dataset to a

single cell and replicates it across multiple locations.

B(Plhy = p1
B(P?)= P!
PZQ
Bl Q[b] fal = Ql Pl - [l \
[ Pl Hb(Q)‘ [ [a] ‘B(Q}] ‘ 3(p)} [ Q[c]
Q[C] ‘ Q[c] ‘ P[a]
x P1§=<b1 Ql x |£a]§=<b1 [c] x P1§=<b1 Q[b]
a=b ‘ a=b
[ B(P) ] B ] [ o @l s ] Hb(a)}
- o)
P Q
5’1 Pl el Ql Q[b]
o BP) | [ Q[q“ 50 H Hb(Q)]
S ‘ o

Figure 4. Enumeration of the search space for inner join
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Figure 5. Execution Model

As an example, Figure 4 shows the enumeration of the alternative
distributed physical execution plans for an inner join, P x%=? Q
where P and Q are (say, files in a data lake or tables in a managed
distributed relational store) hashed on a and c respectively (P!% and
Q[N). The enumeration of physical alternatives starts with the
scans of P and Q, shown in the bottom-most part of the figure. Q is
hash distributed on column c, hence, Q!¢! is the first alternative
generated. Replication and hash distribution on b are interesting
properties pushed top-down, leading to the enumeration of sub-
plans Q' and Q¢! respectively. P is hash distributed on column a,
generating P4 as the first alternative. Replication and hash
distribution on a are also interesting properties pushed top-down.
Since we already satisfy hash distribution on a via P4, we only
need to produce P. The plan node in the top half of Figure 4 shows
the enumeration of plans for the join operation; this is a permutation
of the alternatives produced by its children at the bottom of the
figure. During the enumeration, correctness filters are applied,
thereby eliminating P[® x@=t Q€] from the search space, since
it does not satisfy any of the distribution properties required by an
inner join. For the remaining alternatives, only the best plan for
each interesting property is kept:

plal A g[bl. plal pqa=b (lb]
PL: p1 ma=b (le]
Q1 plal pa=b 1
Finally, the best distributed query plan will be chosen based on the
cheapest of the three options. Data move enforcers are expensive

operators due to the cost of data re-distribution; hence, the cheapest
plan is the one that minimizes data movement, as explained in [19].

5. FROM QUERIES TO TASK DAGS

A fundamentally new aspect of Polaris is its fine-grained
representation and tracking of query execution. In this section, we
describe how a query is compiled and optimized into an executable
DAG of tasks that correspond to units of distributed execution.
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5.1 Polaris Tasks

A key challenge in Polaris was how to essentially re-architect
distributed query processing while leveraging as much of existing
SQL Server capabilities as possible and ensuring that the resulting
system was a faithful implementation of all user-visible semantics.

To this end, all incoming queries in Polaris are compiled in two
phases. The first phase of the compilation stage leverages SQL
Server Cascades QO to generate the logical search space, or
MEMO [25, 26]. The MEMO contains all logical equivalent
alternative plans to execute the query. A second phase performs
distributed cost-based QO to enumerate all physical distributed
implementations of these logical plans and picks one with the least
estimated cost. The outcome is a good distributed query plan that
takes data movement cost into account, as explained in [19].

When enumerating the physical space during the second phase of
the QO process, a query plan in the MEMO is seen as a directed
acyclic graph (DAG) of physical operators, each corresponding to
an algebraic sub-expression E in the query. For simplicity, we use
E to denote both the expression and its instantiation as an operator
in the MEMO. Operator E has a degree of partitioned parallelism N
that defines the number of instances of E that run in parallel, each
on a partition of the input. We denote the distributed execution of
E as UX, E;, where E; represents the execution of E over the it"
hash-distribution of its inputs, and N is the degree of parallelism.

We illustrate the notation by means of an example. Figure 5 depicts
an expression that consists of a hash aligned join between two input
relations, P and Q. As shown on the left, the cell representation of
user files over the lake is captured during MEMO generation by
SQL Server—the first stage of QO pulls metadata from external
services such as remote meta-stores that contain information on the
collection of files/tables, partitions and distributions.

