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ABSTRACT
GaussDB, and its open source version named openGauss, are
Huawei’s relational database management systems (RDBMS),
featuring a primary disk-based storage engine. This paper
presents a new storage engine for GaussDB that is optimized
for main memory and many cores. We started from a re-
search prototype which exploits the power of the hardware
but is not useful for customers. This paper describes the de-
tails of turning this prototype to an industrial storage engine,
including integration with GaussDB. Standard benchmarks
show that the new engine provides more than 2.5x perfor-
mance improvement to GaussDB for full TPC-C on Intel’s
x86 many-cores servers, as well as on Huawei TaiShan servers
powered by ARM64-based Kunpeng CPUs.
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1. INTRODUCTION
GaussDB [13] was announced in 2019 as a distributed

relational database management system, followed by July
2020 open-source release of openGauss [16] as a community
version of the closed-source GaussDB. It is a mixed OLAP
and OLTP enterprise database system developed by Huawei
database group. Starting from 2012 the first 5 years of
research and development focused on a massively parallel
OLAP database system. Since the launch in 2015 under the
brand of FusionInsight MPPDB, LibrA [3] and GaussDB
200, the petabyte-scale OLAP platform has been adopted by
many customers over the globe, including some of the world‘s
largest financial institutes in China, and by 2016 reached
the Gartner magic quadrant. In 2017 the development of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415537

GaussDB OLTP began, driven by demand of top customers
for a next-generation OLTP DB system. Five key require-
ments were defined as follows: (1) transactional scale-out
with a share-nothing architecture, (2) high efficiency of scale-
up on multi-socket many-cores servers, (3) high-performance
benefiting large memories; (4) high SQL coverage and interop-
erability; and (5) high availability. Driven by the above and
influenced by emergence of new memory-optimized databases,
such as Microsoft Hekaton [6], MemSQL [31], SAP HANA
[20] and works in the art such as [36, 37, 38], we formalized a
key research direction as follows: develop a high-performance
memory-optimized storage engine, pluggable into GaussDB
envelope, benefiting of its SQL and high availability (HA)
capabilities. In the following our references to GaussDB refer
only to GaussDB OLTP capabilities.
GaussDB was originally adapted from Postgres 9.2[26].

One of its main features, inherited already from OLAP MP-
PDB is thread based parallelism. This feature provided
significant system performance. However, legacy synchro-
nization and page-based data and index stayed in place.
Our goal was to remove the overheads and complexities

involved in disk-based (e.g. pages awareness) and process-
based (e.g. semaphore management) data base and exploit
state of the art concurrent data structures and contemporary
research on in-memory transaction management to improve
GaussDB performance, while keeping the simple ACID se-
mantics and the full SQL functionality.
This paper is about a storage engine that was created to

harness the increasingly larger amount of main memory and
processing cores for online transaction processing (OLTP).
This new storage engine is integrated seamlessly in GaussDB.
Our challenges were: (1) Adjusting state of the art in-memory
concurrency-control research, which is usually incarnated
in the shape of a minimal PoC prototype, to industrial
workloads. (2) Integrating it into a full-featured SQL engine.

In the sequel, we use the term Memory-Optimized Tables
(MOT) to denote both the new storage engine component,
as well as the new feature and functionality provided by this
engine. MOT is part of the open source openGauss server
code [15] and documentation [11].

1.1 System Architecture
GaussDB is designed to scale linearly to hundreds of phys-

ical machines. Figure 1 illustrates the high level logical
system architecture. Database data are partitioned and
stored in many data nodes which fulfill local ACID proper-
ties. Cross-partition consistency is maintained by using two

