

POLARIS: The Distributed SQL Engine in Azure Synapse
Josep Aguilar-Saborit, Raghu Ramakrishnan, Krish Srinivasan

Kevin Bocksrocker, Ioannis Alagiannis, Mahadevan Sankara, Moe Shafiei

Jose Blakeley, Girish Dasarathy, Sumeet Dash, Lazar Davidovic, Maja Damjanic, Slobodan Djunic, Nemanja Djurkic, Charles Feddersen, Cesar
Galindo-Legaria, Alan Halverson, Milana Kovacevic, Nikola Kicovic, Goran Lukic, Djordje Maksimovic, Ana Manic, Nikola Markovic, Bosko Mihic,
Ugljesa Milic, Marko Milojevic, Tapas Nayak, Milan Potocnik, Milos Radic, Bozidar Radivojevic, Srikumar Rangarajan, Milan Ruzic, Milan Simic,
Marko Sosic, Igor Stanko, Maja Stikic, Sasa Stanojkov, Vukasin Stefanovic, Milos Sukovic, Aleksandar Tomic , Dragan Tomic, Steve Toscano,

Djordje Trifunovic, Veljko Vasic, Tomer Verona, Aleksandar Vujic, Nikola Vujic, Marko Vukovic, Marko Zivanovic

Microsoft Corp

ABSTRACT

In this paper, we describe the Polaris distributed SQL query engine

in Azure Synapse. It is the result of a multi-year project to re-

architect the query processing framework in the SQL DW parallel

data warehouse service, and addresses two main goals: (i) converge

data warehousing and big data workloads, and (ii) separate compute

and state for cloud-native execution.

From a customer perspective, these goals translate into many useful

features, including the ability to resize live workloads, deliver

predictable performance at scale, and to efficiently handle both

relational and unstructured data. Achieving these goals required

many innovations, including a novel “cell” data abstraction, and

flexible, fine-grained, task monitoring and scheduling capable of

handling partial query restarts and PB-scale execution. Most

importantly, while we develop a completely new scale-out

framework, it is fully compatible with T-SQL and leverages

decades of investment in the SQL Server single-node runtime and

query optimizer. The scalability of the system is highlighted by a

1PB scale run of all 22 TPC-H queries; to our knowledge, this is

the first reported run with scale larger than 100TB.

PVLDB Reference Format:

Josep Aguilar-Saborit, Raghu Ramakrishnan et al.

VLDB Conferences. PVLDB, 13(12): 3204 – 3216, 2020.

DOI: https://doi.org/10.14778/3415478.3415545

1. INTRODUCTION
Relational data warehousing has long been the enterprise approach

to data analytics, in conjunction with multi-dimensional business-

intelligence (BI) tools such as Power BI and Tableau. The recent

explosion in the number and diversity of data sources, together with

the interest in machine learning, real-time analytics and other

advanced capabilities, has made it necessary to extend traditional

relational DBMS based warehouses. In contrast to the traditional

approach of carefully curating data to conform to standard

enterprise schemas and semantics, data lakes focus on rapidly

ingesting data from many sources and give users flexible analytic

tools to handle the resulting data heterogeneity and scale.

A common pattern is that data lakes are used for data preparation,

and the results are then moved to a traditional warehouse for the

phase of interactive analysis and reporting. While this pattern

bridges the lake and warehouse paradigms and allows enterprises

to benefit from their complementary strengths, we believe that the

two approaches are converging, and that the full relational SQL tool

chain (spanning data movement, catalogs, business analytics and

reporting) must be supported directly over the diverse and large

datasets stored in a lake; users will not want to migrate all their

investments in existing tool chains.

In this paper, we present the Polaris interactive relational query

engine, a key component for converging warehouses and lakes in

Azure Synapse [1], with a cloud-native scale-out architecture that

makes novel contributions in the following areas:

• Cell data abstraction: Polaris builds on the abstraction of

a data “cell” to run efficiently on a diverse collection of data

formats and storage systems. The full SQL tool chain can now

be brought to bear over files in the lake with on-demand

interactive performance at scale, eliminating the need to move

files into a warehouse. This reduces costs, simplifies data

governance, and reduces time to insight. Additionally, in

conjunction with a re-designed storage manager (Fido [2]) it

supports the full range of query and transactional performance

needed for Tier 1 warehousing workloads.

• Fine-grained scale-out: The highly-available micro-

service architecture is based on (1) a careful packaging of data

and query processing into units called “tasks” that can be

readily moved across compute nodes and re-started at the task

level; (2) widely-partitioned data with a flexible distribution

model; (3) a task-level “workflow-DAG” that is novel in

spanning multiple queries, in contrast to [3, 4, 5, 6]; and (4) a

framework for fine-grained monitoring and flexible

scheduling of tasks.

• Combining scale-up and scale-out: Production-ready

scale-up SQL systems offer excellent intra-partition

parallelism and have been tuned for interactive queries with

deep enhancements to query optimization and vectorized

processing of columnar data partitions, careful control flow,

and exploitation of tiered data caches. While Polaris has a new

scale-out distributed query processing architecture inspired by

big data query execution frameworks, it is unique in how it

combines this with SQL Server’s scale-up features at each

node; we thus benefit from both scale-up and scale-out.

• Flexible service model: Polaris has a concept of a session,

which supports a spectrum of consumption models, ranging

from “serverless” ad-hoc queries to long-standing pools or

clusters. Leveraging the Polaris session architecture, Azure

Synapse is unique among cloud services in how it brings

together serverless and reserved pools with online scaling. All

data (e.g., files in the lake, as well as managed data in Fido

[2]) are accessible from any session, and multiple sessions can

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3415478.3415545

3204

access all underlying data concurrently. Fido supports

efficient transactional updates with data versioning.

1.1 Related Systems
The most closely related cloud services are AWS Redshift [7],

Athena [8], Google Big Query [9, 10], and Snowflake [11]. Of

course, on-premise data warehouses such as Exadata [12] and

Teradata [13] and big data systems such as Hadoop [3, 4, 14, 15],

Presto [16, 17] and Spark [5] target similar workloads (increasingly

migrating to the cloud) and have architectural similarities.

• Converging data lakes and warehouses. Polaris

represents data using a “cell” abstraction with two

dimensions: distributions (data alignment) and partitions

(data pruning). Each cell is self-contained with its own

statistics, used for both global and local QO. This

abstraction is the key building block enabling Polaris to

abstract data stores. Big Query and Snowflake support a

sort key (partitions) but not distribution alignment; we

discuss this further in Section 4.

• Service form factor. On one hand, we have reserved-

capacity services such as AWS Redshift, and on the other

serverless offerings such as Athena and Big Query.

Snowflake and Redshift Spectrum are somewhere in the

middle, with support for online scaling of the reserved

capacity pool size. Leveraging the Polaris session

architecture, Azure Synapse is unique in supporting both

serverless and reserved pools with online scaling; the

pool form factor represents the next generation of the

current Azure SQL DW service, which is subsumed as

part of Synapse. The same data can simultaneously be

operated on from both serverless SQL and SQL pools.

• Distributed cost-based query optimization over the data

lake. Related systems such as Snowflake [11], Presto [17,

18] and LLAP [14] do query optimization, but they have

not gone through the years of fine-tuning of SQL Server,

whose cost-based selection of distributed execution plans

goes back to the Chrysalis project [19]. A novel aspect of

Polaris is how it carefully re-factors the optimizer

framework in SQL Server and enhances it to be cell-

aware, in order to fully leverage the Query Optimizer

(QO), which implements a rich set of execution strategies

and sophisticated estimation techniques. We discuss

Polaris query optimization in Section 5; this is key to the

performance reported in Section 10.