For this example, the input data cells are N-way hash-distributed
such that the parallel distributed query plan is represented through
the union of the join operation on each hash-distribution pair; (in
contrast to the example of the previous section) P and Q are already
hash-aligned on the join column, satisfying the required



distribution properties of the join operator. The same notation can
be extended to represent more complex relational expressions and
distribution variations, but we omit the details.

Next, we introduce the notion of a task Ti as the physical execution
of an operator E on the it" hash-distribution of its inputs. Tasks are
instantiated templates of (the code executing) expression E that run
in parallel across N hash-distributions of the inputs, as illustrated in
Figure 5 with blue triangles. A task has three components:

e Inputs. Collections of cells for each input’s data partition.
These cells can be stored either in highly available
remote storage, or in temporary local disks.

Task template. Code to execute on the compute nodes,
representing the operator expression E.

Output. Output dataset represented as a collection of cells
produced by the task. The output of a task is either an
intermediate result for another task to consume or the
final results to return to the user, and is distributed across
several nodes corresponding to the consuming task’s
degree of parallelism.

5.2 The Query Task DAG
In general, the distributed query plan is represented as a directed
acyclic graph (DAG) (of operators or tasks) rather than a single
node to capture the structure of sub-expressions in the query,
including data-flow dependencies and required distribution
properties of corresponding operators.

Physical query plan Query Task DAG
, Tr \
a=c E] = = C
> ‘ [c] ‘\Pi”[;g] QIM =< IU/
A I
‘ = ‘ ‘HC(R)‘ R "
o / | T2 | 13

‘ o ‘ ‘ Hb(Q)‘ ‘ R[d]‘

He(R") o (0F)
[c] ‘

qu T“]
‘ 0 i Q

Figure 6. The Query Task DAG

Each vertex contains an operator corresponding to an expression E
in the query and has a corresponding task template, instantiated
across multiple nodes over hash-distributions of the inputs for the
vertex. Edges represent dataflow dependencies, and if the
consuming vertex E does not support pipelining, induce precedence
constraints over “consumer tasks” created by instantiating E across
compute nodes over hash-distributed inputs of E. That is,
“consumer” tasks cannot start until the corresponding tasks of the
producer vertexes of the edge have completed.

Precedence constraints are inherently blocking and define changes
of the distribution properties of the data cells consumed by parent
tasks. As explained earlier, the DQO injects changes of distribution
properties via data move enforcers to achieve correctness, or a
better distributed alternative plan to speed up query execution.
Therefore, the subtree of physical operators rooted on a move
enforcer defines the input and output boundaries of a task. Data
move enforcers are blocking operators such that all their output data
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cells are persisted in local storage before they can be processed by
the consumer task.

Tasks in the DAG without precedence constraints can execute in
parallel, thereby achieving independent parallelism between
different tasks of a query. Figure 6 expands on the example in
Figure 4 with an additional join. The left hand side of the figure
illustrates the physical distributed query plan that has two move
enforcers such that the join between the three relations are hash
aligned into a final task, resulting into a query DAG with a total of
three tasks.

5.3 SQL Server Scale-up for Task Execution
The example in Figure 5 also illustrates an additional optimization
carried out in the second phase of cost-based distributed query
optimization. Observe how vertexes in the MEMO corresponding
to two join operators have been combined into a single vertex that
carries out both joins—this is because all three input datasets (P, Q,
and R) are hash aligned on the same column by the preceding move
enforcer operations. Thus, in general, the template for a task can
include code for an algebra expression involving multiple
operators.

While we could perform the three-way join in this example in two
sequential tasks, we intentionally seek to make tasks be maximal
units of work. This allows us to more effectively leverage the
sophisticated scale-up columnar query processor in SQL Server. At
each compute node, the task template of the algebraic expression E
corresponding to the task is encoded back into T-SQL and executed
natively in SQL Server. In this approach, the blocking nature of the
boundaries of a task actually help SQL Server to optimize the
template code of a task with fresh stats from intermediate inputs.

6. TASK ORCHESTRATION

Arguably the biggest engineering challenge
orchestration of tasks.

in Polaris is

The scale is daunting—the amount of data could be petabytes,
leading to millions of cells; the number of compute nodes used
in a single query could be in the thousands; and the number of
tasks could be in the millions.