3099



Figure 1: GaussDB System High-level Architecture

phase commit and global transaction management. If a table
was created as a MOT, the SQL query processor will direct
all access to that table to the MOT storage engine, and then
the table will redirect all it’s logging back to the data-node
envelope. In recovery, the log records are taken back by
the MOT table which replays them. Section 3 explains how
MOT is incorporated into GaussDB, which does not have
a modular storage engine. This way a transaction can use
both MOT and disk-based tables, unlike other in-memory
implementations, e.g. [6, 35] which replace the SQL engine
and make it complicated to reuse the distributed transactions
framework and perform transactions that mix in-memory
and disk-based tables.
MySQL has a well-defined API for plugging new storage

engines. However, it’s logging mechanism is outside the
storage engine and therefore its pluggable storage engines
perform only ACI transactions without durability.
The performance of MOT is coming from choosing the

most optimized indexing method and concurrency control,
and bringing them to industrial level.
Another challenge we had is memory management and

garbage collection in complex parallel and NUMA environ-
ments. To facilitate fast operation we allocate a designated
memory pool for rows per table and for nodes per index.
Each memory pool is composed from chunks of 2MB. We
have API to allocate these chunks from local NUMA node,
from pages coming from all nodes, or in round robin where
every chunk is allocated on the next node. By default, pools
of shared data are allocated in round robin to balance ac-
cess while not splitting rows between different NUMA nodes.
However, thread private memory is allocated from local node,
as we verify a thread always operates in the same NUMA
node.

1.2 Internal Architecture
One of our objectives was to build an OLTP system that

would excel in using current and future many-core CPU
architectures. In particular, linear scale-up with the number
of cores was an explicit target. Based on our empirical
experiments, the combination of the mature Masstree [25]
lock-free implementation and our robust improvements to
Silo [36], provided us exactly what we needed in that regard.
For index we compared state of the art solutions, e.g. [21,

25] and chose Masstree [25] as it demonstrated the best over-
all performance for point queries, iteration and modifications.
Masstree is a combination of a Trie and a B+ tree, imple-
mented to carefully exploit caching, prefetching, optimistic

navigation, and fine-grained locking. It is optimized for high
contention and adds various optimizations to its predecessors
e.g. OLFIT [4]. However, Masstree index downside is higher
memory consumption. While rows data consume the same
memory size, the memory per row per each index, primary
or secondary, is higher on average by 16 bytes: 29 bytes in
the lock-based B-Tree used in disk-based tables vs. 45 bytes
in MOT’s Masstree.
The next step was to choose a concurrency control al-

gorithm. To gain advantage from in-memory architecture
we desired to maximize the speed of OLTP transactions.
Although there have been recent suggestions for efficient
in-memory MVCC [23], we chose to avoid the rapid garbage
collection, and maintain only actual data. Another design
choice of MOT is not to partition the data, as done in H-
Store [8], because in realistic workloads transactions cross
partition boundaries and performance rapidly degrades [36].
Some new designs use static and dynamic analysis to regulate
parallelism [29], but this approach can introduce high latency
and impractical constraints.
We split the single-version, shared-everything category of

concurrency control algorithms, which we chose for MOT, to
the following subcategories:

• Optimistic concurrency control (OCC): An OCC
algorithm, e.g Silo [36] and TicToc [38], has three
phases: The transaction reads records from the shared
memory and performs all writes to a local, private copy
of the records (the read phase). Later, the transaction
performs a series of checks (the validation phase) to
ensure consistency. After successful validation, the
OCC system commits the transaction by making the
changes usable by other transactions (the write phase).
If the validation fails, the transaction is aborted and
nothing is written. If two OCC transaction execute
concurrently, they never wait for each other.

• Encounter time locking (ETL): In ETL, readers
are optimistic, but writers lock the data which they
access. As a result, writers from different ETL trans-
actions see each other, and can decide to abort. It
was verified empirically in [9] that ETL improve perfor-
mance of OCC in two ways. First they detect conflicts
early and often increase the transaction throughput
because transactions do not perform useless work, as
conflicts discovered at commit time, in general, cannot
be solved without aborting at least one transaction.
Second, encounter-time locking allows us to efficiently
handle reads-after-writes (RAW) without requiring ex-
pensive or complex mechanisms.

