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ABSTRACT 

In this paper, we describe the Polaris distributed SQL query engine 

in Azure Synapse. It is the result of a multi-year project to re-

architect the query processing framework in the SQL DW parallel 

data warehouse service, and addresses two main goals: (i) converge 

data warehousing and big data workloads, and (ii) separate compute 

and state for cloud-native execution.  

From a customer perspective, these goals translate into many useful 

features, including the ability to resize live workloads, deliver 

predictable performance at scale, and to efficiently handle both 

relational and unstructured data. Achieving these goals required 

many innovations, including a novel “cell” data abstraction, and 

flexible, fine-grained, task monitoring and scheduling capable of 

handling partial query restarts and PB-scale execution.  Most 

importantly, while we develop a completely new scale-out 

framework, it is fully compatible with T-SQL and leverages 

decades of investment in the SQL Server single-node runtime and 

query optimizer. The scalability of the system is highlighted by a 

1PB scale run of all 22 TPC-H queries; to our knowledge, this is 

the first reported run with scale larger than 100TB. 
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1. INTRODUCTION 
Relational data warehousing has long been the enterprise approach 

to data analytics, in conjunction with multi-dimensional business-

intelligence (BI) tools such as Power BI and Tableau.  The recent 

explosion in the number and diversity of data sources, together with 

the interest in machine learning, real-time analytics and other 

advanced capabilities, has made it necessary to extend traditional 

relational DBMS based warehouses.  In contrast to the traditional 

approach of carefully curating data to conform to standard 

enterprise schemas and semantics, data lakes focus on rapidly 

ingesting data from many sources and give users flexible analytic 

tools to handle the resulting data heterogeneity and scale. 

A common pattern is that data lakes are used for data preparation, 

and the results are then moved to a traditional warehouse for the  

phase of interactive analysis and reporting.  While this pattern 

bridges the lake and warehouse paradigms and allows enterprises 

to benefit from their complementary strengths, we believe that the 

two approaches are converging, and that the full relational SQL tool 

chain (spanning data movement, catalogs, business analytics and 

reporting) must be supported directly over the diverse and large 

datasets stored in a lake; users will not want to migrate all their 

investments in existing tool chains.  

In this paper, we present the Polaris interactive relational query 

engine, a key component for converging warehouses and lakes in 

Azure Synapse [1], with a cloud-native scale-out architecture that 

makes novel contributions in the following areas:  

• Cell data abstraction: Polaris builds on the abstraction of 

a data “cell” to run efficiently on a diverse collection of data 

formats and storage systems. The full SQL tool chain can now 

be brought to bear over files in the lake with on-demand 

interactive performance at scale, eliminating the need to move 

files into a warehouse.  This reduces costs, simplifies data 

governance, and reduces time to insight. Additionally, in  

conjunction with a re-designed storage manager (Fido [2]) it 

supports the full range of query and transactional performance 

needed for Tier 1 warehousing workloads. 

• Fine-grained scale-out: The highly-available micro-

service architecture is based on (1) a careful packaging of data 

and query processing into units called “tasks” that can be 

readily moved across compute nodes and re-started at the task 

level; (2) widely-partitioned data with a flexible distribution 

model; (3) a task-level “workflow-DAG” that is novel in 

spanning  multiple queries, in contrast to [3, 4, 5, 6]; and (4) a 

framework for fine-grained monitoring and flexible 

scheduling of tasks. 

• Combining scale-up and scale-out: Production-ready 

scale-up SQL systems offer excellent intra-partition 

parallelism and have been tuned for interactive queries with 

deep enhancements to query optimization and vectorized 

processing of columnar data partitions, careful control flow, 

and exploitation of tiered data caches. While Polaris has a new 

scale-out distributed query processing architecture inspired by 

big data query execution frameworks, it is unique in how it 

combines this with SQL Server’s scale-up features at each 

node; we thus benefit from both scale-up and scale-out.  

• Flexible service model: Polaris has a concept of a session, 

which supports a spectrum of consumption models, ranging 

from “serverless” ad-hoc queries to long-standing pools or 

clusters. Leveraging the Polaris session architecture, Azure 

Synapse is unique among cloud services in how it brings 

together serverless and reserved pools with online scaling. All 

data (e.g., files in the lake, as well as managed data in Fido 

[2]) are accessible from any session, and multiple sessions can 
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access all underlying data concurrently. Fido supports 

efficient transactional updates with data versioning.  

1.1 Related Systems 
The most closely related cloud services are AWS Redshift [7], 

Athena [8], Google Big Query [9, 10], and Snowflake [11].  Of 

course, on-premise data warehouses such as Exadata [12] and 

Teradata [13] and big data systems such as Hadoop [3, 4, 14, 15], 

Presto [16, 17] and Spark [5] target similar workloads (increasingly 

migrating to the cloud) and have architectural similarities. 

• Converging data lakes and warehouses. Polaris 

represents data using a “cell” abstraction with two 

dimensions: distributions (data alignment) and partitions 

(data pruning). Each cell is self-contained with its own 

statistics, used for both global and local QO. This 

abstraction is the key building block enabling Polaris to 

abstract data stores. Big Query and Snowflake support a 

sort key (partitions) but not distribution alignment; we 

discuss this further in Section 4.  

• Service form factor. On one hand, we have reserved-

capacity services such as AWS Redshift, and on the other 

serverless offerings such as Athena and Big Query.  

Snowflake and Redshift Spectrum are somewhere in the 

middle, with support for online scaling of the reserved 

capacity pool size. Leveraging the Polaris session 

architecture, Azure Synapse is unique in supporting both 

serverless and reserved pools with online scaling; the 

pool form factor represents the next generation of the 

current Azure SQL DW service, which is subsumed as 

part of Synapse. The same data can simultaneously be 

operated on from both serverless SQL and SQL pools. 

• Distributed cost-based query optimization over the data 

lake. Related systems such as Snowflake [11], Presto [17, 

18] and LLAP [14] do query optimization, but they have 

not gone through the years of fine-tuning of   SQL Server, 

whose cost-based selection of distributed execution plans 

goes back to the Chrysalis project [19]. A novel aspect of 

Polaris is how it carefully re-factors the optimizer 

framework in SQL Server and enhances it to be cell-

aware, in order to fully leverage the Query Optimizer 

(QO), which implements a rich set of execution strategies 

and sophisticated estimation techniques. We discuss 

Polaris query optimization in Section 5; this is key to the 

performance reported in Section 10.    

• Massive scale-out of state-of-the-art scale-up query 

processor.  Polaris has the benefit of building on one of 

the most sophisticated scale-up implementations in SQL 

Server, and the scale-out framework is designed 

expressly to achieve this—tasks at each node are 

delegated to SQL Server instances—by carefully re-

factoring SQL Server code. 