Execution must be robust to transient failures of nodes,
network, storage, and other components (e.g., metadata micro-
services), and must guarantee that all precedence constraints
are satisfied, and all distributed decisions have quorum.
Tasks must be automatically re-startable on any node, for
auto-scaling and fault-tolerance.

In Polaris, we introduce a model of the execution of a query as a
novel hierarchical composition of finite state machines. As
explained in previous sections, at run time, a query is transformed
into a query task DAG, which consists of a set of tasks with
precedence constraints.

We refer to each of the following aspects of a query as an entity:
the query DAG, the task templates and tasks. A leaf-level task
template can be instantiated into tasks on its hash-distributed
inputs; in this case, we say that the task template entity is composed
of the instantiated task entities. A non-leaf task template has
precedence constraints on other task templates; in this case, the
non-leaf task template entity is composed of the entities for the task
templates on which it depends. For each entity, we refer to the
entities of which it is composed as its dependencies.

The execution state of each entity is tracked using an associated
state machine with a finite set of states and state transitions. The
state of an entity is a composition of the state of the entities of which



it is composed. States can be either composite or simple. Simple
states are used to denote success, failure, or readiness of a task
template. Composite states denote (1) an instantiated task template,
or (2) a blocked task template. (Note that an instantiated task will
succeed or fail but cannot be blocked; tasks are only instantiated
when their inputs are ready.)

A composite state differs from a simple state in that its transition to
another state is defined by the result of the execution of its
dependencies. It has a collection of peer states, one for each
dependency, and a termination policy intent aggregates meta-data
on execution of dependencies and captures how to interpret the
outcome of dependencies, and how to act on other peer states.

The Polaris state machine through its hierarchical state machine
composition captures the execution intent and it is in this aspect that
it differs from other distributed query engines. In other DAG
execution frameworks [5, 6, 14], composition is inherent in the
execution. In Polaris, the state machine provides a template that is
used to orchestrate the execution. The advantage it offers is the
ability to formalize how we recover from failures and use the state
machine recorder (a log) to observe and reply execution history.
Further, for a given a set of workloads in the system, the execution
history combined with the rules governing legal transitions can be
used to reorder workload executions and explore different
execution sequences by forking and resuming execution from
selected points in the recorded history; this is future work.

Figure 7 illustrates the entities and state machines for the example
in Figure 6. As we can see, the distributed query execution of the
query task DAG is modelled as a hierarchical set of state machines.
The root query DAG entity starts in the Run composite state and
instantiates the state machine for the entity corresponding to the
(task template T1 representing the) join of P, Q and R. This state
machine starts in a (composite) Blocked state because it has
dependencies on the entities corresponding to (task templates T2
and T3 for) the move enforcers on Q and R; these task templates
are now placed in the scheduler queue. Their state is initialized to
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Ready since they have no dependencies, and they are eventually
picked to run by the scheduler.

The state machines for task templates T2 and T3 are instantiated
and initialized to the Run state. This in turn instantiates tasks for the
task templates. If any of these tasks fail, their state machine
transitions to the Failed state, the failure is detected and the failed
task is restarted automatically if the reason is a transient failure (as
indicated by the task state machine transition in Figure 7);
otherwise the parent state machine retries at a coarser granularity.
The state for T2 and T3 becomes Success when all its task
dependencies succeed. When both move enforcer entities succeed,
the root entity T1 is unblocked and placed in the scheduler queue.
When it is picked to run, i.e., becomes active, and it is instantiated
as join tasks on the hash-partitioned inputs.

In more detail, a state machine in Failure triggers an analysis of the
type of failure for all dependencies that we classify as retriable, e.g.,
transient failures caused by node failure. If retriable, then it can
transition back to Blocked, otherwise, the state machine with
Failure returns control to the state machine for its parent, which
will try to re-schedule execution using additional resources or in
turn propagate the failure up the control chain. This is an example
of how, in contrast to other systems such as [10, 15, 18], Polaris
orchestration gives us flexibility in handling different types of
failures by allowing us to specify behavior on termination of a
composite state.

To summarize, when in Ready state, a task template waits in the
queue for the scheduler to pick its turn to execute, then it transitions
to Run. This is when task entities are instantiated, and the task’s
state machines are executed. The task template transition from Run
to a terminating state (Failed or Success), depends on the resulting
execution of the instantiated tasks. Note that any entity can
transition from Failed to Run if the failure is transient. The failure
is propagated to higher entities only if it is deemed not retriable
within the entity’s state machine.