• Pessimistic concurrency control (2PL): Lock a
row at access time for read or for write, and release
the lock at commit time. These algorithms require
some deadlock avoidance scheme. The deadlock can
be detected by calculating cycles in a wait-for graph or
avoided by keeping time ordering in TSO [2] or by some
back-off scheme. In 2PL algorithms, if one transaction
is writing a row, no other transaction can access it, and
if a row is being read, no transaction is allowed to write
it.

As shown in [37, 1] OCC is the fastest option for most
workloads. One reason is that when every core executes mul-
tiple threads a lock is likely to be held by a swapped thread,
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especially in interactive mode. In addition pessimistic algo-
rithms involve deadlock detection which introduce overhead
and usually use read-write locks which are less efficient than
standard spin-locks. We chose Silo [36], as it was simpler
than other existing options, e.g. TicToc [38], while main-
taining the same performance for most workloads. ETL
is sometimes faster than OCC, but it introduces spurious
aborts which can confuse the user, in contrast to OCC which
aborts only in commit.
For now, similarly to other leading main memory DBMSs

in the industry [27] and in the art [39], the MOT table data
capacity is either limited to a maximum available memory,
or can exceed it by help of the memory page swapping by the
operating system, though in such case performance may de-
teriorate. Recently several directions have been proposed to
mitigate this issue by data reorganization [34], anti-caching
[5] and tiering [33]. This is an important topic and is a future
work for MOT as well.

Contributions: First we present and motivate MOT
adjustments for industrial workloads. These adjustments
include optimistic inserts and deletes to tables with mul-
tiple indexes, garbage collection in the presence of DDL
SQL commands such as DROP and TRUNCATE table, and
more. These enhancements do not improve performance,
however, we verified with micro benchmarks that they do
not downgrade the performance of the original OCC algo-
rithm. Second we describe how MOT is integrated into the
GaussDB and show its impact on GaussDB performance.
After the integration of MOT to GaussDB side by side the
disk-based storage engine, the SQL processing engine became
the next performance bottleneck. To overcome this we added
a specialized JIT compilation mechanism.

The rest of this paper is organized as follows. Section 2
presents the enhancements we added to the MOT research
prototype to make it fit industrial workloads. Section 3
explains how we integrated MOT with GaussDB and how
MOT is reusing GaussDB services for durability, recovery,
checkpointing and SQL query processing. We show the
performance of GaussDB with MOT in Section 4. Finally,
we survey related work in Section 5 and conclude in Section
6.

2. ADJUSTING THE ENGINE
We describe the ways we extended MOT with support

for optimistic insert to multi-index tables, non-unique in-
dices, and important refinements in the concurrency control
and commit protocol, to make it suitable as the underlying
concurrency control mechanism for industrial use.

2.1 Indexing and Storage
The structure of a MOT table T with three rows and two

indexes is depicted in Figure 2. The rectangles are data rows,
and the indexes point to sentinels (the elliptic shapes) which
point to the rows. The sentinels are inserted into unique
indexes with a key and into non-unique indexes with a key +
suffix, as explained in Section 2.1.2. The sentinels facilitate
maintenance operations where the rows can be replaced
without touching the index data structure. In addition,
there are some flags and a reference count embedded in the

Figure 2: Structure of a Memory-Optimized Table

sentinel to facilitate optimistic inserts as explained in Section
2.1.1.

2.1.1 Optimistic inserts
The following is our solution to enable fully optimistic

insertion to a table with multiple indexes. In section 2.2 we
also discuss how a transaction reads its own updates and
inserts, both in point, and range-queries.