• Global resource-aware scheduling. The fine-grained 

representation of tasks across all queries in the Polaris 

workflow-graph is inspired by big data task graphs [3, 4, 

5, 6], and enables much better resource utilization and 

concurrency than traditional data warehouses. Polaris 

advances existing big data systems in the flexibility of its 

task orchestration framework, and in maintaining a 

global view of multiple queries to do resource-aware 

cross-query scheduling. This improves both resource 

utilization and concurrency. In future, we plan to build 

on this global view with autonomous workload 

management features. See Section 6. 

• Multi-layered data caching model. Hive LLAP [14] 

showed the value of caching and pre-fetching of column 

store data for big data workloads. Caching is especially 

important in cloud-native architectures that separate state 

from compute (Section 2), and Polaris similarly leverages 

SQL Server buffer pools and SSD caching. Local nodes 

cache columnar data in buffer pools, complemented by 

caching of distributed data in SSD caches.  

2. SEPARATING COMPUTE AND STATE 
Figure 1 shows the evolution of data warehouse architectures over 

the years, illustrating how state has been coupled with compute.  
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Figure 1. Decoupling state from compute. 

To drive the end-to-end life cycle of a SQL statement with 

transactional guarantees and top tier performance, engines maintain 

state, comprised of cache, metadata, transaction logs, and data. On 

the left side of Figure 1, we see the typical shared-nothing on-

premises architecture where all state is in the compute layer. This 

approach relies on small, highly stable and homogenous clusters 

with dedicated hardware for Tier-1 performance, and is expensive, 

hard to maintain, and cluster capacity is bounded by machine sizes 

because of the fixed topology; hence, it has scalability limits. 

The shift to the cloud moves the dial towards the right side of Figure 

1 and brings key architectural changes. The first step is the 

decoupling of compute and storage, providing more flexible 

resource scaling. Compute and storage layers can scale up and 

down independently adapting to user needs; storage is abundant 

and cheaper than compute, and not all data needs to be accessed at 

all times. The user does not need compute to hold all data, and only 

pays for the compute needed to query a working subset of it.  

Decoupling of compute and storage is not, however, the same as 

decoupling compute and state. If any of the remaining state held in 

compute cannot be reconstructed from external services, then 

compute remains stateful. In stateful architectures, state for in-

flight transactions is stored in the compute node and is not hardened 

into persistent storage until the transaction commits. As such, when 

a compute node fails, the state of non-committed transactions is 

lost, and there is no alternative but to fail in-flight transactions. 

Stateful architectures often also couple metadata describing data 

distributions and mappings to compute nodes, and thus, a compute 

node effectively owns responsibility for processing a subset of the 

data and its ownership cannot be transferred without a cluster re-

start. In summary, resilience to compute node failure and elastic 

assignment of data to compute are not possible in stateful 

architectures. Several cloud services and on-prem data warehouse 

architectures fall into this category, including Red Shift, SQL DW, 

Teradata, Oracle, etc.  
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Stateless compute architectures require that compute nodes hold no 

state information, i.e., all data, transactional logs and metadata need 

to be externalized. This allows the application to partially restart 

the execution of queries in the event of compute node failures, and 

to adapt to online changes of the cluster topology without failing 

in-flight transactions. Caches need to be as close to the compute as 

possible, and since they can be lazily reconstructed from persisted 

data they don’t necessarily need to be decoupled from compute. 

Therefore, the coupling of caches and compute does not make the 

architecture stateful.  

Polaris is a cloud-native distributed analytics system that follows a 

stateless architecture. In the remainder of the paper we go through 

the technical highlights of the architecture, and finally, we present 

results of running all 22 TPC-H queries at 1PB scale on Azure. 

3. THE POLARIS DATA ABSTRACTION 

A key objective for Polaris is to be a scale-out query engine for 

relational data as well as heterogeneous datasets stored in 

distributed file systems such as HDFS.  The Polaris data model is 

therefore designed with the following considerations in mind: 

• Abstraction from the data format. Polaris, as an 

analytical query engine over the data lake, must be able 

to query any data, relational or unstructured, whether in 

a transactionally updatable managed store or an 

unmanaged file system. Hence, we need a clean 

abstraction over the underlying data type and format, 

capturing just what’s needed for efficiently parallelizing 

data processing. A dataset in Polaris is logically 

abstracted as a collection of cells that can be arbitrarily 

assigned to compute nodes to achieve parallelism. The 

Polaris distributed query processing framework (DQP), 

operates at the cell level and is agnostic to the details of 

the data within a cell. Data extraction from a cell is the 

responsibility of the (single node) query execution 

engine, which is primarily SQL Server, and is extensible 

for new data types. 

• Wide distribution. For scale-out processing, each 

dataset must be distributed across thousands of buckets, 

or subsets of data objects, such that they can be processed 

in parallel across nodes. In Polaris, this can be expressed 

as the requirement that a dataset must be uniformly 

distributed across a large number of cells. 

3.1 Data Cells 
As shown in Figure 2, a collection (e.g., table) of data objects (e.g., 

rows) in Polaris can be logically abstracted as a collection of cells 

Cij containing all objects r such that p(r) = i and h(r) = j. 

The hash-distribution h(r) is a system-defined function applied to 

(a user-defined composite key c of) r that returns the hash bucket 

number, or distribution, that r belongs to. The hash-distribution h 

is used to map cells to compute nodes, and the system chooses h to 

hash datasets across a large number of buckets so that cells (and 

thus, computation) can be distributed across as many compute 

nodes as needed.  Further, computationally expensive operations 

such as joins and vector aggregation can be performed at the cell 

level without incurring data movement if either the join keys or 

grouping keys are aligned on the hash-distribution key. 

The partitioning function p(r) is a user-defined function that takes 

as input an object r and returns the partition i in which r is 

positioned. This is useful for aggressive partition pruning when 

range or equality predicates are defined over the partitioning key. 

(If the user does not specify p for a dataset, the partition pruning 

optimization is not applicable.) 