STATE MACHINE DRIVEN QUERY EXECUTION

Figure 7. Hierarchical composition of state machines for distributed query execution
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Modelling the distributed query execution of queries via
hierarchical state machines has the following goals:

= Satisfy precedence constraints. The execution of the query
task DAG is carried out top-down in a topological sort order
such that every task with precedence constrains is blocked
on completion of its input tasks. For example, as shown in
the right-hand side of Figure 7, the root task is blocked (Step
1) until its two dependencies are completed (Step 6).

= Reliable execution. We use the state machines to have fine
grain control at task level and define a predictable model for
recovering from failures. Completion and failure
propagation are done bottom-up using the compositional
nature of states. In Step 3 illustrates a case where on
container failure during the execution of a task, the error
propagates to the parent task template, which retries its
execution.

=  Reproducibility at scale. States and transitions are logged
by all entities. This allows for predictability and
reproducibility regardless of the complexity of the workload
and the scale. This is also a fundamental building block for
debugging and resumable execution upon failover.

®=  Concurrency. Fine grain control at large scale often comes
with large memory requirements and thread contention due
to many subroutines running concurrently. Hierarchical
state machines allow us to track the state of all entities in the
workload with a low memory overhead: there is only one
state machine for a task entity and all instantiations run
through its states and transitions. Also, the Polaris query
processor has been built from scratch using .NET’s task
asynchronous programming model to eliminate the need for
blocking synchronization primitives across subroutines, thus
minimizing thread contention and maximizing OS thread
utilization. The gains are seen in Section 10.2.

7. WORKLOAD AWARE SCHEDULING

Polaris must handle highly concurrent workloads ranging from
dashboarding scenarios running thousands of light weight
queries, to reporting scenarios executing a set of highly complex
analytical queries. There are potentially millions of tasks to be
orchestrated for execution by the Polaris DQP. In the previous
section we described how hierarchical state machines enable us
to efficiently handle distributed task orchestration at very large
scale. In this section we cover how Polaris schedules tasks for
high concurrency.

Task scheduling in Polaris is based on a global view of all active
queries called the workload graph, generalizing the
representation of a single query as a DAG of tasks to represent
the entire workload by combining task DAGs of all active queries.

Each task in the workload graph has an associated resource
demand that is an extension of the model in Ganguly [27] to d-
dimensional preemptable resources proposed in [28, 29]. We
define a d-dimensional resource vector that has time and space
shared constraints where each dimension specifies an aspect of
resource consumption. Fungible resources such as memory and
CPU can be sliced across tasks at a low cost, and each task’s
requirement for a given resource can be stretched at execution
time. On the other hand, more rigid resources such as temp space
on local disks must also be satisfied. Stretching temp space across
independent tasks is prohibitively expensive since it would
require swapping pages in and out from/to remote storage.
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The resource demand for each task is computed as a function of
inputs and outputs of each physical operator in the template code
for the task. Analogously, Polaris also models each compute node
as a d-dimensional bin of resources such that placement of tasks
to containers is based on policies that can be autonomously tuned
based on resource consumption profiles across all nodes.
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Algorithm 7: Workload Aware Resource Scheduling
Data: WG

1 Sch@ +— 0

2 while not cancelled do

3 await SchedulerSignal.W ait Async

1 | Sch@Q +— SchQU {{T € WG : Stater = {Ready}}

5 while (7" «— SchedulingPolicy.Next(L)) do

6 if =(ResourceGovernor.TryFit(T)) then

7 | break

8 end

9 SchQ «— SchQ\T

10 Stater +— {Run}

11 end

12 end

Figure 8. Workload aware resource scheduling algorithm

The representation of the workload as a global graph of tasks with
resource demands allows us to redefine the multi-query
scheduling problem as a task scheduling problem with precedence
constraints: the goal is scheduling d-dimensional tasks on d-
dimensional containers to complete in the minimum amount of
time possible while ensuring that at all times, we are within all d
dimensions of resources available to us. Figure 8 shows the
representation of the workload graph for two query DAGS. In
green circles we represent the resource demand for each task
template. For simplicity, in this example we normalize to just one
number, and not the multi-dimensional resource vector used in
Polaris. The workload scheduler and the resource governor
operate on the workload graph.