• Massive scale-out of state-of-the-art scale-up query

processor. Polaris has the benefit of building on one of

the most sophisticated scale-up implementations in SQL

Server, and the scale-out framework is designed

expressly to achieve this—tasks at each node are

delegated to SQL Server instances—by carefully re-

factoring SQL Server code.

• Global resource-aware scheduling. The fine-grained

representation of tasks across all queries in the Polaris

workflow-graph is inspired by big data task graphs [3, 4,

5, 6], and enables much better resource utilization and

concurrency than traditional data warehouses. Polaris

advances existing big data systems in the flexibility of its

task orchestration framework, and in maintaining a

global view of multiple queries to do resource-aware

cross-query scheduling. This improves both resource

utilization and concurrency. In future, we plan to build

on this global view with autonomous workload

management features. See Section 6.

• Multi-layered data caching model. Hive LLAP [14]

showed the value of caching and pre-fetching of column

store data for big data workloads. Caching is especially

important in cloud-native architectures that separate state

from compute (Section 2), and Polaris similarly leverages

SQL Server buffer pools and SSD caching. Local nodes

cache columnar data in buffer pools, complemented by

caching of distributed data in SSD caches.

2. SEPARATING COMPUTE AND STATE
Figure 1 shows the evolution of data warehouse architectures over

the years, illustrating how state has been coupled with compute.

Data

Metadata

Xact

Caches

S
t
a

t
e

Data

Metadata

Xact

Caches

SEPARATED FROM COMPUTECOMPUTE

(a) Stateful Compute (b) Stateless Compute

Data

Metadata

Xact

Caches

On-prem arch Storage separation arch State separation arch

Figure 1. Decoupling state from compute.

To drive the end-to-end life cycle of a SQL statement with

transactional guarantees and top tier performance, engines maintain

state, comprised of cache, metadata, transaction logs, and data. On

the left side of Figure 1, we see the typical shared-nothing on-

premises architecture where all state is in the compute layer. This

approach relies on small, highly stable and homogenous clusters

with dedicated hardware for Tier-1 performance, and is expensive,

hard to maintain, and cluster capacity is bounded by machine sizes

because of the fixed topology; hence, it has scalability limits.

The shift to the cloud moves the dial towards the right side of Figure

1 and brings key architectural changes. The first step is the

decoupling of compute and storage, providing more flexible

resource scaling. Compute and storage layers can scale up and

down independently adapting to user needs; storage is abundant

and cheaper than compute, and not all data needs to be accessed at

all times. The user does not need compute to hold all data, and only

pays for the compute needed to query a working subset of it.

Decoupling of compute and storage is not, however, the same as

decoupling compute and state. If any of the remaining state held in

compute cannot be reconstructed from external services, then

compute remains stateful. In stateful architectures, state for in-

flight transactions is stored in the compute node and is not hardened

into persistent storage until the transaction commits. As such, when

a compute node fails, the state of non-committed transactions is

lost, and there is no alternative but to fail in-flight transactions.

Stateful architectures often also couple metadata describing data

distributions and mappings to compute nodes, and thus, a compute

node effectively owns responsibility for processing a subset of the

data and its ownership cannot be transferred without a cluster re-

start. In summary, resilience to compute node failure and elastic

assignment of data to compute are not possible in stateful

architectures. Several cloud services and on-prem data warehouse

architectures fall into this category, including Red Shift, SQL DW,

Teradata, Oracle, etc.

3205

Stateless compute architectures require that compute nodes hold no

state information, i.e., all data, transactional logs and metadata need

to be externalized. This allows the application to partially restart

the execution of queries in the event of compute node failures, and

to adapt to online changes of the cluster topology without failing

in-flight transactions. Caches need to be as close to the compute as

possible, and since they can be lazily reconstructed from persisted

data they don’t necessarily need to be decoupled from compute.

Therefore, the coupling of caches and compute does not make the

architecture stateful.

Polaris is a cloud-native distributed analytics system that follows a

stateless architecture. In the remainder of the paper we go through

the technical highlights of the architecture, and finally, we present

results of running all 22 TPC-H queries at 1PB scale on Azure.

3. THE POLARIS DATA ABSTRACTION

A key objective for Polaris is to be a scale-out query engine for

relational data as well as heterogeneous datasets stored in

distributed file systems such as HDFS. The Polaris data model is

therefore designed with the following considerations in mind:

• Abstraction from the data format. Polaris, as an

analytical query engine over the data lake, must be able

to query any data, relational or unstructured, whether in

a transactionally updatable managed store or an

unmanaged file system. Hence, we need a clean

abstraction over the underlying data type and format,

capturing just what’s needed for efficiently parallelizing

data processing. A dataset in Polaris is logically

abstracted as a collection of cells that can be arbitrarily

assigned to compute nodes to achieve parallelism. The

Polaris distributed query processing framework (DQP),

operates at the cell level and is agnostic to the details of

the data within a cell. Data extraction from a cell is the

responsibility of the (single node) query execution

engine, which is primarily SQL Server, and is extensible

for new data types.

• Wide distribution. For scale-out processing, each

dataset must be distributed across thousands of buckets,

or subsets of data objects, such that they can be processed

in parallel across nodes. In Polaris, this can be expressed

as the requirement that a dataset must be uniformly

distributed across a large number of cells.

3.1 Data Cells
As shown in Figure 2, a collection (e.g., table) of data objects (e.g.,

rows) in Polaris can be logically abstracted as a collection of cells

Cij containing all objects r such that p(r) = i and h(r) = j.

The hash-distribution h(r) is a system-defined function applied to

(a user-defined composite key c of) r that returns the hash bucket

number, or distribution, that r belongs to. The hash-distribution h

is used to map cells to compute nodes, and the system chooses h to

hash datasets across a large number of buckets so that cells (and

thus, computation) can be distributed across as many compute

nodes as needed. Further, computationally expensive operations

such as joins and vector aggregation can be performed at the cell

level without incurring data movement if either the join keys or

grouping keys are aligned on the hash-distribution key.

The partitioning function p(r) is a user-defined function that takes

as input an object r and returns the partition i in which r is

positioned. This is useful for aggressive partition pruning when

range or equality predicates are defined over the partitioning key.

(If the user does not specify p for a dataset, the partition pruning

optimization is not applicable.)

Cells can be grouped physically in storage however we choose

(examples of groupings are shown as dotted rectangles in Figure 2),

so long as we can efficiently access Cij. Queries can selectively

reference either cell dimension or even individual cells depending

on predicates and type of operations present in the query.

U
ser partitions. P(r)

1

M

N1

C11 C1N

CM1
CMN

Data CellsCell
grouping

Figure 2. Polaris Data Model

Flexible Assignment of Cells to Compute
Query processing across thousands of machines requires query

resilience to node failures. For this, the data model needs to support

a flexible allocation of cells to compute, such that upon node failure

or topology change, we can re-assign cells of the lost node to the

remainder of the topology. This flexible assignment of cells to

compute is ensured by maintaining metadata state (specifically, the

assignment of cells to compute nodes at any given time) in a

durable manner outside the compute nodes.