2.1.1.1 Motivation.
Index contention may occur in the OCC designs that write

to global indexes before entering the write phase. Upon
creation of a new record, several OCC designs [18, 36] insert
a new index entry to the table‘s indexes as well; the new
record is locked to prevent concurrent transactions from
reading it before it is committed. This early index update
ensures that the new record satisfies unique-key invariants
[36] and also simplifies making the index change visible to
the current transaction. However, early index updates can
create contention at indexes by frequently modifying their
internal data structure even for the transactions that are
eventually aborted. Furthermore, concurrent transactions
that attempt to read the new record may be blocked for an
extended period of time if the transaction that created the
new record has a long read phase. A contention on inserts
can also confuse an application as in OCC it expects to fail
on inserts only for duplicate insert. This application may
fail to retry the transaction that aborted due to a deadlock
on inserts, and lose important data.
Another challenge is to make an optimistic insertion to

a table with multiple indexes. Recently, [32] also offered a
scalable insertion to a table with multiple indexes. However,
their solution is working only on linked lists and does not
support join or database transactional isolation, so it does
not fit industrial use. In addition they use a theoretical
extension to CAS which atomically modifies a reference and
an associated boolean flag. As this extension does not exist
in hardware it is not a practical solution for us.

2.1.1.2 Implementation Details.
In the original Silo an insert operation on key K works

as follows. If K already mapped to a committed record, the
insert fails and the transaction is aborted. Otherwise, a new
record R is constructed in the ABSENT state, a mapping from
K to R is added to the tree, and R is added to both the
read-set and the write-set as if a regular put occurred. If
an insert finds a row in the ABSENT state, it reuses it as if
the row was inserted successfully by itself. Silo inserts the
primary key as the record of the secondary indexes, which
implies a significant overhead. With multiple unique indexes,
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as often the case in industrial workloads, pointing directly to
the absent data row from the secondary index will produce
unpredictable behavior.
Consider a table T with two unique indexes, I1 and I2,

and a transaction X which tries to insert a row R into T .
There are several scenarios which are not handled by the
original Silo insert, e.g.:

• Double Row: X successfully inserted R in the pri-
mary index I1, but when it tried to insert R in the
unique secondary index I2, it finds the key of R exists in
I2 in the ABSENT state, so X takes over the row which
was linked from I2. Now X has two different physical
rows for R, one inserted in I1 and another in I2. When
X will commit it will have different rows in each index
for the same committed row which is unacceptable.

• Self Inserted: X needs to recognize a situation the
insertion of R, or a scan, finds R in the ABSENT state
in the index, but R was inserted by X itself. In this
case the insert is duplicate and X needs to be aborted,
or X needs to access the data of R in the scans.

To solve the above problems and allow direct reference from
secondary indexes to data rows we developed the optimistic
insertion algorithm depicted in Figure 3. At the beginning, a
transaction X inserts a sentinel that is not connected to a row.
The sentinel is inserted in the ABSENT state with reference
count equal one. If the insert was successful, X maps the
private row which it needs to insert in the transactional
private insert-set part of the access-set. The access-set is
implemented by a key-value map, and as a key for the row
we use the pointer to the sentinel. Note that if a table has
multiple indexes, the row will be mapped multiple times
in the access-set with different keys, which are pointers to
sentinels in different indexes. In the commit phase, after all
sentinels of X insertions are locked, the sentinels are linked
to the private inserted row, which becomes public. This way
the same row is linked from all indexes and theDouble Row
problem is resolved.
If the insert failed, and there is a non-absent sentinel in the

index, we got a duplicate insert and we abort the transaction.
However, if the sentinel is in the ABSENT state we increment
its reference count and try to map it in the access-set. If
mapping failed, it means we already have this sentinel as
a key in the access set. The only way this could happen is
if the current transaction already tried to insert the same
unique-key, so again, we abort the transaction due to a (self)
duplicate insertion. During a scan, if an ABSENT sentinel is
encountered but it maps a row in X access-set, the mapped
row is used, as it was inserted previously by X. This solves
the Self Inserted problem.
Another problem that is created by the optimistic inserts

with multiple unique indexes is the cleanup after aborts. If
transaction X aborts, it needs to decide from which indexes it
can remove R, i.e., check if there are concurrent uncommitted
transactions that reference this index entry. To address the
problem we added a reference count to the sentinel which is
incremented by every concurrent insert, and decremented by
the cleanup after abort of an inserting transaction. Note that
at most one insert will survive and the others will abort due
to a conflict with the successful transaction. However, there
is also a chance that all concurrent transactions inserting