Cells can be grouped physically in storage however we choose 

(examples of groupings are shown as dotted rectangles in Figure 2), 

so long as we can efficiently access Cij. Queries can selectively 

reference either cell dimension or even individual cells depending 

on predicates and type of operations present in the query.  
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Figure 2. Polaris Data Model 

Flexible Assignment of Cells to Compute 
Query processing across thousands of machines requires query 

resilience to node failures. For this, the data model needs to support 

a flexible allocation of cells to compute, such that upon node failure 

or topology change, we can re-assign cells of the lost node to the 

remainder of the topology. This flexible assignment of cells to 

compute is ensured by maintaining metadata state (specifically, the 

assignment of cells to compute nodes at any given time) in a 

durable manner outside the compute nodes. 
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Figure 3. Store Abstraction via Data Cells 

Storage Abstraction 
Polaris abstracts distributed query processing from the underlying 

store via data cells. As shown in Figure 3, any dataset can be 

mapped to a collection of cells, which allows Polaris to do 

distributed query processing over data in diverse formats, and in 

any underlying store, as long as efficient access to individual cells 

is provided by the storage server. As such, Polaris can perform 
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highly scalable distributed query processing over analytical stores 

such as ADLS [20], Fido [2], and Delta [21], as well as 

transactional stores such as Socrates [22] and Cosmos DB [23]. Of 

course, when data is stored in columnar formats tailored for 

vectorized processing, this further improves relational query 

performance. 

A Note on Queries 

In this paper, we mostly focus on relational queries (with the 

exception of Section 10.4).  Data objects are assumed to have 

attributes required by relational operators to which they are input. 

That said, the generality of the data abstraction underlying Polaris’s 

query processing means that we can handle datasets represented in 

diverse formats and stored in different repositories. For example, 

Polaris can run directly over data in HDFS and in managed 

transactional stores. Further, different objects in a dataset could 

differ in the attributes attached to them, and objects could have 

additional uninterpreted attributes. 

4. MAPPING CELLS TO COMPUTE  
A fundamental aspect in distributed execution is how we map cells 

(of source datasets as well as intermediate results) to compute 

nodes for various operations involved in the execution of a query. 

As noted above, we map cells to nodes using the hash-distribution 

h. We now discuss this in more detail. 

4.1 Distribution Properties 
As discussed above, data objects (e.g., tuples or rows) in a cell are 

hash aligned, i.e., if c is the composite key, all objects that hash to 

the same cell have the same hash value or distribution h(c).  

Further, if two objects hash to different distribution values, they 

must differ on the composite key c. As degenerate cases, objects 

may be distributed round-robin or mapped to a single cell. We 

introduce the following notation for how objects in a dataset are 

hashed (or not) across cells:  

1. ℎ[𝑐]: Objects in a dataset P are mapped to cells using a 

hash-distribution on column c. Also denoted as: 𝑃[𝑐]. 

2. All objects in the dataset are hashed to the same value, 

i.e., there is a single hash-bucket: 𝑃1 

3. Objects in dataset P are not hash-distributed across 

cells; this situation arises sometimes for intermediate 

results.  Also denoted as: 𝑃∅ 

The above distribution properties are used by the Polaris 

Distributed Query Optimizer (DQO) for two fundamental 

purposes: (1) to guarantee functional correctness of parallel 

execution of operations such as joins and vector aggregations, and 

(2) they are used as interesting properties by the DQO while 

enumerating physical distributed alternatives in the search space. 

Distribution Properties as Correctness Filters 
The input distribution properties of a relational operator are used to 

guarantee functional correctness when enumerating the physical 

execution alternatives across multiple compute nodes. For instance, 

an inner join requires both of its inputs to be hash aligned on the 

join column, or one input to be mapped to a single hash-bucket, in 

order to return the correct results while operating only on input cells 

available locally at each node: 

𝑃 ⋈𝑎=𝑏 𝑄: {{𝑃[𝑎] ∧  𝑄[𝑏]} ∨  {𝑃1} ∨ {𝑄1}} 

We refer to such correctness criteria on inputs as required 

distribution properties. During the enumeration of the alternative 

physical distributed plans in the search space, the DQO uses 

required distribution properties on operators to discard alternatives. 

The list of required properties for each relational algebra operation 

is listed in the appendix of this paper. 

Distribution Properties as “Interesting Properties” 
System R [24] introduced the concept of interesting properties, 

namely physical properties (e.g., sort order) such that the best plan 

for producing (intermediate) tables with each interesting property 

is saved during the enumeration of the search space. Thus, the 

cheapest plan for producing an intermediate table in sorted order by 

the first column would be saved even if there is a cheaper plan to 

produce the same table unsorted or in a different sort order. 

Similarly, in the distributed search space, the Polaris DQO uses the 

required distribution properties of relational algebra operators as 

interesting properties. When enumerating the physical plan 

alternatives bottom-up, the best plan for each property and the best 

plan overall based on cost are kept. 

4.2 Data Move Enforcers 
Polaris provides physical operators called data move enforcers that 

can read data from a source dataset and produce a target dataset 

with different distribution properties:  

• Hash operator, Hd. Re-distributes every object (in every 

cell of the dataset) by hashing on column d. The number 

of cells in the output dataset can differ from the input. 

𝐻𝑑(𝑃[𝑐]) =  𝑃[𝑑] 

𝐻𝑑(𝑃1)     =  𝑃[𝑑] 

𝐻𝑑(𝑃∅)     =  𝑃[𝑑] 

• Broadcast operator, B. Maps the input dataset to a 

single cell and replicates it across multiple locations. 

𝐵(𝑃[𝑐]) =  𝑃1 

       𝐵(𝑃∅) =  𝑃1 
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Figure 4. Enumeration of the search space for inner join 
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As an example, Figure 4 shows the enumeration of the alternative 

distributed physical execution plans for an inner join, 𝑃 ⋈𝑎=𝑏 𝑄 

where P and Q are (say, files in a data lake or tables in a managed 

distributed relational store) hashed on a and c respectively (𝑃[𝑎] and 

𝑄[𝑐]).  The enumeration of physical alternatives starts with the 

scans of P and Q, shown in the bottom-most part of the figure. Q is 

hash distributed on column c, hence, 𝑄[𝑐] is the first alternative 

generated. Replication and hash distribution on b are interesting 

properties pushed top-down, leading to the enumeration of sub-

plans 𝑄1 and 𝑄[𝑐] respectively. P is hash distributed on column a, 

generating  𝑃[𝑎] as the first alternative. Replication and hash 

distribution on a are also interesting properties pushed top-down. 

Since we already satisfy hash distribution on a via  𝑃[𝑎], we only 

need to produce 𝑃1. The plan node in the top half of Figure 4 shows 

the enumeration of plans for the join operation; this is a permutation 

of the alternatives produced by its children at the bottom of the 

figure. During the enumeration, correctness filters are applied, 

thereby eliminating  𝑃[𝑎] ⋈𝑎=𝑏  𝑄[𝑐] from the search space, since 

it does not satisfy any of the distribution properties required by an 

inner join. For the remaining alternatives, only the best plan for 

each interesting property is kept:  

𝑃[𝑎] ∧ 𝑄[𝑏]: 𝑃[𝑎] ⋈𝑎=𝑏  𝑄[𝑏]  

𝑃1: 𝑃1 ⋈𝑎=𝑏  𝑄[𝑐]  

𝑄1: 𝑃[𝑎] ⋈𝑎=𝑏  𝑄1  

Finally, the best distributed query plan will be chosen based on the 

cheapest of the three options. Data move enforcers are expensive 

operators due to the cost of data re-distribution; hence, the cheapest 

plan is the one that minimizes data movement, as explained in [19]. 