ADLS Fido U-Parquet Cosmos DBSocrates

Data Set = Collection of data cells

Hash Distributions

P
artitio

n
s

Polaris Pool

Analytical Stores Transactional Stores

STORE ABSTRACTION

(DATA CELLS)

DISTRIBUTED QUERY
PROCESSING

Figure 3. Store Abstraction via Data Cells

Storage Abstraction
Polaris abstracts distributed query processing from the underlying

store via data cells. As shown in Figure 3, any dataset can be

mapped to a collection of cells, which allows Polaris to do

distributed query processing over data in diverse formats, and in

any underlying store, as long as efficient access to individual cells

is provided by the storage server. As such, Polaris can perform

3206

highly scalable distributed query processing over analytical stores

such as ADLS [20], Fido [2], and Delta [21], as well as

transactional stores such as Socrates [22] and Cosmos DB [23]. Of

course, when data is stored in columnar formats tailored for

vectorized processing, this further improves relational query

performance.

A Note on Queries

In this paper, we mostly focus on relational queries (with the

exception of Section 10.4). Data objects are assumed to have

attributes required by relational operators to which they are input.

That said, the generality of the data abstraction underlying Polaris’s

query processing means that we can handle datasets represented in

diverse formats and stored in different repositories. For example,

Polaris can run directly over data in HDFS and in managed

transactional stores. Further, different objects in a dataset could

differ in the attributes attached to them, and objects could have

additional uninterpreted attributes.

4. MAPPING CELLS TO COMPUTE
A fundamental aspect in distributed execution is how we map cells

(of source datasets as well as intermediate results) to compute

nodes for various operations involved in the execution of a query.

As noted above, we map cells to nodes using the hash-distribution

h. We now discuss this in more detail.

4.1 Distribution Properties
As discussed above, data objects (e.g., tuples or rows) in a cell are

hash aligned, i.e., if c is the composite key, all objects that hash to

the same cell have the same hash value or distribution h(c).

Further, if two objects hash to different distribution values, they

must differ on the composite key c. As degenerate cases, objects

may be distributed round-robin or mapped to a single cell. We

introduce the following notation for how objects in a dataset are

hashed (or not) across cells:

1. ℎ[𝑐]: Objects in a dataset P are mapped to cells using a

hash-distribution on column c. Also denoted as: 𝑃[𝑐].

2. All objects in the dataset are hashed to the same value,

i.e., there is a single hash-bucket: 𝑃1

3. Objects in dataset P are not hash-distributed across

cells; this situation arises sometimes for intermediate

results. Also denoted as: 𝑃∅

The above distribution properties are used by the Polaris

Distributed Query Optimizer (DQO) for two fundamental

purposes: (1) to guarantee functional correctness of parallel

execution of operations such as joins and vector aggregations, and

(2) they are used as interesting properties by the DQO while

enumerating physical distributed alternatives in the search space.

Distribution Properties as Correctness Filters
The input distribution properties of a relational operator are used to

guarantee functional correctness when enumerating the physical

execution alternatives across multiple compute nodes. For instance,

an inner join requires both of its inputs to be hash aligned on the

join column, or one input to be mapped to a single hash-bucket, in

order to return the correct results while operating only on input cells

available locally at each node:

𝑃 ⋈𝑎=𝑏 𝑄: {{𝑃[𝑎] ∧ 𝑄[𝑏]} ∨ {𝑃1} ∨ {𝑄1}}

We refer to such correctness criteria on inputs as required

distribution properties. During the enumeration of the alternative

physical distributed plans in the search space, the DQO uses

required distribution properties on operators to discard alternatives.

The list of required properties for each relational algebra operation

is listed in the appendix of this paper.

Distribution Properties as “Interesting Properties”
System R [24] introduced the concept of interesting properties,

namely physical properties (e.g., sort order) such that the best plan

for producing (intermediate) tables with each interesting property

is saved during the enumeration of the search space. Thus, the

cheapest plan for producing an intermediate table in sorted order by

the first column would be saved even if there is a cheaper plan to

produce the same table unsorted or in a different sort order.

Similarly, in the distributed search space, the Polaris DQO uses the

required distribution properties of relational algebra operators as

interesting properties. When enumerating the physical plan

alternatives bottom-up, the best plan for each property and the best

plan overall based on cost are kept.

4.2 Data Move Enforcers
Polaris provides physical operators called data move enforcers that

can read data from a source dataset and produce a target dataset

with different distribution properties:

• Hash operator, Hd. Re-distributes every object (in every

cell of the dataset) by hashing on column d. The number

of cells in the output dataset can differ from the input.

𝐻𝑑(𝑃[𝑐]) = 𝑃[𝑑]

𝐻𝑑(𝑃1) = 𝑃[𝑑]

𝐻𝑑(𝑃∅) = 𝑃[𝑑]

• Broadcast operator, B. Maps the input dataset to a

single cell and replicates it across multiple locations.

𝐵(𝑃[𝑐]) = 𝑃1

 𝐵(𝑃∅) = 𝑃1

Hb (Q)P

a=b

[a]

Q
[c]

B (Q)P

a=b

[a]

Q
[c]

B (P) Q

a=b

[c]

P
[a]

B (P)

a=b

P
[a]

Q

a=b

[c]
P

[a]B (Q)

Q
[c]

P
[a]

Q
[b]

a=b

P
[a]

Q
1a=b

P
1

Q
[c]

a=b

P
1

Q
1

a=b P
[a]

Q
[c]

a=b

B (P)

a=b

P
[a]

Q
[c]

P
1

a=b

Hb (Q)

Q
[b]

Hb (Q)

Q
[c]

B (Q)

Q
[c]

Q
[c]P

[a] B (P)

P
[a]

P
[a]

Q
[b]

Q
1

Q
[c]P

1

QP

P Qa=b

Figure 4. Enumeration of the search space for inner join

3207

As an example, Figure 4 shows the enumeration of the alternative

distributed physical execution plans for an inner join, 𝑃 ⋈𝑎=𝑏 𝑄

where P and Q are (say, files in a data lake or tables in a managed

distributed relational store) hashed on a and c respectively (𝑃[𝑎] and

𝑄[𝑐]). The enumeration of physical alternatives starts with the

scans of P and Q, shown in the bottom-most part of the figure. Q is

hash distributed on column c, hence, 𝑄[𝑐] is the first alternative

generated. Replication and hash distribution on b are interesting

properties pushed top-down, leading to the enumeration of sub-

plans 𝑄1 and 𝑄[𝑐] respectively. P is hash distributed on column a,

generating 𝑃[𝑎] as the first alternative. Replication and hash

distribution on a are also interesting properties pushed top-down.

Since we already satisfy hash distribution on a via 𝑃[𝑎], we only

need to produce 𝑃1. The plan node in the top half of Figure 4 shows

the enumeration of plans for the join operation; this is a permutation

of the alternatives produced by its children at the bottom of the

figure. During the enumeration, correctness filters are applied,

thereby eliminating 𝑃[𝑎] ⋈𝑎=𝑏 𝑄[𝑐] from the search space, since

it does not satisfy any of the distribution properties required by an

inner join. For the remaining alternatives, only the best plan for

each interesting property is kept:

𝑃[𝑎] ∧ 𝑄[𝑏]: 𝑃[𝑎] ⋈𝑎=𝑏 𝑄[𝑏]

𝑃1: 𝑃1 ⋈𝑎=𝑏 𝑄[𝑐]

𝑄1: 𝑃[𝑎] ⋈𝑎=𝑏 𝑄1

Finally, the best distributed query plan will be chosen based on the

cheapest of the three options. Data move enforcers are expensive

operators due to the cost of data re-distribution; hence, the cheapest

plan is the one that minimizes data movement, as explained in [19].

5. FROM QUERIES TO TASK DAGS
A fundamentally new aspect of Polaris is its fine-grained

representation and tracking of query execution. In this section, we

describe how a query is compiled and optimized into an executable

DAG of tasks that correspond to units of distributed execution.