The pseudocode of the scheduler is shown on the bottom of the
figure. The scheduler is asynchronously waiting for work, and
when awoken it adds all task templates in the workload graph that
are in Ready state to the scheduler queue. Task templates are then
dequeued in order specified by the scheduling policy. Currently
supported policies include (combinations of): FIFO, sorted by
resource demand (min to max or max to min), and sorted by
proximity to the root. Intuitively, sorting by proximity to the root
biases towards tasks from jobs that are closer to completion (so
that their shared resources can be released sooner).



For the next task template in order, the resource governor
examines each task to be instantiated. If all these tasks fit in their
target location (i.e., each task’s resource demand can be
accommodated given current local capacity), then the task
template is removed from the scheduler queue and transitioned to
the Run state. Otherwise, we break out of the loop and wait for
other tasks to complete so the task template can fit. Note that the
target location of a task is fixed by data affinity to exploit cache
locality. This novel approach to multi-query workload—
generalizing task scheduling from big data systems to consider
tasks across all active queries—can improve concurrency for the
following reasons:

= A task template is the unit of scheduling. The scheduling
order applies to the task template entity and not a query. A
finer grain unit of scheduling allows for better packing
strategies, helping maximizing resource utilization.

=  Weighted policies for resource governance. The
placement of the task in the target compute server is based
on resource fit to maximize load while avoiding over-
provisioning. For this we use a weighted policy to pack tasks
into the compute capacity available at a node. The policy has
two variations, one that caps the amount of resources that
can be granted to a task, and another one that does not. If the
task does not fit in the available compute, it is put back into
the queue till tasks complete and capacity is freed.

= Increased flexibility in task ordering. Scheduling policies
define the order in which tasks are executed as they become
ready for execution. By looking at ready tasks across all
queries, taking into account resource pressure in the system,
we are able to pick orderings that would not be permissible
otherwise. For instance, consider the example in Figure 8,
applying a max to min scheduling policy. The scheduler
queue SchQ starts with {T1, T2, T3, T4, T5} with scheduling
order {T1, T2, T4, T5, T3}. As we go through the loop, T3
does not fit, so only four out of the five task templates
transition to Run state. Next all T4 and T5 complete and the
scheduler is awoken. SchQ now contains {T8, T3} with
scheduling order {T3, T8}. Now, if the workload manager
detects pressure in the system because of disk resources held
by previously completed task templates, it can choose to
swap the scheduling policy to sort by proximity to the root
to release pressure in the system. In this example, the
scheduling order would change to be {T8, T3}. The study of
scheduling and resource management policies to consider
SLAs and avoid starvation is out of scope for this paper and
will be addressed in future work.

= Resource driven query admission control. Back pressure
can be driven by a ratio of capacity (demand vs. available).
Concurrency is only limited by available capacity, and the
admission of a query is only denied when we cannot
guarantee SLAS due to a capacity crunch.

8. SERVICE ARCHITECTURE

Figure 9 illustrates the architecture of the query service for two
Polaris pools sharing the same centralized (metadata and
transaction) services. There are two important aspects to note:

= Stateless architecture within a pool. The Polaris
architecture falls into the stateless service architecture from
Figure 1.b, as discussed in Section 2. All services within a
pool are stateless: (i) data is stored durably in remote storage,
and is abstracted via data cells, and (ii) the metadata and
transactional log state is off-loaded to centralized services.

(We do not go into the architecture of the centralized
services in detail; briefly, they are built for HA and
performance using Azure SQL DB.)

®=  Multiple-pools. Placing the state in centralized services
coupled with a stateless micro-service architecture within a
pool means multiple compute pools can transactionally
access the same logical database.
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Figure 9. Polaris service architecture