5. FROM QUERIES TO TASK DAGS 
A fundamentally new aspect of Polaris is its fine-grained 

representation and tracking of query execution.  In this section, we 

describe how a query is compiled and optimized into an executable 

DAG of tasks that correspond to units of distributed execution. 

5.1 Polaris Tasks 
A key challenge in Polaris was how to essentially re-architect 

distributed query processing while leveraging as much of existing 

SQL Server capabilities as possible and ensuring that the resulting 

system was a faithful implementation of all user-visible semantics.  

To this end, all incoming queries in Polaris are compiled in two 

phases. The first phase of the compilation stage leverages SQL 

Server Cascades QO to generate the logical search space, or 

MEMO [25, 26]. The MEMO contains all logical equivalent 

alternative plans to execute the query. A second phase performs 

distributed cost-based QO to enumerate all physical distributed 

implementations of these logical plans and picks one with the least 

estimated cost. The outcome is a good distributed query plan that 

takes data movement cost into account, as explained in [19].  

When enumerating the physical space during the second phase of 

the QO process, a query plan in the MEMO is seen as a directed 

acyclic graph (DAG) of physical operators, each corresponding to 

an algebraic sub-expression E in the query.  For simplicity, we use 

E to denote both the expression and its instantiation as an operator 

in the MEMO. Operator E has a degree of partitioned parallelism N 

that defines the number of instances of E that run in parallel, each 

on a partition of the input. We denote the distributed execution of 

E as ⋃ 𝐸𝑖
𝑁
𝑖=1 , where 𝐸𝑖 represents the execution of E over the ith 

hash-distribution of its inputs, and N is the degree of parallelism. 

We illustrate the notation by means of an example. Figure 5 depicts 

an expression that consists of a hash aligned join between two input 

relations, P and Q. As shown on the left, the cell representation of 

user files over the lake is captured during MEMO generation by 

SQL Server—the first stage of QO pulls metadata from external 

services such as remote meta-stores that contain information on the 

collection of files/tables, partitions and distributions.  

For this example, the input data cells are N-way hash-distributed 

such that the parallel distributed query plan is represented through 

the union of the join operation on each hash-distribution pair; (in 

contrast to the example of the previous section) P and Q are already 

hash-aligned on the join column, satisfying the required 

Figure 5. Execution Model 
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distribution properties of the join operator. The same notation can 

be extended to represent more complex relational expressions and 

distribution variations, but we omit the details.  

Next, we introduce the notion of a task Ti as the physical execution 

of an operator E on the ith hash-distribution of its inputs.  Tasks are 

instantiated templates of (the code executing) expression E that run 

in parallel across N hash-distributions of the inputs, as illustrated in 

Figure 5 with blue triangles. A task has three components: 

• Inputs. Collections of cells for each input’s data partition.  

These cells can be stored either in highly available 

remote storage, or in temporary local disks.  

• Task template. Code to execute on the compute nodes, 

representing the operator expression E.   

• Output. Output dataset represented as a collection of cells 

produced by the task. The output of a task is either an 

intermediate result for another task to consume or the 

final results to return to the user, and is distributed across 

several nodes corresponding to the consuming task’s 

degree of parallelism. 

5.2 The Query Task DAG 
In general, the distributed query plan is represented as a directed 

acyclic graph (DAG) (of operators or tasks) rather than a single 

node to capture the structure of sub-expressions in the query, 

including data-flow dependencies and required distribution 

properties of corresponding operators.   
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Figure 6. The Query Task DAG 

Each vertex contains an operator corresponding to an expression E 

in the query and has a corresponding task template, instantiated 

across multiple nodes over hash-distributions of the inputs for the 

vertex. Edges represent dataflow dependencies, and if the 

consuming vertex E does not support pipelining, induce precedence 

constraints over “consumer tasks” created by instantiating E across 

compute nodes over hash-distributed inputs of E. That is, 

“consumer” tasks cannot start until the corresponding tasks of the 

producer vertexes of the edge have completed. 

Precedence constraints are inherently blocking and define changes 

of the distribution properties of the data cells consumed by parent 

tasks. As explained earlier, the DQO injects changes of distribution 

properties via data move enforcers to achieve correctness, or a 

better distributed alternative plan to speed up query execution. 

Therefore, the subtree of physical operators rooted on a move 

enforcer defines the input and output boundaries of a task. Data 

move enforcers are blocking operators such that all their output data 

cells are persisted in local storage before they can be processed by 

the consumer task.  

Tasks in the DAG without precedence constraints can execute in 

parallel, thereby achieving independent parallelism between 

different tasks of a query. Figure 6 expands on the example in 

Figure 4 with an additional join. The left hand side of the figure 

illustrates the physical distributed query plan that has two move 

enforcers such that the join between the three relations are hash 

aligned into a final task, resulting into a query DAG with a total of 

three tasks. 

5.3 SQL Server Scale-up for Task Execution 
The example in Figure 5 also illustrates an additional optimization 

carried out in the second phase of cost-based distributed query 

optimization.  Observe how vertexes in the MEMO corresponding 

to two join operators have been combined into a single vertex that 

carries out both joins—this is because all three input datasets (P, Q, 

and R) are hash aligned on the same column by the preceding move 

enforcer operations. Thus, in general, the template for a task can 

include code for an algebra expression involving multiple 

operators. 

While we could perform the three-way join in this example in two 

sequential tasks, we intentionally seek to make tasks be maximal 

units of work. This allows us to more effectively leverage the 

sophisticated scale-up columnar query processor in SQL Server. At 

each compute node, the task template of the algebraic expression E 

corresponding to the task is encoded back into T-SQL and executed 

natively in SQL Server. In this approach, the blocking nature of the 

boundaries of a task actually help SQL Server to optimize the 

template code of a task with fresh stats from intermediate inputs. 

6. TASK ORCHESTRATION 
Arguably the biggest engineering challenge in Polaris is 

orchestration of tasks. 

▪ The scale is daunting—the amount of data could be petabytes, 

leading to millions of cells; the number of compute nodes used 

in a single query could be in the thousands; and the number of 

tasks could be in the millions. 