5.1 Polaris Tasks
A key challenge in Polaris was how to essentially re-architect

distributed query processing while leveraging as much of existing

SQL Server capabilities as possible and ensuring that the resulting

system was a faithful implementation of all user-visible semantics.

To this end, all incoming queries in Polaris are compiled in two

phases. The first phase of the compilation stage leverages SQL

Server Cascades QO to generate the logical search space, or

MEMO [25, 26]. The MEMO contains all logical equivalent

alternative plans to execute the query. A second phase performs

distributed cost-based QO to enumerate all physical distributed

implementations of these logical plans and picks one with the least

estimated cost. The outcome is a good distributed query plan that

takes data movement cost into account, as explained in [19].

When enumerating the physical space during the second phase of

the QO process, a query plan in the MEMO is seen as a directed

acyclic graph (DAG) of physical operators, each corresponding to

an algebraic sub-expression E in the query. For simplicity, we use

E to denote both the expression and its instantiation as an operator

in the MEMO. Operator E has a degree of partitioned parallelism N

that defines the number of instances of E that run in parallel, each

on a partition of the input. We denote the distributed execution of

E as ⋃ 𝐸𝑖
𝑁
𝑖=1 , where 𝐸𝑖 represents the execution of E over the ith

hash-distribution of its inputs, and N is the degree of parallelism.

We illustrate the notation by means of an example. Figure 5 depicts

an expression that consists of a hash aligned join between two input

relations, P and Q. As shown on the left, the cell representation of

user files over the lake is captured during MEMO generation by

SQL Server—the first stage of QO pulls metadata from external

services such as remote meta-stores that contain information on the

collection of files/tables, partitions and distributions.

For this example, the input data cells are N-way hash-distributed

such that the parallel distributed query plan is represented through

the union of the join operation on each hash-distribution pair; (in

contrast to the example of the previous section) P and Q are already

hash-aligned on the join column, satisfying the required

Figure 5. Execution Model

Cells to Tasks mapping

P1 Q1

T1

P2 Q2

T2

PN QN

TN

Cells (P)

U
ser p

artitio
ns (M

)

Hash Distributions(N)

Cells (Q)

P Q

MEMO

Pi QiTi=P Q
N

TaskLogical
expression

Distributed
plan

i=1
ꓴ

a=b

Pi

[a]

Qi

[b]
a=b a=b

Pi
[a]

Qi
[b]

 Task generation in the DQP

[a] [b]

Pi QiTi=
a=b

Pi
[a]

Qi
[b]

[a] [b]

Cells (P)

U
ser p

artitio
ns (M

)

Hash Distributions(N)

Cells (Q)

3208

distribution properties of the join operator. The same notation can

be extended to represent more complex relational expressions and

distribution variations, but we omit the details.

Next, we introduce the notion of a task Ti as the physical execution

of an operator E on the ith hash-distribution of its inputs. Tasks are

instantiated templates of (the code executing) expression E that run

in parallel across N hash-distributions of the inputs, as illustrated in

Figure 5 with blue triangles. A task has three components:

• Inputs. Collections of cells for each input’s data partition.

These cells can be stored either in highly available

remote storage, or in temporary local disks.

• Task template. Code to execute on the compute nodes,

representing the operator expression E.

• Output. Output dataset represented as a collection of cells

produced by the task. The output of a task is either an

intermediate result for another task to consume or the

final results to return to the user, and is distributed across

several nodes corresponding to the consuming task’s

degree of parallelism.

5.2 The Query Task DAG
In general, the distributed query plan is represented as a directed

acyclic graph (DAG) (of operators or tasks) rather than a single

node to capture the structure of sub-expressions in the query,

including data-flow dependencies and required distribution

properties of corresponding operators.

Pi Qi
a=b

Pi
[a]

Qi
[b]

Hb (Qi)

Qi
[c]

Ri
[c]

Hc (Ri)

Ri
[d]

a=c
Ri

Query Task DAG

Hb (Q)P

a=b

[a]

Q
[c]

Hc (R)

R
[d]

a=c

Physical query plan

Ri
[c]

Qi
[b]

[a] [b] [c]

[d] [c]

T2 T3

T1

Figure 6. The Query Task DAG

Each vertex contains an operator corresponding to an expression E

in the query and has a corresponding task template, instantiated

across multiple nodes over hash-distributions of the inputs for the

vertex. Edges represent dataflow dependencies, and if the

consuming vertex E does not support pipelining, induce precedence

constraints over “consumer tasks” created by instantiating E across

compute nodes over hash-distributed inputs of E. That is,

“consumer” tasks cannot start until the corresponding tasks of the

producer vertexes of the edge have completed.

Precedence constraints are inherently blocking and define changes

of the distribution properties of the data cells consumed by parent

tasks. As explained earlier, the DQO injects changes of distribution

properties via data move enforcers to achieve correctness, or a

better distributed alternative plan to speed up query execution.

Therefore, the subtree of physical operators rooted on a move

enforcer defines the input and output boundaries of a task. Data

move enforcers are blocking operators such that all their output data

cells are persisted in local storage before they can be processed by

the consumer task.

Tasks in the DAG without precedence constraints can execute in

parallel, thereby achieving independent parallelism between

different tasks of a query. Figure 6 expands on the example in

Figure 4 with an additional join. The left hand side of the figure

illustrates the physical distributed query plan that has two move

enforcers such that the join between the three relations are hash

aligned into a final task, resulting into a query DAG with a total of

three tasks.

5.3 SQL Server Scale-up for Task Execution
The example in Figure 5 also illustrates an additional optimization

carried out in the second phase of cost-based distributed query

optimization. Observe how vertexes in the MEMO corresponding

to two join operators have been combined into a single vertex that

carries out both joins—this is because all three input datasets (P, Q,

and R) are hash aligned on the same column by the preceding move

enforcer operations. Thus, in general, the template for a task can

include code for an algebra expression involving multiple

operators.

While we could perform the three-way join in this example in two

sequential tasks, we intentionally seek to make tasks be maximal

units of work. This allows us to more effectively leverage the

sophisticated scale-up columnar query processor in SQL Server. At

each compute node, the task template of the algebraic expression E

corresponding to the task is encoded back into T-SQL and executed

natively in SQL Server. In this approach, the blocking nature of the

boundaries of a task actually help SQL Server to optimize the

template code of a task with fresh stats from intermediate inputs.

6. TASK ORCHESTRATION
Arguably the biggest engineering challenge in Polaris is

orchestration of tasks.

▪ The scale is daunting—the amount of data could be petabytes,

leading to millions of cells; the number of compute nodes used

in a single query could be in the thousands; and the number of

tasks could be in the millions.

▪ Execution must be robust to transient failures of nodes,

network, storage, and other components (e.g., metadata micro-

services), and must guarantee that all precedence constraints

are satisfied, and all distributed decisions have quorum.

▪ Tasks must be automatically re-startable on any node, for

auto-scaling and fault-tolerance.

In Polaris, we introduce a model of the execution of a query as a

novel hierarchical composition of finite state machines. As

explained in previous sections, at run time, a query is transformed

into a query task DAG, which consists of a set of tasks with

precedence constraints.

We refer to each of the following aspects of a query as an entity:

the query DAG, the task templates and tasks. A leaf-level task

template can be instantiated into tasks on its hash-distributed

inputs; in this case, we say that the task template entity is composed

of the instantiated task entities. A non-leaf task template has

precedence constraints on other task templates; in this case, the

non-leaf task template entity is composed of the entities for the task

templates on which it depends. For each entity, we refer to the

entities of which it is composed as its dependencies.