8.1 Stateless micro-service architecture

A Polaris pool consists of a set of micro-services each with well-
defined responsibilities. The SQL Server Front End (SQL-FE) is
the service responsible for compilation, authorization,
authentication, and metadata. Metadata is used by the compiler to
generate the search space (the MEMO) for incoming queries and
bind metadata to data cells. The Distributed Query Processor
(DQP) is responsible for distributed query optimization,
distributed query execution, query execution topology
management and workload management (WLM). Finally, a
Polaris pool consists of a set of compute servers that are, simply,
an abstraction of a host provided by the compute fabric, each with
a dedicated set of resources (disk, CPU and memory). Each
compute server runs two micro-services: (a) an Execution Service
(ES) that is responsible for tracking the life span of tasks assigned
to a compute container by the DQP, and (b) a SQL Server instance
that is used as the back-bone for execution of the template query
for a given task and holding a cache on top of local SSDs (in
addition to in-memory caching of hot data). Data can be
transferred from one compute server to another via dedicated data
channels. The data channel is also used by the compute servers to
send results to the SQL FE that returns the results to the user. The
life cycle of a query is tracked via control flow channels from the
SQL FE to the DQP, and the DQP to the ES.

As explained in Section 2, no essential state is held by any micro-
service in Polaris. While caches are stored by the compute
servers, upon fail-over, they can be easily re-constructed.
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Figure 10. Elastic Compute Scenarios

8.2 Service form factors

The separation of state and compute coupled with the auto-scaling
capabilities of a pool (explained in the next section) allow us to
support very high concurrency levels within each pool, as well as
enabling all of the following user-facing service form-factors:

= Serverless. One system managed Polaris pool with auto-
scale ranging from 0 to N compute nodes where N is
constrained only by capacity within Azure compute.

= Capacity reservation. A dedicated Polaris pool with a
minimum reservation of capacity and auto-scale capacity
up to a maximum user-specified size.

= Multiple pools. Multiple Polaris pools with capacity
reservation. Pool sizes can either be defined by the user or
they can grow and shrink dynamically.

9. ELASTIC QUERY PROCESSING

The infrastructure of a cloud is inherently elastic in that compute
containers (e.g., VMs, k8 containers) can be obtained or released
nearly instantly. This means nodes can be added and removed
from a query processing compute topology in a matter of seconds.
With appropriate telemetry, the system can auto-scale up or down
proactively based on workload needs or react to unexpected
events such as faulty nodes and infrastructure upgrades.

In any of these scenarios, the Polaris query processor must ensure
that tasks can be flexibly assigned to compute nodes in
dynamically changing query execution topologies. We achieve
this objective by leveraging several aspects of the Polaris
framework:

Separation of state and compute.

Flexible abstraction of datasets as cells.

Task inputs defined in terms of cells.

Fine-grained orchestration of tasks using state machines.
Figure 10 depicts examples of key scenarios we unlock with this
architecture. We explain each one in the following Sections.

9.1 Auto-Scale

The Polaris DQP requests the underlying compute fabric for more
containers to adjust to peaks in the workload and re-distributes
tasks to transparently leverage the new containers. Note that in-
flight tasks in the previous topology continue running, while new
queries get the new compute power with appropriate load
balancing. In Figure 10, we show a doubling of compute capacity;
however, we can add capacity in increments of just one node.

The Polaris DQP also can autonomously scale down the compute
node topology (in increments of one or more nodes) when
utilization drops sufficiently.

3213

Resilience to Node Failures

Figure 10 also illustrates how the Polaris DQP recovers from node
failures while tasks are running. If a server fails, the DQP
rebalances the tasks in the failed node across the rest of the
healthy topology. The fault tolerance model is built into the
hierarchical state machine discussed in Section 6. A node failure
transitions execution tasks in a container into the Failed state.
Then the parent task template state machine reacts
appropriately—tasks previously assigned to the faulty node are
restarted on healthy nodes. This feature is essential for scaling to
very large queries, since the probability of node failure increases
with the number of nodes involved.

9.2 Skewed Computations

Figure 10 shows how skewed computation or hot spots are
handled. The Polaris DQP and the ES in the compute servers
implement a feedback loop that tracks the life span of execution
tasks on anode. If the DQP detects that a node is overloaded (e.g.,
the yellow node in the figure), it can decide to re-schedule a subset
of the tasks assigned to that compute node amongst other nodes
where the load is less. If this does not mitigate the hot spot, we
fall back on the auto-scale feature to add more nodes to the
topology and rebalance the load appropriately. Skewed
computations are handled using runtime feedback loops, and our
query optimizer does not currently take data skew into account.
How to handle skew during query optimization is future work.