Algorithm 1 Sentinels reference count update
1: function refcountUpdate(sentinels, operationop)
2: status ← false
3: rc ← done
4: while success = false ∧ s.refcount 6= 0 do
5: c ← s.refcount
6: if op = INSERT then
7: next_c = c + 1
8: else
9: . Cleanup after insert abort
10: next_c = c− 1
11: end if
12: success ← CAS(&s.refcount, c, next_c)
13: end while
14: if success = false then
15: rc ← retry_insert
16: . insert operation: s is removed, retry
17: else
18: if next_c = 0 then
19: . cleanup after abort: remove s
20: rc ← index_delete
21: end if
22: end if
23: return rc
24: end function

R will abort, and then the last one will need to delete the
sentinels of R from the indexes.
As seen in Figure 3, the transaction tries to insert the

sentinel with reference count equal one. If the insert was not
successful and sentinel is not committed, i.e. the sentinel is
in the ABSENT state, we call the refcountUpdate() function
from Algorithm 1 with the acquired sentinel and the INSERT
operation. The reference count incrementation fails only if a
concurrent cleanup is deleting the sentinel from the index,
and in this case the function returns retry_insert and the
insert is retried. Later, if the transaction aborts, the cleanup
after abort calls refcountUpdate() with the same sentinel
to try to decrement the reference count. If the reference
count reached 0, the function returns index_delete and the
cleanup deletes the sentinel from the index. This is the way
we make sure an abort is deleting all the sentinels it acquired
that are unused.

2.1.2 Non-unique indexes
A non-unique index may contain multiple rows with the

same key. Non-unique indexes are used solely to improve
query performance by maintaining a sorted order of data
values that are used frequently. For example, a database may
use a non-unique index to group all people from the same
family. However, the Masstree data structure implementation
does not allow mapping multiple objects to the same key.
Our solution to enable the creation of non-unique indexes, as
shown in Figure 2, is to add a symmetry breaking suffix to
the key which maps the row. The suffix we use is the pointer
to the row itself, which has a constant size of 8 bytes and a
value that is unique to the row. When inserting to a non-
unique index, the insertion of the sentinel always succeeds, so
we can use the row which the executing transaction allocated.
When searching the non-unique secondary index we use

the required key, e.g. the family name. The full concatenated
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Figure 3: Optimistic insert flow chart

key is used only for inserts and deletes. Insert and delete
operations are always getting a row as a parameter, so it is
possible to create the full key and use it in the execution of
the deletion or the insertion of the specific row to the index.

2.2 Concurrency Control
In OCC, an update is buffered until commit, and if a scan

encounters a row it will find there the last committed value,
and not the one written by the current transaction. In the
open source implementations of Silo [36], [37], if a row R
is updated during a transaction T , and later read by T , T
will not see its own update. This is a known problem from
optimistic software transactional memory [7], which is called
the read after write hazard. The known solutions for this
problem is to either scan the write-set per read, which can
cripple the performance of the OCC, or to use encounter
time locking [30], i.e. lock and update rows at encounter
and abort a reader that sees a location locked by another
transaction.
Our solution was to create the state machine, and keep

one access-set of all read, updated, inserted and deleted rows.
The set is keyed by the pointer to the original row or sentinel,
so once it is encountered it can be found in the access-set.
The value for the key is the private copy of the row and
the state of the row in the transaction. If a row is found
to be in the updated (WR), inserted(INS) or deleted (DEL)
states the relevant value, i.e. the local copy of the row is

returned to the user. The states are maintained according
to the state machine, where a row starts in the invalid (INV)
state, and can go to read (RD), updated (WR), inserted (INS)
and (DEL) states with the relative operations. The default
and common isolation level in GaussDB is read-committed.
Putting it in simple words, read-committed is an isolation
level that guarantees that any data read is committed at the
moment it is read. It simply restricts the reader from seeing
any intermediate, uncommitted, ’dirty’ read. It makes no
promise whatsoever that if the transaction re-issues the read,
it will find the same data; data is free to change after it is
read. When working in this mode, the access-set does not
keep rows in RD state.
The inserted (INS) state is a special case. As explained