The execution state of each entity is tracked using an associated

state machine with a finite set of states and state transitions. The

state of an entity is a composition of the state of the entities of which

3209

it is composed. States can be either composite or simple. Simple

states are used to denote success, failure, or readiness of a task

template. Composite states denote (1) an instantiated task template,

or (2) a blocked task template. (Note that an instantiated task will

succeed or fail but cannot be blocked; tasks are only instantiated

when their inputs are ready.)

A composite state differs from a simple state in that its transition to

another state is defined by the result of the execution of its

dependencies. It has a collection of peer states, one for each

dependency, and a termination policy intent aggregates meta-data

on execution of dependencies and captures how to interpret the

outcome of dependencies, and how to act on other peer states.

The Polaris state machine through its hierarchical state machine

composition captures the execution intent and it is in this aspect that

it differs from other distributed query engines. In other DAG

execution frameworks [5, 6, 14], composition is inherent in the

execution. In Polaris, the state machine provides a template that is

used to orchestrate the execution. The advantage it offers is the

ability to formalize how we recover from failures and use the state

machine recorder (a log) to observe and reply execution history.

Further, for a given a set of workloads in the system, the execution

history combined with the rules governing legal transitions can be

used to reorder workload executions and explore different

execution sequences by forking and resuming execution from

selected points in the recorded history; this is future work.

Figure 7 illustrates the entities and state machines for the example

in Figure 6. As we can see, the distributed query execution of the

query task DAG is modelled as a hierarchical set of state machines.

The root query DAG entity starts in the Run composite state and

instantiates the state machine for the entity corresponding to the

(task template T1 representing the) join of P, Q and R. This state

machine starts in a (composite) Blocked state because it has

dependencies on the entities corresponding to (task templates T2

and T3 for) the move enforcers on Q and R; these task templates

are now placed in the scheduler queue. Their state is initialized to

Ready since they have no dependencies, and they are eventually

picked to run by the scheduler.

The state machines for task templates T2 and T3 are instantiated

and initialized to the Run state. This in turn instantiates tasks for the

task templates. If any of these tasks fail, their state machine

transitions to the Failed state, the failure is detected and the failed

task is restarted automatically if the reason is a transient failure (as

indicated by the task state machine transition in Figure 7);

otherwise the parent state machine retries at a coarser granularity.

The state for T2 and T3 becomes Success when all its task

dependencies succeed. When both move enforcer entities succeed,

the root entity T1 is unblocked and placed in the scheduler queue.

When it is picked to run, i.e., becomes active, and it is instantiated

as join tasks on the hash-partitioned inputs.

In more detail, a state machine in Failure triggers an analysis of the

type of failure for all dependencies that we classify as retriable, e.g.,

transient failures caused by node failure. If retriable, then it can

transition back to Blocked, otherwise, the state machine with

Failure returns control to the state machine for its parent, which

will try to re-schedule execution using additional resources or in

turn propagate the failure up the control chain. This is an example

of how, in contrast to other systems such as [10, 15, 18], Polaris

orchestration gives us flexibility in handling different types of

failures by allowing us to specify behavior on termination of a

composite state.

To summarize, when in Ready state, a task template waits in the

queue for the scheduler to pick its turn to execute, then it transitions

to Run. This is when task entities are instantiated, and the task’s

state machines are executed. The task template transition from Run

to a terminating state (Failed or Success), depends on the resulting

execution of the instantiated tasks. Note that any entity can

transition from Failed to Run if the failure is transient. The failure

is propagated to higher entities only if it is deemed not retriable

within the entity’s state machine.

ready

run

failed

success

blocked

HIERARCHICAL STATE MACHINES STATE MACHINE DRIVEN QUERY EXECUTION

1 2 3 4

5 6 7 8

Composite
States

Simple
States

State
Transition

Execution of
composite entities

Task Template (T1)

Task Template (T3)

Task Template (T2)

Tasks

Tasks

Tasks

Query DAG

Figure 7. Hierarchical composition of state machines for distributed query execution

3210

Modelling the distributed query execution of queries via

hierarchical state machines has the following goals:

▪ Satisfy precedence constraints. The execution of the query

task DAG is carried out top-down in a topological sort order

such that every task with precedence constrains is blocked

on completion of its input tasks. For example, as shown in

the right-hand side of Figure 7, the root task is blocked (Step

1) until its two dependencies are completed (Step 6).
▪ Reliable execution. We use the state machines to have fine

grain control at task level and define a predictable model for

recovering from failures. Completion and failure

propagation are done bottom-up using the compositional

nature of states. In Step 3 illustrates a case where on

container failure during the execution of a task, the error

propagates to the parent task template, which retries its

execution.

▪ Reproducibility at scale. States and transitions are logged

by all entities. This allows for predictability and

reproducibility regardless of the complexity of the workload

and the scale. This is also a fundamental building block for

debugging and resumable execution upon failover.
▪ Concurrency. Fine grain control at large scale often comes

with large memory requirements and thread contention due

to many subroutines running concurrently. Hierarchical

state machines allow us to track the state of all entities in the

workload with a low memory overhead: there is only one

state machine for a task entity and all instantiations run

through its states and transitions. Also, the Polaris query

processor has been built from scratch using .NET’s task

asynchronous programming model to eliminate the need for

blocking synchronization primitives across subroutines, thus

minimizing thread contention and maximizing OS thread

utilization. The gains are seen in Section 10.2.

7. WORKLOAD AWARE SCHEDULING
Polaris must handle highly concurrent workloads ranging from

dashboarding scenarios running thousands of light weight

queries, to reporting scenarios executing a set of highly complex

analytical queries. There are potentially millions of tasks to be

orchestrated for execution by the Polaris DQP. In the previous

section we described how hierarchical state machines enable us

to efficiently handle distributed task orchestration at very large

scale. In this section we cover how Polaris schedules tasks for

high concurrency.

Task scheduling in Polaris is based on a global view of all active

queries called the workload graph, generalizing the

representation of a single query as a DAG of tasks to represent

the entire workload by combining task DAGs of all active queries.

Each task in the workload graph has an associated resource

demand that is an extension of the model in Ganguly [27] to d-

dimensional preemptable resources proposed in [28, 29]. We

define a d-dimensional resource vector that has time and space

shared constraints where each dimension specifies an aspect of

resource consumption. Fungible resources such as memory and

CPU can be sliced across tasks at a low cost, and each task’s

requirement for a given resource can be stretched at execution

time. On the other hand, more rigid resources such as temp space

on local disks must also be satisfied. Stretching temp space across

independent tasks is prohibitively expensive since it would

require swapping pages in and out from/to remote storage.

The resource demand for each task is computed as a function of

inputs and outputs of each physical operator in the template code

for the task. Analogously, Polaris also models each compute node

as a d-dimensional bin of resources such that placement of tasks

to containers is based on policies that can be autonomously tuned

based on resource consumption profiles across all nodes.

15

X
Resource
demand

15 10 15 20

558

5 5

T1T2T3T4T5

T8 T7 T6

T9T10

Workload Graph (WG)

Workload Scheduler

Resource Governance

Figure 8. Workload aware resource scheduling algorithm

The representation of the workload as a global graph of tasks with

resource demands allows us to redefine the multi-query

scheduling problem as a task scheduling problem with precedence

constraints: the goal is scheduling d-dimensional tasks on d-

dimensional containers to complete in the minimum amount of

time possible while ensuring that at all times, we are within all d

dimensions of resources available to us. Figure 8 shows the

representation of the workload graph for two query DAGs. In

green circles we represent the resource demand for each task

template. For simplicity, in this example we normalize to just one

number, and not the multi-dimensional resource vector used in

Polaris. The workload scheduler and the resource governor

operate on the workload graph.