9.3 Affinitizing Tasks to Compute

As explained in Section 8, the SQL Server service in the compute
server extends caching of hot data to its local SSDs. Accessing
data from remote storage is an expensive operation, and therefore
the elastic features of the Polaris DQP try to minimize the impact
on the cache by consistent assignment of data cells to tasks, and
our scheduler assigning tasks to compute based on data
collocation, thus, preserving caches upon topology changes. In
particular, (a) on topology shrinkage, only the caches of the nodes
that are no longer part of the topology are lost, and (b) on topology
growth, all the caches from the existing topology are preserved,
and only the caches for the new nodes need to be populated.

10. PERFORMANCE EVALUATION
10.1 Goals

Our goals are to obtain an understanding of the performance and
concurrency characteristics of Polaris on a single pool over
structured and non-structured data. For this we break down our
experiments into three dimensions.

Concurrency. We want to stress the DQP with a concurrent
workload. The global graph in such scenario consists of thousands
of tasks from a thousand different queries such that we showcase
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Figure 11. Results for 5k concurrent queries

the resource driven scheduling capabilities of the WLM, and its
autonomy around capacity management, access control and
resource governance under heavy load. For this we use the TPC-
DS [30] workload to run a multi-user environment executing five
thousand of queries simultaneously.

Single query performance at PB scale over the data lake. We
ran all TPC-H [31] queries at one PB scale across hundreds of
machines on Azure public compute. The goal of this experiment
is to stress the scalability, elasticity, and fault tolerance
capabilities of the service. Note that this is not a validated TPC-
H benchmark, the only intent is to demonstrate we can run all
queries at a scale that has not been done before.

Querying heterogeneous data. To illustrate that Polaris can run
on heterogeneous data, we ran all TPC-H [31] queries at1 TB
scale on a dataset consisting of a variety of data files ranging from
raw CSV files to Parquet files with nested attributes. The test was
executed using less than 100 cores in Azure public compute. The
experiment emphasizes raw file parsing and query optimization
capabilities over joins between plain text files and Parquet files
with nested attributes.

10.2 Concurrency
The setup

We used the TPC-DS dbgen utility to generate a 1TB of raw data
and then converted it into parquet files that were stored into
Windows Azure Storage Blob (WASB), the Azure Data Lake.
Rows do not follow any distribution since we are not focusing on
single query performance but stress on concurrency. The
application spans five thousand concurrent sessions executing
one distinct TPC-DS query each. For this we generated TPC-DS
queries 50 times with different predicate ranges and assigned one
to each session.

The compute topology

Since the goal of this experiment is to stress the DQP component
we choose a rather small compute topology with 10 compute
nodes. The hardware configuration of each node consists of 2x20
cores intel processors, 520GB of RAM and 4 SSDs of 1TB each.
The network topology is 40Gb throughout; 40Gb NIC, 40Gb
TOR, 40Gb CSP.

Results

Figure 11 shows the task execution summary and the resource
utilization in the backend nodes. The 5k queries run
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simultaneously generating a workload graph over 50k task
templates that as they are scheduled, they expand to an aggregated
total of ~550k instantiated tasks. As task templates are scheduled
for execution, tasks are instantiated; the chart on the left of the
Figure shows the number of actively executing tasks and
aggregated completed tasks at any given point in time for the
duration of the test. The chart on the right of the Figure shows the
average resource utilization of the compute server for CPU and
Memory dimensions. As we can see, we do have a good
utilization of the cluster for the duration of the tests. For this
experiment we have used FIFO scheduling order of task
templates, and we think both the resource utilization and time can
be improved by using more sophisticated policies; experiments
using different scheduling order policies are out of the scope of
this paper, and to be carried out in the near future. The main thing
to observe is that Polaris is able to handle high concurrency for a
complex workload such as TPC-DS packing up to 9k tasks on the
10 compute servers available, and completing approximately
550k tasks.

10.3 Query Performance at Petabyte Scale
The set-up

We used the TPC-H dbgen utility to generate a PB of raw data
and then converted it into parquet files that were stored in WASB.
Parquet files were organized using the data model from Section 3
with both hash partitions and user partitions. The total number of
parquet files is ~120k with total compressed size of 360TB.