in Section 2.1.1 only the sentinels are inserted in the index,
and the row is connected only upon a successful commit. As
a result, when a scan encounters an uncommitted insert the
row pointer is not available. This is the reason we map the
inserted rows with the pointer to the sentinel as the key, and
the access itself includes the private inserted row. For inserts
the private copy will be connected to the sentinels at commit
and become public version, so during the transaction there
is no ”original” row in the access-set. If an uncommitted
sentinel is encountered, i.e. a sentinel with an absent, NULL
row, the sentinel is used as a key for a search in the access
set.
This search either returns the private row, if it was inserted
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by the current transaction or skips this row, as it was inserted
by a concurrent uncommitted transaction.
The commit protocol with the optimistic inserts is shown

in Algorithm 2. As the access-set is organized in an ordered
map such as std:map, when we extract the set of rows which
need to be updated in lines 5 and 12 into an array the array
is sorted. It is sorted by pointer values, which implies a
global order on all rows and sentinels. Later we use this
order to prevent deadlocks in locking. In line 5 we extract
the rows which were deleted or updated and exist in the
database, while in line 12 we extract the private inserted
rows. The private rows are pointed from possibly more than
one index and might be stored in the access set multiple
times. However, we extract the row only from the primary
sentinel which always exists exactly once in every table. The
data of this row is not overwritten, as in line 55 they become
public. In line 17 the read-set is collected. It is an empty
operation in the read-committed isolation level.
In line 22 we lock the write-set and in line 26 we lock all the

sentinels in the inserts-set. We remind the reader that the
arrays of the write-set and the insert-set were extracted from
the access-set which is an ordered map, and therefore they
are sorted. This is important as the sorting avoids deadlocks
and therefore we can wait until the location is locked. After
all insert-set and write-set are locked, in line 30, we validate
the write-set and the read-set (empty in read-committed) are
consistent, and then in line 35 we validate the sentinels are
still absent, and were not committed. If they were committed
we abort the transaction.
After validation is successful, in line 42 we write the up-

dated data. Then in line 46 we connect the private inserted
rows to the inserted sentinels, and in line 47 we set the row
to not absent, i.e. committed. Right after this we release all
the locks from the sentinels in line 51 and then release the
locks from the rows in line 55 and set the new version for
both old and inserted rows.
For readability we simplified the commit pseudo code, and

omitted logging and aborts. In the real code, logging is
flushed after locking and locks are released also after an
abort.

3. INTEGRATION WITH GAUSSDB
GaussDB is based on PostgreSQL, which does not have

a built in storage engine adapter such as MySQL handler-
ton. GaussDB contains more than two million lines of code,
written during three decades, and often lacks in modular
structure. To make the integration feasible we decided to try
to extend GaussDB foreign data wrapper (FDW), and use
it for our MOT storage engine. In Section 3.1 we present
how tables and indexes meta data and data are created and
used with FDW. Section 3.2 describes how MOT acquires
high availability capabilities from the GaussDB infrastruc-
ture through FDW, and Section 3.3 explains how we perform
efficient memory reclamation.
The history of FDW began when SQL/MED came out as

part of the ANSI SQL standard specification in 2003. MED
stands for ”Management of External Data”. By definition,
”external data” is the data that the DBMS is able to access
but does not manage. Foreign tables are external data
sources, presented as relations. FDW for foreign tables
was introduced in PostgreSQL 9.1 and has been receiving
improvements ever since.