The pseudocode of the scheduler is shown on the bottom of the

figure. The scheduler is asynchronously waiting for work, and

when awoken it adds all task templates in the workload graph that

are in Ready state to the scheduler queue. Task templates are then

dequeued in order specified by the scheduling policy. Currently

supported policies include (combinations of): FIFO, sorted by

resource demand (min to max or max to min), and sorted by

proximity to the root. Intuitively, sorting by proximity to the root

biases towards tasks from jobs that are closer to completion (so

that their shared resources can be released sooner).

3211

For the next task template in order, the resource governor

examines each task to be instantiated. If all these tasks fit in their

target location (i.e., each task’s resource demand can be

accommodated given current local capacity), then the task

template is removed from the scheduler queue and transitioned to

the Run state. Otherwise, we break out of the loop and wait for

other tasks to complete so the task template can fit. Note that the

target location of a task is fixed by data affinity to exploit cache

locality. This novel approach to multi-query workload—

generalizing task scheduling from big data systems to consider

tasks across all active queries—can improve concurrency for the

following reasons:

▪ A task template is the unit of scheduling. The scheduling

order applies to the task template entity and not a query. A

finer grain unit of scheduling allows for better packing

strategies, helping maximizing resource utilization.

▪ Weighted policies for resource governance. The

placement of the task in the target compute server is based

on resource fit to maximize load while avoiding over-

provisioning. For this we use a weighted policy to pack tasks

into the compute capacity available at a node. The policy has

two variations, one that caps the amount of resources that

can be granted to a task, and another one that does not. If the

task does not fit in the available compute, it is put back into

the queue till tasks complete and capacity is freed.

▪ Increased flexibility in task ordering. Scheduling policies

define the order in which tasks are executed as they become

ready for execution. By looking at ready tasks across all

queries, taking into account resource pressure in the system,

we are able to pick orderings that would not be permissible

otherwise. For instance, consider the example in Figure 8,

applying a max to min scheduling policy. The scheduler

queue SchQ starts with {T1, T2, T3, T4, T5} with scheduling

order {T1, T2, T4, T5, T3}. As we go through the loop, T3

does not fit, so only four out of the five task templates

transition to Run state. Next all T4 and T5 complete and the

scheduler is awoken. SchQ now contains {T8, T3} with

scheduling order {T3, T8}. Now, if the workload manager

detects pressure in the system because of disk resources held

by previously completed task templates, it can choose to

swap the scheduling policy to sort by proximity to the root

to release pressure in the system. In this example, the

scheduling order would change to be {T8, T3}. The study of

scheduling and resource management policies to consider

SLAs and avoid starvation is out of scope for this paper and

will be addressed in future work.
▪ Resource driven query admission control. Back pressure

can be driven by a ratio of capacity (demand vs. available).

Concurrency is only limited by available capacity, and the

admission of a query is only denied when we cannot

guarantee SLAs due to a capacity crunch.

8. SERVICE ARCHITECTURE
Figure 9 illustrates the architecture of the query service for two

Polaris pools sharing the same centralized (metadata and

transaction) services. There are two important aspects to note:

▪ Stateless architecture within a pool. The Polaris

architecture falls into the stateless service architecture from

Figure 1.b, as discussed in Section 2. All services within a

pool are stateless: (i) data is stored durably in remote storage,

and is abstracted via data cells, and (ii) the metadata and

transactional log state is off-loaded to centralized services.

(We do not go into the architecture of the centralized

services in detail; briefly, they are built for HA and

performance using Azure SQL DB.)

▪ Multiple-pools. Placing the state in centralized services

coupled with a stateless micro-service architecture within a

pool means multiple compute pools can transactionally

access the same logical database.

Distributed QP

Control Flow

P
o

la
ri

s
P

o
o

l

SQL Server
Front End

D
a

ta
 C

h
a

n
n

e
l

Data Set = Collection of data cells

Centralized Services
Metadata Transactions

Hash Distributions

P
a

rtitio
n

s

Execution
 Service

SQL Server

Compute
Server

Cache

Compute
servers

Distributed QP

Control Flow

P
o

la
ri

s
P

o
o

l

SQL Server
Front End

D
a

ta
 C

h
a

n
n

e
l

Compute
servers

Figure 9. Polaris service architecture

8.1 Stateless micro-service architecture
A Polaris pool consists of a set of micro-services each with well-

defined responsibilities. The SQL Server Front End (SQL-FE) is

the service responsible for compilation, authorization,

authentication, and metadata. Metadata is used by the compiler to

generate the search space (the MEMO) for incoming queries and

bind metadata to data cells. The Distributed Query Processor

(DQP) is responsible for distributed query optimization,

distributed query execution, query execution topology

management and workload management (WLM). Finally, a

Polaris pool consists of a set of compute servers that are, simply,

an abstraction of a host provided by the compute fabric, each with

a dedicated set of resources (disk, CPU and memory). Each

compute server runs two micro-services: (a) an Execution Service

(ES) that is responsible for tracking the life span of tasks assigned

to a compute container by the DQP, and (b) a SQL Server instance

that is used as the back-bone for execution of the template query

for a given task and holding a cache on top of local SSDs (in

addition to in-memory caching of hot data). Data can be

transferred from one compute server to another via dedicated data

channels. The data channel is also used by the compute servers to

send results to the SQL FE that returns the results to the user. The

life cycle of a query is tracked via control flow channels from the

SQL FE to the DQP, and the DQP to the ES.

As explained in Section 2, no essential state is held by any micro-

service in Polaris. While caches are stored by the compute

servers, upon fail-over, they can be easily re-constructed.

3212

8.2 Service form factors
The separation of state and compute coupled with the auto-scaling

capabilities of a pool (explained in the next section) allow us to

support very high concurrency levels within each pool, as well as

enabling all of the following user-facing service form-factors:

▪ Serverless. One system managed Polaris pool with auto-

scale ranging from 0 to N compute nodes where N is

constrained only by capacity within Azure compute.

▪ Capacity reservation. A dedicated Polaris pool with a

minimum reservation of capacity and auto-scale capacity

up to a maximum user-specified size.

▪ Multiple pools. Multiple Polaris pools with capacity

reservation. Pool sizes can either be defined by the user or

they can grow and shrink dynamically.

9. ELASTIC QUERY PROCESSING
The infrastructure of a cloud is inherently elastic in that compute

containers (e.g., VMs, k8 containers) can be obtained or released

nearly instantly. This means nodes can be added and removed

from a query processing compute topology in a matter of seconds.

With appropriate telemetry, the system can auto-scale up or down

proactively based on workload needs or react to unexpected

events such as faulty nodes and infrastructure upgrades.

In any of these scenarios, the Polaris query processor must ensure

that tasks can be flexibly assigned to compute nodes in

dynamically changing query execution topologies. We achieve

this objective by leveraging several aspects of the Polaris

framework:

▪ Separation of state and compute.

▪ Flexible abstraction of datasets as cells.

▪ Task inputs defined in terms of cells.

▪ Fine-grained orchestration of tasks using state machines.

Figure 10 depicts examples of key scenarios we unlock with this

architecture. We explain each one in the following Sections.