▪ Execution must be robust to transient failures of nodes, 

network, storage, and other components (e.g., metadata micro-

services), and must guarantee that all precedence constraints 

are satisfied, and all distributed decisions have quorum. 

▪ Tasks must be automatically re-startable on any node, for 

auto-scaling and fault-tolerance. 

In Polaris, we introduce a model of the execution of a query as a 

novel hierarchical composition of finite state machines. As 

explained in previous sections, at run time, a query is transformed 

into a query task DAG, which consists of a set of tasks with 

precedence constraints.  

We refer to each of the following aspects of a query as an entity: 

the query DAG, the task templates and tasks. A leaf-level task 

template can be instantiated into tasks on its hash-distributed 

inputs; in this case, we say that the task template entity is composed 

of the instantiated task entities.  A non-leaf task template has 

precedence constraints on other task templates; in this case, the 

non-leaf task template entity is composed of the entities for the task 

templates on which it depends. For each entity, we refer to the 

entities of which it is composed as its dependencies. 

The execution state of each entity is tracked using an associated 

state machine with a finite set of states and state transitions. The 

state of an entity is a composition of the state of the entities of which 
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it is composed. States can be either composite or simple. Simple 

states are used to denote success, failure, or readiness of a task 

template. Composite states denote (1) an instantiated task template, 

or (2) a blocked task template. (Note that an instantiated task will 

succeed or fail but cannot be blocked; tasks are only instantiated 

when their inputs are ready.) 

A composite state differs from a simple state in that its transition to 

another state is defined by the result of the execution of its 

dependencies. It has a collection of peer states, one for each 

dependency, and a termination policy intent aggregates meta-data 

on execution of dependencies and captures how to interpret the 

outcome of dependencies, and how to act on other peer states.  

The Polaris state machine through its hierarchical state machine 

composition captures the execution intent and it is in this aspect that 

it differs from other distributed query engines. In other DAG 

execution frameworks [5, 6, 14], composition is inherent in the 

execution. In Polaris, the state machine provides a template that is 

used to orchestrate the execution. The advantage it offers is the 

ability to formalize how we recover from failures and use the state 

machine recorder (a log) to observe and reply execution history.  

Further, for a given a set of workloads in the system, the execution 

history combined with the rules governing legal transitions can be 

used to reorder workload executions and explore different 

execution sequences by forking and resuming execution from 

selected points in the recorded history; this is future work.   

Figure 7 illustrates the entities and state machines for the example 

in Figure 6. As we can see, the distributed query execution of the 

query task DAG is modelled as a hierarchical set of state machines. 

The root query DAG entity starts in the Run composite state and 

instantiates the state machine for the entity corresponding to the 

(task template T1 representing the) join of P, Q and R. This state 

machine starts in a (composite) Blocked state because it has 

dependencies on the entities corresponding to (task templates T2 

and T3 for) the move enforcers on Q and R; these task templates 

are now placed in the scheduler queue. Their state is initialized to 

Ready since they have no dependencies, and they are eventually 

picked to run by the scheduler. 

The state machines for task templates T2 and T3 are instantiated 

and initialized to the Run state. This in turn instantiates tasks for the 

task templates. If any of these tasks fail, their state machine 

transitions to the Failed state, the failure is detected and the failed 

task is restarted automatically if the reason is a transient failure (as 

indicated by the task state machine transition in Figure 7); 

otherwise the parent state machine retries at a coarser granularity.  

The state for T2 and T3 becomes Success when all its task 

dependencies succeed.  When both move enforcer entities succeed, 

the root entity T1 is unblocked and placed in the scheduler queue.  

When it is picked to run, i.e., becomes active, and it is instantiated 

as join tasks on the hash-partitioned inputs. 

In more detail, a state machine in Failure triggers an analysis of the 

type of failure for all dependencies that we classify as retriable, e.g.,  

transient failures caused by node failure. If retriable, then it can 

transition back to Blocked, otherwise, the state machine with 

Failure returns control to the state machine for its parent, which 

will try to re-schedule execution using additional resources or in 

turn propagate the failure up the control chain. This is an example 

of how, in contrast to other systems such as [10, 15, 18], Polaris 

orchestration gives us flexibility in handling different types of 

failures by allowing us to specify behavior on termination of a 

composite state.  

To summarize, when in Ready state, a task template waits in the 

queue for the scheduler to pick its turn to execute, then it transitions 

to Run. This is when task entities are instantiated, and the task’s 

state machines are executed. The task template transition from Run 

to a terminating state (Failed or Success), depends on the resulting 

execution of the instantiated tasks. Note that any entity can 

transition from Failed to Run if the failure is transient. The failure 

is propagated to higher entities only if it is deemed not retriable 

within the entity’s state machine.  
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Figure 7. Hierarchical composition of state machines for distributed query execution
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Modelling the distributed query execution of queries via 

hierarchical state machines has the following goals: 

▪ Satisfy precedence constraints. The execution of the query 

task DAG is carried out top-down in a topological sort order 

such that every task with precedence constrains is blocked 

on completion of its input tasks. For example, as shown in 

the right-hand side of Figure 7, the root task is blocked (Step 

1) until its two dependencies are completed (Step 6). 
▪ Reliable execution. We use the state machines to have fine 

grain control at task level and define a predictable model for 

recovering from failures. Completion and failure 

propagation are done bottom-up using the compositional 

nature of states. In Step 3 illustrates a case where on 

container failure during the execution of a task, the error 

propagates to the parent task template, which retries its 

execution. 

▪ Reproducibility at scale. States and transitions are logged 

by all entities. This allows for predictability and 

reproducibility regardless of the complexity of the workload 

and the scale. This is also a fundamental building block for 

debugging and resumable execution upon failover. 
▪ Concurrency. Fine grain control at large scale often comes 

with large memory requirements and thread contention due 

to many subroutines running concurrently.  Hierarchical 

state machines allow us to track the state of all entities in the 

workload with a low memory overhead: there is only one 

state machine for a task entity and all instantiations run 

through its states and transitions. Also, the Polaris query 

processor has been built from scratch using .NET’s task 

asynchronous programming model to eliminate the need for 

blocking synchronization primitives across subroutines, thus 

minimizing thread contention and maximizing OS thread 

utilization. The gains are seen in Section 10.2. 

7. WORKLOAD AWARE SCHEDULING 
Polaris must handle highly concurrent workloads ranging from 

dashboarding scenarios running thousands of light weight 

queries, to reporting scenarios executing a set of highly complex 

analytical queries. There are potentially millions of tasks to be 

orchestrated for execution by the Polaris DQP. In the previous 

section we described how hierarchical state machines enable us 

to efficiently handle distributed task orchestration at very large 

scale. In this section we cover how Polaris schedules tasks for 

high concurrency. 