Algorithm 2 Commit Protocol for MOT
1: function MOTValidateCommit(T)
2: for ac ∈ access_set do
3: if ac.state = WR ∨ ac.state = DEL then
4: write_set[ws_size + +] = ac
5: . collect the rows needed to be updated
6: end if
7: if ac.state = INS then
8: insert_set[is_size + +] = ac
9: if ac.type = primary_sentinel then
10: write_set[ws_size + +] = ac
11: . An inserted row is added to write_set
12: . Once, per primary sentinel
13: end if
14: end if
15: if ac.state = RD then
16: read_set[rs_size + +] = ac
17: . No read-set for read-committed
18: end if
19: end for
20: for e ∈ write_set do
21: ac.row.lock()
22: . Lock updated rows
23: end for
24: for e ∈ insert_set do
25: ac.sentinel.lock()
26: . Lock inserted sentinels
27: end for
28: for ac ∈ write_set

⋃
read_set do

29: if not valid(ac.row) then
30: . If isolation level is above read-committed
31: abort
32: end if
33: end for
34: for ac ∈ insert_set do
35: if not absent(ac.sentinel) then
36: abort
37: . If the sentinel is already committed - abort
38: end if
39: end for
40: for ac ∈ write_set do
41: ac.write()
42: . Write updated and inserted rows
43: end for
44: for ac ∈ insert_set do
45: ac.sentinel.row = ac.row
46: . connect inserted rows
47: ac.sentinel.absent = false
48: end for
49: for e ∈ insert_set do
50: ac.sentinel.unlock()
51: . Release locks of inserted sentinels
52: end for
53: for e ∈ write_set do
54: ac.row.unlock()
55: . Free locks and set the version of updated rows
56: end for
57: end function

GaussDB FDW, as taken from PostgreSQL, is intended to
be used to access data which is stored in external database
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Figure 4: MOT in GaussDB

servers, and not managed by the local database. However,
MOT storage engine is embedded in GaussDB, and managed
by it. The MOT module is not independent, it is controlled
by the GaussDB planner and executor, gets logging and
checkpointing services from the GaussDB, and participates
in the recovery process of the GaussDB. As shown in Figure
4, the MOT FDW is connected to more database functional-
ity than standard FDW. Specifically, MOT reuses GaussDB
index creation, and exploits logging, checkpointing and re-
covery from GaussDB.
To prepare for remote access using GaussDB FDW, a for-

eign table is created using CREATE FOREIGN TABLE, for
each remote table needed to be accessed. For standard FDW
the columns of the foreign table must match the referenced
remote table. This is implied by the assumption that the
foreign table is already created by the remote data source
and the local table is only linking to that external entity. For
MOT, the FDW needed the ability to trigger the creation
of the table itself and its related indexes. Later, access to
the indexes is also required for planning and execution. As
we wanted MOT to work in coordination with GaussDB
native tables, we reused GaussDB logging, replication and
checkpointing mechanisms, to provide consistency for cross-
table transactions through failures. In this case, the MOT
sometimes initiates calls to GaussDB functionality through

the FDW layer. Such calls were never required previous to
MOT introduction.

3.1 Tables and Indexes Created and Used
The function which creates an FDW tables is named

ValidateTableDef. As implied by its name, it was meant
to only validate the foreign tables, which are created ex-
ternally. In the previous FDW implementations, e.g. for
external PostgreSQL and file servers, this function processed
only table creation and, as suggested by its name, only val-
idated the table references a foreign table. In MOT FDW,
ValidateTableDef actually creates the specified table, and
in addition it handles index creation on that relation and
DROP TABLE and DROP INDEX, as well as VACUUM and ALTER
TABLE which were not previously supported in FDW.