9.1 Auto-Scale
The Polaris DQP requests the underlying compute fabric for more

containers to adjust to peaks in the workload and re-distributes

tasks to transparently leverage the new containers. Note that in-

flight tasks in the previous topology continue running, while new

queries get the new compute power with appropriate load

balancing. In Figure 10, we show a doubling of compute capacity;

however, we can add capacity in increments of just one node.

The Polaris DQP also can autonomously scale down the compute

node topology (in increments of one or more nodes) when

utilization drops sufficiently.

Resilience to Node Failures
Figure 10 also illustrates how the Polaris DQP recovers from node

failures while tasks are running. If a server fails, the DQP

rebalances the tasks in the failed node across the rest of the

healthy topology. The fault tolerance model is built into the

hierarchical state machine discussed in Section 6. A node failure

transitions execution tasks in a container into the Failed state.

Then the parent task template state machine reacts

appropriately—tasks previously assigned to the faulty node are

restarted on healthy nodes. This feature is essential for scaling to

very large queries, since the probability of node failure increases

with the number of nodes involved.

9.2 Skewed Computations
Figure 10 shows how skewed computation or hot spots are

handled. The Polaris DQP and the ES in the compute servers

implement a feedback loop that tracks the life span of execution

tasks on a node. If the DQP detects that a node is overloaded (e.g.,

the yellow node in the figure), it can decide to re-schedule a subset

of the tasks assigned to that compute node amongst other nodes

where the load is less. If this does not mitigate the hot spot, we

fall back on the auto-scale feature to add more nodes to the

topology and rebalance the load appropriately. Skewed

computations are handled using runtime feedback loops, and our

query optimizer does not currently take data skew into account.

How to handle skew during query optimization is future work.

9.3 Affinitizing Tasks to Compute
As explained in Section 8, the SQL Server service in the compute

server extends caching of hot data to its local SSDs. Accessing

data from remote storage is an expensive operation, and therefore

the elastic features of the Polaris DQP try to minimize the impact

on the cache by consistent assignment of data cells to tasks, and

our scheduler assigning tasks to compute based on data

collocation, thus, preserving caches upon topology changes. In

particular, (a) on topology shrinkage, only the caches of the nodes

that are no longer part of the topology are lost, and (b) on topology

growth, all the caches from the existing topology are preserved,

and only the caches for the new nodes need to be populated.

10. PERFORMANCE EVALUATION

10.1 Goals
Our goals are to obtain an understanding of the performance and

concurrency characteristics of Polaris on a single pool over

structured and non-structured data. For this we break down our

experiments into three dimensions.

Concurrency. We want to stress the DQP with a concurrent

workload. The global graph in such scenario consists of thousands

of tasks from a thousand different queries such that we showcase

Figure 10. Elastic Compute Scenarios

Data
channel

Control
channel

Data
channel

Control
channel

Data
channel

Control
channel

Data
channel

Control
channel

Data
channel

Control
channel

Data
channel

Control
channel

Auto-scale Resilience to failure Hot spot recovery

3213

the resource driven scheduling capabilities of the WLM, and its

autonomy around capacity management, access control and

resource governance under heavy load. For this we use the TPC-

DS [30] workload to run a multi-user environment executing five

thousand of queries simultaneously.

Single query performance at PB scale over the data lake. We

ran all TPC-H [31] queries at one PB scale across hundreds of

machines on Azure public compute. The goal of this experiment

is to stress the scalability, elasticity, and fault tolerance

capabilities of the service. Note that this is not a validated TPC-

H benchmark, the only intent is to demonstrate we can run all

queries at a scale that has not been done before.

Querying heterogeneous data. To illustrate that Polaris can run

on heterogeneous data, we ran all TPC-H [31] queries at 1 TB

scale on a dataset consisting of a variety of data files ranging from

raw CSV files to Parquet files with nested attributes. The test was

executed using less than 100 cores in Azure public compute. The

experiment emphasizes raw file parsing and query optimization

capabilities over joins between plain text files and Parquet files

with nested attributes.

10.2 Concurrency
The setup

We used the TPC-DS dbgen utility to generate a 1TB of raw data

and then converted it into parquet files that were stored into

Windows Azure Storage Blob (WASB), the Azure Data Lake.

Rows do not follow any distribution since we are not focusing on

single query performance but stress on concurrency. The

application spans five thousand concurrent sessions executing

one distinct TPC-DS query each. For this we generated TPC-DS

queries 50 times with different predicate ranges and assigned one

to each session.

The compute topology

Since the goal of this experiment is to stress the DQP component

we choose a rather small compute topology with 10 compute

nodes. The hardware configuration of each node consists of 2x20

cores intel processors, 520GB of RAM and 4 SSDs of 1TB each.

The network topology is 40Gb throughout; 40Gb NIC, 40Gb

TOR, 40Gb CSP.

Results

Figure 11 shows the task execution summary and the resource

utilization in the backend nodes. The 5k queries run

simultaneously generating a workload graph over 50k task

templates that as they are scheduled, they expand to an aggregated

total of ~550k instantiated tasks. As task templates are scheduled

for execution, tasks are instantiated; the chart on the left of the

Figure shows the number of actively executing tasks and

aggregated completed tasks at any given point in time for the

duration of the test. The chart on the right of the Figure shows the

average resource utilization of the compute server for CPU and

Memory dimensions. As we can see, we do have a good

utilization of the cluster for the duration of the tests. For this

experiment we have used FIFO scheduling order of task

templates, and we think both the resource utilization and time can

be improved by using more sophisticated policies; experiments

using different scheduling order policies are out of the scope of

this paper, and to be carried out in the near future. The main thing

to observe is that Polaris is able to handle high concurrency for a

complex workload such as TPC-DS packing up to 9k tasks on the

10 compute servers available, and completing approximately

550k tasks.

10.3 Query Performance at Petabyte Scale
The set-up

We used the TPC-H dbgen utility to generate a PB of raw data

and then converted it into parquet files that were stored in WASB.

Parquet files were organized using the data model from Section 3

with both hash partitions and user partitions. The total number of

parquet files is ~120k with total compressed size of 360TB.

The compute topology

We deployed a Polaris pool on Azure, consisting of one SQL FE

compute instance, one DQP and 420 compute execution services

(ES). Each node is a 2x12 cores Intel processor with 192GB of

RAM and 4 SSDs of 480GB. The network topology is 40Gb

throughout; 40Gb NIC, 40Gb TOR, and 40Gb CSP.

Results

Figure 12 shows execution time for all 22 TPC-H queries at 1PB

scale. To the best of our knowledge, this is the first time results

have been published at a PB scale. Remarkably, some queries

(Q6, Q12, Q15 and Q16) run extremely fast, through partition

elimination and distribution alignment of expensive joins, taking

advantage of the Polaris data model (Section 3). TPC-H has a few

queries that stress the processing limits of any system since they

join across all sources with low selectivity and very heavy joins

between large dimension and the fact table: Q9 and Q21 are good

Figure 11. Results for 5k concurrent queries

3214

examples. Polaris manages to process these queries at PB scale

under two hours across 420 machines, demonstrating scalability

and resilience.

Figure 12. 1PB TPC-H single query performance

10.4 Querying Heterogeneous Data
The set-up
We used the TPC-H dbgen utility to generate a TB of raw data in

CSV format and then converted the files for the

lineitem, customer, supplier, and nation tables into Parquet

files. Conversion into Parquet for customer and supplier files was

done by organizing contact information (name, address,

nationkey, and phone columns) as nested types in Parquet. The

lineitem and nation Parquet files were organized with simple

types, without nested structure. Files for orders, partsupp, part

and region were kept in raw CSV format. All files for a single

entity were stored in a single folder in WASB.