Task scheduling in Polaris is based on a global view of all active 

queries called the workload graph, generalizing the 

representation of a single query as a DAG of tasks to represent 

the entire workload by combining task DAGs of all active queries.  

Each task in the workload graph has an associated resource 

demand that is an extension of the model in Ganguly [27] to d-

dimensional preemptable resources proposed in [28, 29]. We 

define a d-dimensional resource vector that has time and space 

shared constraints where each dimension specifies an aspect of 

resource consumption. Fungible resources such as memory and 

CPU can be sliced across tasks at a low cost, and each task’s 

requirement for a given resource can be stretched at execution 

time. On the other hand, more rigid resources such as temp space 

on local disks must also be satisfied. Stretching temp space across 

independent tasks is prohibitively expensive since it would 

require swapping pages in and out from/to remote storage.  

The resource demand for each task is computed as a function of 

inputs and outputs of each physical operator in the template code 

for the task. Analogously, Polaris also models each compute node 

as a d-dimensional bin of resources such that placement of tasks 

to containers is based on policies that can be autonomously tuned 

based on resource consumption profiles across all nodes.  
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Figure 8. Workload aware resource scheduling algorithm 

The representation of the workload as a global graph of tasks with 

resource demands allows us to redefine the multi-query 

scheduling problem as a task scheduling problem with precedence 

constraints: the goal is scheduling d-dimensional tasks on d-

dimensional containers to complete in the minimum amount of 

time possible while ensuring that at all times, we are within all d 

dimensions of resources available to us. Figure 8 shows the 

representation of the workload graph for two query DAGs. In 

green circles we represent the resource demand for each task 

template. For simplicity, in this example we normalize to just one 

number, and not the multi-dimensional resource vector used in 

Polaris. The workload scheduler and the resource governor 

operate on the workload graph.  

The pseudocode of the scheduler is shown on the bottom of the 

figure. The scheduler is asynchronously waiting for work, and 

when awoken it adds all task templates in the workload graph that 

are in Ready state to the scheduler queue. Task templates are then 

dequeued in order specified by the scheduling policy. Currently 

supported policies include (combinations of): FIFO, sorted by 

resource demand (min to max or max to min), and sorted by 

proximity to the root. Intuitively, sorting by proximity to the root 

biases towards tasks from jobs that are closer to completion (so 

that their shared resources can be released sooner). 

3211



 

 

For the next task template in order, the resource governor 

examines each task to be instantiated. If all these tasks fit in their 

target location (i.e., each task’s resource demand can be 

accommodated given current local capacity), then the task 

template is removed from the scheduler queue and transitioned to 

the Run state. Otherwise, we break out of the loop and wait for 

other tasks to complete so the task template can fit. Note that the 

target location of a task is fixed by data affinity to exploit cache 

locality. This novel approach to multi-query workload—

generalizing task scheduling from big data systems to consider 

tasks across all active queries—can improve concurrency for the 

following reasons:  

▪ A task template is the unit of scheduling. The scheduling 

order applies to the task template entity and not a query. A 

finer grain unit of scheduling allows for better packing 

strategies, helping maximizing resource utilization.  

▪ Weighted policies for resource governance. The 

placement of the task in the target compute server is based 

on resource fit to maximize load while avoiding over-

provisioning. For this we use a weighted policy to pack tasks 

into the compute capacity available at a node. The policy has 

two variations, one that caps the amount of resources that 

can be granted to a task, and another one that does not. If the 

task does not fit in the available compute, it is put back into 

the queue till tasks complete and capacity is freed.  

▪ Increased flexibility in task ordering. Scheduling policies 

define the order in which tasks are executed as they become 

ready for execution. By looking at ready tasks across all 

queries, taking into account resource pressure in the system, 

we are able to pick orderings that would not be permissible 

otherwise. For instance, consider the example in Figure 8, 

applying a max to min scheduling policy. The scheduler 

queue SchQ starts with {T1, T2, T3, T4, T5} with scheduling 

order {T1, T2, T4, T5, T3}. As we go through the loop, T3 

does not fit, so only four out of the five task templates 

transition to Run state. Next all T4 and T5 complete and the 

scheduler is awoken. SchQ now contains {T8, T3} with 

scheduling order {T3, T8}. Now, if the workload manager 

detects pressure in the system because of disk resources held 

by previously completed task templates, it can choose to 

swap the scheduling policy to sort by proximity to the root 

to release pressure in the system. In this example, the 

scheduling order would change to be {T8, T3}. The study of 

scheduling and resource management policies to consider 

SLAs and avoid starvation is out of scope for this paper and 

will be addressed in future work. 
▪ Resource driven query admission control. Back pressure 

can be driven by a ratio of capacity (demand vs. available). 

Concurrency is only limited by available capacity, and the 

admission of a query is only denied when we cannot 

guarantee SLAs due to a capacity crunch. 

8. SERVICE ARCHITECTURE 
Figure 9 illustrates the architecture of the query service for two 

Polaris pools sharing the same centralized (metadata and 

transaction) services. There are two important aspects to note:  

▪ Stateless architecture within a pool. The Polaris 

architecture falls into the stateless service architecture from 

Figure 1.b, as discussed in Section 2. All services within a 

pool are stateless: (i) data is stored durably in remote storage, 

and is abstracted via data cells, and (ii) the metadata and 

transactional log state is off-loaded to centralized services. 

(We do not go into the architecture of the centralized 

services in detail; briefly, they are built for HA and 

performance using Azure SQL DB.)  

▪ Multiple-pools. Placing the state in centralized services 

coupled with a stateless micro-service architecture within a 

pool means multiple compute pools can transactionally 

access the same logical database. 
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Figure 9. Polaris service architecture 

8.1 Stateless micro-service architecture 
A Polaris pool consists of a set of micro-services each with well-

defined responsibilities. The SQL Server Front End (SQL-FE) is 

the service responsible for compilation, authorization, 

authentication, and metadata. Metadata is used by the compiler to 

generate the search space (the MEMO) for incoming queries and 

bind metadata to data cells. The Distributed Query Processor 

(DQP) is responsible for distributed query optimization, 

distributed query execution, query execution topology 

management and workload management (WLM). Finally, a 

Polaris pool consists of a set of compute servers that are, simply, 

an abstraction of a host provided by the compute fabric, each with 

a dedicated set of resources (disk, CPU and memory). Each 

compute server runs two micro-services: (a) an Execution Service 

(ES) that is responsible for tracking the life span of tasks assigned 

to a compute container by the DQP, and (b) a SQL Server instance 

that is used as the back-bone for execution of the template query 

for a given task and holding a cache on top of local SSDs (in 

addition to in-memory caching of hot data). Data can be 

transferred from one compute server to another via dedicated data 

channels. The data channel is also used by the compute servers to 

send results to the SQL FE that returns the results to the user. The 

life cycle of a query is tracked via control flow channels from the 

SQL FE to the DQP, and the DQP to the ES.  