The compute topology

We deployed a Polaris pool on Azure, consisting of one SQL FE
compute instance, one DQP and 420 compute execution services
(ES). Each node is a 2x12 cores Intel processor with 192GB of
RAM and 4 SSDs of 480GB. The network topology is 40Gb
throughout; 40Gb NIC, 40Gb TOR, and 40Gb CSP.

Results

Figure 12 shows execution time for all 22 TPC-H queries at 1PB
scale. To the best of our knowledge, this is the first time results
have been published at a PB scale. Remarkably, some queries
(Q6, Q12, Q15 and Q16) run extremely fast, through partition
elimination and distribution alignment of expensive joins, taking
advantage of the Polaris data model (Section 3). TPC-H has a few
queries that stress the processing limits of any system since they
join across all sources with low selectivity and very heavy joins
between large dimension and the fact table: Q9 and Q21 are good



examples. Polaris manages to process these queries at PB scale
under two hours across 420 machines, demonstrating scalability
and resilience.
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Figure 12. 1PB TPC-H single query performance

10.4 Querying Heterogeneous Data

The set-up

We used the TPC-H dbgen utility to generate a TB of raw data in
CSV  formatand then  convertedthe files  forthe
lineitem, customer, supplier, and nation tables into Parquet
files. Conversion into Parquet for customer and supplier files was
done by organizing contact information (name, address,
nationkey, and phone columns) as nested types in Parquet. The
lineitem and nation Parquet files were organized with simple
types, without nested structure. Files for orders, partsupp, part
and region were kept in raw CSV format. All files for a single
entity were stored in a single folder in WASB.
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Figure 13. 1TB TPC-H querying heterogeneous data.

The compute topology
We deployed a Polaris pool with one SQL FE compute
instance, one DQP and several execution services (ES).

Results

Figure 13 shows the query execution time for all 22 TPC-
Hqueries at 1TB  scale that combines querying CSV
files for some entities and Parquet files with and without nested
types for other entities. Polaris executes all 22 queries and
produces good plans even for the most complex queries, which
do joins across a variety of files (CSV, Parquet with simple
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types, and Parquet with nested types). This demonstrates the
robustness of the system in handling heterogeneous data sources.

11. Conclusions

In this paper, we presented Polaris, a novel distributed query
processing framework in Azure Synapse that seeks to support
both big data and relational warehouse workloads, going beyond
current systems of either kind in its flexibility and scalability. The
architecture is inspired by scale-out techniques from big data
systems. It extends these techniques in many ways, notably in the
cell abstraction of data, flexible task orchestration framework,
and global workload task graph. Polaris also is notable for how
it carefully refactors SQL Server’s complex codebase in order to
leverage its query optimizer and scale-up single-node engine—
both of which reflect many years of refinement—while
completely rewriting the distributed execution framework.

Polaris is also cloud-native, completely separating compute from
both storage and transactional state in order to support agile
provisioning and scaling of compute pools. Azure Synapse is
unique among cloud services in supporting both serverless and
provisioned form factors, with multiple serverless and
provisioned SQL sessions able to concurrently operate on the
same datasets, across both lake and managed data.

Appendix

Required properties

The following table contains the required properties for the most
common algebraic operators. The columns are treated as
equivalence classes (transitive closures) when testing the required
properties for algebraic correctness. When join predicates have
multiple equality conjuncts, correctness holds if hash key of each
input is a subset of the columns in the conjuncts from that input.
For "Group-By", correctness holds if hash key of input is a subset
of the grouping columns. Distributed query processor also
supports decomposing aggregations and Top-N into local-global
forms, which allows the optimizer to push selective local
operators before data movement enforcers. P[] subsumes P?.

Operator | Required Properties

Inner Join P x2=P Q: {{PlAI A QPI} v {P1}V {Q'}}

Outer Join P -2=b Q: {{Plal A QPP1} v {Q'}}

Semi-Join P x3=b Q: {{P3I A QP1} v {Pt A QIPI}
v Q')

Anti-Join p—2=bQ: ({Pll A QIP} v {Q'}}

Group-By GB(P,a): {{Pl1} v {P1}}

Project [1(P): {true}

Select o(P): {true}

Top Top(P): {P'}

Union-All PuQ: {{P°A Q°}v {P1A Q}}

Union PuUQ: {{PlIA QPI} v (P1A Q')

Apply P Apply Q: {Q'}
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