Figure 13. 1TB TPC-H querying heterogeneous data.

The compute topology
We deployed a Polaris pool with one SQL FE compute

instance, one DQP and several execution services (ES).

Results
Figure 13 shows the query execution time for all 22 TPC-

H queries at 1TB scale that combines querying CSV

files for some entities and Parquet files with and without nested

types for other entities. Polaris executes all 22 queries and

produces good plans even for the most complex queries, which

do joins across a variety of files (CSV, Parquet with simple

types, and Parquet with nested types). This demonstrates the

robustness of the system in handling heterogeneous data sources.

11. Conclusions
In this paper, we presented Polaris, a novel distributed query

processing framework in Azure Synapse that seeks to support

both big data and relational warehouse workloads, going beyond

current systems of either kind in its flexibility and scalability. The

architecture is inspired by scale-out techniques from big data

systems. It extends these techniques in many ways, notably in the

cell abstraction of data, flexible task orchestration framework,

and global workload task graph. Polaris also is notable for how

it carefully refactors SQL Server’s complex codebase in order to

leverage its query optimizer and scale-up single-node engine—

both of which reflect many years of refinement—while

completely rewriting the distributed execution framework.

Polaris is also cloud-native, completely separating compute from

both storage and transactional state in order to support agile

provisioning and scaling of compute pools. Azure Synapse is

unique among cloud services in supporting both serverless and

provisioned form factors, with multiple serverless and

provisioned SQL sessions able to concurrently operate on the

same datasets, across both lake and managed data.

Appendix
Required properties

The following table contains the required properties for the most

common algebraic operators. The columns are treated as

equivalence classes (transitive closures) when testing the required

properties for algebraic correctness. When join predicates have

multiple equality conjuncts, correctness holds if hash key of each

input is a subset of the columns in the conjuncts from that input.

For "Group-By", correctness holds if hash key of input is a subset

of the grouping columns. Distributed query processor also

supports decomposing aggregations and Top-N into local-global

forms, which allows the optimizer to push selective local

operators before data movement enforcers. P[a] subsumes P∅.

Operator Required Properties

Inner Join P ⋈a=b Q: {{P[a] ∧ Q[b]} ∨ {P1} ∨ {Q1}}

Outer Join P →a=b Q: {{P[a] ∧ Q[b]} ∨ {Q1}}

Semi-Join P ⋉a=b Q: {{P[a] ∧ Q[b]} ∨ {P1 ∧ Q[b]}

∨ {Q1}}

Anti-Join P−a=bQ: {{P[a] ∧ Q[b]} ∨ {Q1}}

Group-By GB(P, a): {{P[a]} ∨ {P1}}

Project Π(P): {true}

Select σ(P): {true}

Top Top(P): {P1}

Union-All P ⊎ Q: {{P∅ ∧ Q∅} ∨ {P1 ∧ Q1}}

Union P ∪ Q: {{P[a] ∧ Q[b]} ∨ {P1 ∧ Q1}}

Apply P Apply Q: {Q1}

3215

12. REFERENCES
[1]. Azure Synapse Analytics. [https://azure.microsoft.com/en-

us/services/synapse-analytics/]

[2]. Report, Microsoft. FIDO: A Cloud-Native Versioned Store

With Concurrent Transactional Updates. 2020.

[3]. Ashish Thusoo et al, Hive – A Petabyte Scale Data

Warehouse Using Hadoop. Long Beach, California, USA :

ICDE Conference, 2010.

[4]. R. Chaiken, et al. SCOPE: easy and efficient parallel

processing of massive data sets. Auckland, New Zealand :

VLDB Conference, 2008.

[5]. Michael et al. Spark SQL: Relational data processing in

Spark. Armbrust, Melbourne, Victoria, Australia : Proc. ACM

SIGMOD, 2015. SIGMOD.

[6]. Michael Isard et al. Dryad: distributed data-parallel

programs from sequential building blocks. Lisboa, Portugal :

Eurosys, 2007.

[7]. Gupta, Anurag et al. Amazon Redshift and the Case for

Simpler Data Warehouses. Melbourne, Victoria, Australia :

SIGMOD Conference, 2015.

[8]. AWS Athena. [https://aws.amazon.com/athena/]

[9]. An Inside Look at Google BigQuery.

[https://cloud.google.com/files/BigQueryTechnicalWP.pdf]

[10]. Melnik, Sergey, et al. Dremel: Interactive Analysis of Web-

Scale Datasets. s.l. : VLDB Endowment, 2010.

[11]. Dageville, Benoit, et al. The Snowflake Elastic Data

Warehouse. San Francisco, California, USA : SIGMOD

Conference, 2016.

[12]. Oracle Exadata.

[https://www.oracle.com/technetwork/database/exadata/exadata-

technical-whitepaper-134575.pdf]

[13]. Teradata. [https://www.teradata.com/]

[14]. Apache Hive LLAP.

[https://cwiki.apache.org/confluence/display/Hive/LLAP]

[15]. Marcel Kornacker et al. Impala: A Modern, Open-Source

SQL Engine for Hadoop. Asilomar, California, USA : CIDR,

2015.

[16]. Presto. [https://prestodb.io/]

[17]. R. Sethi et al. Presto: SQL on Everything. Macao, Macao :

ICDE Conference, 2019.

[18]. Introduction To Presto Cost Based Optimizer.

[https://prestosql.io/blog/2019/07/04/cbo-introduction.html]

[19]. Shankar, Srinath, et al. Query optimization in microsoft

SQL server PDW. Scottsdale, Arizona, USA : SIGMOD

Conference, 2012.

[20]. Ramakrishnan, Raghu et al. Azure Data Lake Store: A

Hyperscale Distributed File Service for Big Data Analytics.

Chicago, IL, USA : SIGMOD Conference, 2017.

[21]. Delta Lake. [https://delta.io/]

[22]. Antonopoulos, Panagiotis et al. Socrates: The New SQL

Server in the Cloud. Amsterdam, Netherlands : SIGMOD

Conference, 2019.

[23]. Shukla, Dharma et al. Schema-Agnostic Indexing with

Azure DocumentDB. Kohala Coast, Hawaii : VLDB Conference,

2015.

[24]. Astrahan, Morton M. et al. System R: relational approach

to database management. s.l. : ACM Transactions on Database

Systems, 1976, ACM Transactions on Database Systems, pp.

16-36.

[25]. Graefe, Goetz and McKenna, William J. The Volcano

optimizer generator: extensibility and efficient search. Vienna,

Austria : IEEE International Conference on Data Engineering,

1993.

[26]. Graefe, Goetz. The Cascades Framework for Query

Optimization. s.l. : Data Engineering Bulletin, 1995, Vol. 18.

[27]. Hochbaum, Dorit S. and Shmoys, David B. Using dual

approximation algorithms for scheduling problems: Theoretical

and practical results. Portland, OR, USA : IEEE, 1985. 26th

Annual Symposium on Foundations of Computer Science (scfs

1985).

[28]. Garofalakis, Minos N. and Ioannidis, Yannis E. Parallel

Query Scheduling and Optimization with Time- and Space-

Shared Resources. Athens, Greece : VLDB Conference, 1997.

VLDB.

[29]. Garofalakis, Minos N. and Ioannidis, Yannis E. Multi-

dimensional Resource Scheduling for Parallel Queries.

Montreal, Canada : SIGMOD Conference, 1996. SIGMOD.

[30]. The TPC-DS Benchmark. [Online]

http://www.tpc.org/tpcds/.

[31]. The TPC-H Benchmark. [Online] http://www.tpc.org/tpch/.

3216