As explained in Section 2, no essential state is held by any micro-

service in Polaris. While caches are stored by the compute 

servers, upon fail-over, they can be easily re-constructed. 
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8.2 Service form factors 
The separation of state and compute coupled with the auto-scaling 

capabilities of a pool (explained in the next section) allow us to 

support very high concurrency levels within each pool, as well as 

enabling all of the following user-facing service form-factors: 

▪ Serverless. One system managed Polaris pool with auto-

scale ranging from 0 to N compute nodes where N is 

constrained only by capacity within Azure compute.  

▪ Capacity reservation. A dedicated Polaris pool with a 

minimum reservation of capacity and auto-scale capacity 

up to a maximum user-specified size. 

▪ Multiple pools. Multiple Polaris pools with capacity 

reservation. Pool sizes can either be defined by the user or 

they can grow and shrink dynamically. 

9. ELASTIC QUERY PROCESSING 
The infrastructure of a cloud is inherently elastic in that compute 

containers (e.g., VMs, k8 containers) can be obtained or released 

nearly instantly.  This means nodes can be added and removed 

from a query processing compute topology in a matter of seconds. 

With appropriate telemetry, the system can auto-scale up or down 

proactively based on workload needs or react to unexpected 

events such as faulty nodes and infrastructure upgrades.  

In any of these scenarios, the Polaris query processor must ensure 

that tasks can be flexibly assigned to compute nodes in 

dynamically changing query execution topologies. We achieve 

this objective by leveraging several aspects of the Polaris 

framework: 

▪ Separation of state and compute. 

▪ Flexible abstraction of datasets as cells. 

▪ Task inputs defined in terms of cells. 

▪ Fine-grained orchestration of tasks using state machines.  

Figure 10 depicts examples of key scenarios we unlock with this 

architecture. We explain each one in the following Sections.  

9.1 Auto-Scale 
The Polaris DQP requests the underlying compute fabric for more 

containers to adjust to peaks in the workload and re-distributes 

tasks to transparently leverage the new containers. Note that in-

flight tasks in the previous topology continue running, while new 

queries get the new compute power with appropriate load 

balancing. In Figure 10, we show a doubling of compute capacity; 

however, we can add capacity in increments of just one node. 

The Polaris DQP also can autonomously scale down the compute 

node topology (in increments of one or more nodes) when 

utilization drops sufficiently.  

Resilience to Node Failures 
Figure 10 also illustrates how the Polaris DQP recovers from node 

failures while tasks are running.  If a server fails, the DQP 

rebalances the tasks in the failed node across the rest of the 

healthy topology. The fault tolerance model is built into the 

hierarchical state machine discussed in Section 6. A node failure 

transitions execution tasks in a container into the Failed state. 

Then the parent task template state machine reacts 

appropriately—tasks previously assigned to the faulty node are 

restarted on healthy nodes. This feature is essential for scaling to 

very large queries, since the probability of node failure increases 

with the number of nodes involved. 

9.2 Skewed Computations 
Figure 10 shows how skewed computation or hot spots are 

handled. The Polaris DQP and the ES in the compute servers 

implement a feedback loop that tracks the life span of execution 

tasks on a node. If the DQP detects that a node is overloaded (e.g., 

the yellow node in the figure), it can decide to re-schedule a subset 

of the tasks assigned to that compute node amongst other nodes 

where the load is less. If this does not mitigate the hot spot, we 

fall back on the auto-scale feature to add more nodes to the 

topology and rebalance the load appropriately. Skewed 

computations are handled using runtime feedback loops, and our 

query optimizer does not currently take data skew into account. 

How to handle skew during query optimization is future work. 

9.3 Affinitizing Tasks to Compute 
As explained in Section 8, the SQL Server service in the compute 

server extends caching of hot data to its local SSDs. Accessing 

data from remote storage is an expensive operation, and therefore 

the elastic features of the Polaris DQP try to minimize the impact 

on the cache by consistent assignment of data cells to tasks, and 

our scheduler assigning tasks to compute based on data 

collocation, thus, preserving caches upon topology changes. In 

particular, (a) on topology shrinkage, only the caches of the nodes 

that are no longer part of the topology are lost, and (b) on topology 

growth, all the caches from the existing topology are preserved, 

and only the caches for the new nodes need to be populated. 

10. PERFORMANCE EVALUATION  

10.1 Goals 
Our goals are to obtain an understanding of the performance and 

concurrency characteristics of Polaris on a single pool over 

structured and non-structured data. For this we break down our 

experiments into three dimensions.  

Concurrency. We want to stress the DQP with a concurrent 

workload. The global graph in such scenario consists of thousands 

of tasks from a thousand different queries such that we showcase 

Figure 10. Elastic Compute Scenarios 
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the resource driven scheduling capabilities of the WLM, and its 

autonomy around capacity management, access control and 

resource governance under heavy load. For this we use the TPC-

DS [30] workload to run a multi-user environment executing five 

thousand of queries simultaneously.  

Single query performance at PB scale over the data lake. We 

ran all TPC-H [31] queries at one PB scale across hundreds of 

machines on Azure public compute. The goal of this experiment 

is to stress the scalability, elasticity, and fault tolerance 

capabilities of the service. Note that this is not a validated TPC-

H benchmark, the only intent is to demonstrate we can run all 

queries at a scale that has not been done before. 

Querying heterogeneous data. To illustrate that Polaris can run 

on heterogeneous data, we ran all TPC-H [31] queries at 1 TB 

scale on a dataset consisting of a variety of data files ranging from 

raw CSV files to Parquet files with nested attributes. The test was 

executed using less than 100 cores in Azure public compute. The 

experiment emphasizes raw file parsing and query optimization 

capabilities over joins between plain text files and Parquet files 

with nested attributes.  

10.2 Concurrency 
The setup 

We used the TPC-DS dbgen utility to generate a 1TB of raw data 

and then converted it into parquet files that were stored into 

Windows Azure Storage Blob (WASB), the Azure Data Lake. 

Rows do not follow any distribution since we are not focusing on 

single query performance but stress on concurrency. The 

application spans five thousand concurrent sessions executing 

one distinct TPC-DS query each. For this we generated TPC-DS 

queries 50 times with different predicate ranges and assigned one 

to each session.  

The compute topology 

Since the goal of this experiment is to stress the DQP component 

we choose a rather small compute topology with 10 compute 

nodes. The hardware configuration of each node consists of 2x20 

cores intel processors, 520GB of RAM and 4 SSDs of 1TB each. 

The network topology is 40Gb throughout; 40Gb NIC, 40Gb 

TOR, 40Gb CSP. 

Results 

Figure 11 shows the task execution summary and the resource 

utilization in the backend nodes. The 5k queries run 

simultaneously generating a workload graph over 50k task 

templates that as they are scheduled, they expand to an aggregated 

total of ~550k instantiated tasks. As task templates are scheduled 

for execution, tasks are instantiated; the chart on the left of the 

Figure shows the number of actively executing tasks and 

aggregated completed tasks at any given point in time for the 

duration of the test. The chart on the right of the Figure shows the 

average resource utilization of the compute server for CPU and 

Memory dimensions. As we can see, we do have a good 

utilization of the cluster for the duration of the tests. For this 

experiment we have used FIFO scheduling order of task 

templates, and we think both the resource utilization and time can 

be improved by using more sophisticated policies; experiments 

using different scheduling order policies are out of the scope of 

this paper, and to be carried out in the near future. The main thing 

to observe is that Polaris is able to handle high concurrency for a 

complex workload such as TPC-DS packing up to 9k tasks on the 

10 compute servers available, and completing approximately 

550k tasks. 

10.3 Query Performance at Petabyte Scale 
The set-up 

We used the TPC-H dbgen utility to generate a PB of raw data 

and then converted it into parquet files that were stored in WASB. 

Parquet files were organized using the data model from Section 3 

with both hash partitions and user partitions. The total number of 

parquet files is ~120k with total compressed size of 360TB. 

The compute topology 

We deployed a Polaris pool on Azure, consisting of one SQL FE 

compute instance, one DQP and 420 compute execution services 

(ES). Each node is a 2x12 cores Intel processor with 192GB of 

RAM and 4 SSDs of 480GB. The network topology is 40Gb 

throughout; 40Gb NIC, 40Gb TOR, and 40Gb CSP. 

Results 

Figure 12 shows execution time for all 22 TPC-H queries at 1PB 

scale. To the best of our knowledge, this is the first time results 

have been published at a PB scale. Remarkably, some queries 

(Q6, Q12, Q15 and Q16) run extremely fast, through partition 

elimination and distribution alignment of expensive joins, taking 

advantage of the Polaris data model (Section 3). TPC-H has a few 

queries that stress the processing limits of any system since they 

join across all sources with low selectivity and very heavy joins 

between large dimension and the fact table: Q9 and Q21 are good 

Figure 11. Results for 5k concurrent queries 
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examples. Polaris manages to process these queries at PB scale 

under two hours across 420 machines, demonstrating scalability 

and resilience. 

 

Figure 12. 1PB TPC-H single query performance 

10.4 Querying Heterogeneous Data  
The set-up  
We used the TPC-H dbgen utility to generate a TB of raw data in 

CSV format and then converted the files for the 

lineitem, customer, supplier, and nation tables into Parquet 

files. Conversion into Parquet for customer and supplier files was 

done by organizing contact information (name, address, 

nationkey, and phone columns) as nested types in Parquet. The 

lineitem and nation Parquet files were organized with simple 

types, without nested structure. Files for orders, partsupp, part 

and region were kept in raw CSV format. All files for a single 

entity were stored in a single folder in WASB.  

 

 
Figure 13. 1TB TPC-H querying heterogeneous data. 

 

The compute topology  
We deployed a Polaris pool with one SQL FE compute 

instance, one DQP and several execution services (ES).  

 

Results  
Figure 13 shows the query execution time for all 22 TPC-

H queries at 1TB scale that combines querying CSV 

files for some entities and Parquet files with and without nested 

types for other entities. Polaris executes all 22 queries and 

produces good plans even for the most complex queries, which 

do joins across a variety of files (CSV, Parquet with simple 

types, and Parquet with nested types). This demonstrates the 

robustness of the system in handling heterogeneous data sources.  

11. Conclusions 
In this paper, we presented Polaris, a novel distributed query 

processing framework in Azure Synapse that seeks to support 

both big data and relational warehouse workloads, going beyond 

current systems of either kind in its flexibility and scalability. The 

architecture is inspired by scale-out techniques from big data 

systems. It extends these techniques in many ways, notably in the 

cell abstraction of data, flexible task orchestration framework, 

and global workload task graph.  Polaris also is notable for how 

it carefully refactors SQL Server’s complex codebase in order to 

leverage its query optimizer and scale-up single-node engine—

both of which reflect many years of refinement—while 

completely rewriting the distributed execution framework.   

Polaris is also cloud-native, completely separating compute from 

both storage and transactional state in order to support agile 

provisioning and scaling of compute pools. Azure Synapse is 

unique among cloud services in supporting both serverless and 

provisioned form factors, with multiple serverless and 

provisioned SQL sessions able to concurrently operate on the 

same datasets, across both lake and managed data. 

Appendix  
Required properties 

The following table contains the required properties for the most 

common algebraic operators. The columns are treated as 

equivalence classes (transitive closures) when testing the required 

properties for algebraic correctness. When join predicates have 

multiple equality conjuncts, correctness holds if hash key of each 

input is a subset of the columns in the conjuncts from that input. 

For "Group-By", correctness holds if hash key of input is a subset 

of the grouping columns. Distributed query processor also 

supports decomposing aggregations and Top-N into local-global 

forms, which allows the optimizer to push selective local 

operators before data movement enforcers. P[a] subsumes P∅. 

 

Operator Required Properties 

Inner Join P ⋈a=b Q: {{P[a] ∧ Q[b]} ∨  {P1} ∨  {Q1}} 

Outer Join P →a=b Q: {{P[a] ∧  Q[b]} ∨ {Q1}} 

Semi-Join P ⋉a=b Q: {{P[a] ∧ Q[b]} ∨  {P1 ∧  Q[b]}

∨  {Q1}} 

Anti-Join P−a=bQ: {{P[a] ∧ Q[b]} ∨  {Q1}} 

Group-By GB(P, a): {{P[a]} ∨  {P1}} 

Project Π(P): {true} 

Select σ(P): {true} 

Top Top(P): {P1} 

Union-All P ⊎ Q: {{P∅ ∧  Q∅} ∨  {P1 ∧  Q1}} 

Union P ∪ Q: {{P[a] ∧  Q[b]} ∨ {P1 ∧ Q1}} 

Apply P Apply Q: {Q1} 
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