3.1.1 Index Usage for Planning and Execution
Query life breaks into two phases, the planning and the

execution. During execution a query iterates on the relevant
table rows, and performs some work, e.g., update or delete,
per iteration. An insert is a special case where the table
adds the row to all indexes and no scanning is required. In
the planning phase, which may take place once per multiple
executions, the best index for the scan is chosen.
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To be considered for an index scan, an index must match
one or more restriction clauses or join clauses from the
query’s condition, and match the query’s ORDER BY con-
dition. Filtering the indexes for the query is done by the
create_index_paths() which is called for regular and now
also for MOT tables, but not for previous foreign tables. The
planning uses the FDW GetForeignPaths() function to get
the plan for the query. Previous FDW is simply returning
one general plan, while MOT considers the optional indexes,
selects the one that will minimize the set of traversed rows,
and adds it to the plan.
The query execution iteration is using the best index from

the relation. It opens a cursor and iterates on the possibly
relevant rows. Each row is inspected by the GaussDB enve-
lope, and according to the query conditions, an update or
delete is called for it. The FDW update or delete are called
from the GaussDB execUpdate() or execDelete() if the
relation is a foreign table.

3.2 Integrating MOT with HA
A database storage engine is an internal software compo-

nent that a database server uses to store, read, update and
delete data in the underlying memory and storage systems.
Logging, checkpointing and recovery are not parts of the
storage engine, especially as some transactions encompass
multiple tables with different storage engines. As we still need
to persist and replicate the data we use the high-availability
facilities from the GaussDB envelope as follows:

• Logging: We persist write-ahead logging (WAL) records
using the GaussDB’s XLOG interface. By doing that we
also gain GaussDB’s replication capabilities that are
using the same APIs. Although all data is maintained
in volatile main-memory, MOT uses a persistent log
to supply ACID transactions. GaussDB parallel log-
ging and new SSD hardware minimize the overhead of
persistence. The parallel logging in GaussDB is based
on the implementation of [17] in PostgreSQL. This
implementation uses multiple slots for WAL, allowing
multiple backends to insert WAL records to the WAL
buffers concurrently. Only at commit, after releasing
its locks (early lock release), the transaction tries to
take ownership of the log and flush all buffers to persis-
tence. If a committer failed to take ownership, it waits
for the buffers to be flushed by the current owner.

• Checkpointing: MOT checkpoint is enabled by regis-
tering a callback to GaussDB’s checkpointer. Whenever
a checkpoint is performed, MOT’s checkpoint is called
as well. MOT keeps the checkpoint’s LSN (Log Se-
quence Number) in order to be aligned with GaussDB’s
recovery. The checkpointing algorithm is taken from
[28] so it is asynchronous and is not stopping concurrent
transactions. The only overhead is that if a checkpoint
creation is in progress, an update to a row will keep
the original version of the row until the checkpoint
collection is done.

• Recovery: Upon startup, GaussDB first calls an MOT
callback that recovers the MOT checkpoint and af-
ter that starts WAL recovery. During WAL recovery,
MOT WAL records are replayed according to the check-
point’s LSN: older records if exists are not replayed.
MOT checkpoint is recovered in parallel using multi-
ple threads, each one reading a different data segment.

This makes checkpoint recovery quite fast on many-
core hardware but still it adds overhead compared to
disk-based tables where only WAL records are replayed.

3.3 VACUUM and DROP
To complete the functionality of MOT we added support

for VACUUM, DROP TABLE, and DROP INDEX. All three
execute with exclusive table lock, i.e. without concurrent
transactions on the table. The system VACUUM calls a
new FDW function to perform the MOT vacuuming, while
DROP was added to the ValidateTableDef()function.

3.3.1 Deleting Pools
Each index and table tracks all memory pools it uses.

When dropping an index the metadata is removed and then
the pools are deleted as one consecutive block. The MOT
VACUUM is only doing compaction of the used memory,
as memory reclamation is done continuously in the back-
ground by the epoch based garbage collector. To perform
the compaction we switch the index or the table to new pools,
traverse all the live data, delete each row and insert it using
the new pools, and finally delete the pools as done for drop.

3.3.2 GC and Pools Deletion
Our epoch based GC is waiting until all transactions that

were live at the time of row R deletion finish execution before
reclaiming R and its related sentinels and index nodes into
their designated pools. However, table or index dropping
only take an exclusive lock on the table and then reclaims
the pools directly, and not through the GC mechanism. As
a result, a pool may be deleted when a buffer from GC that
belongs to this pool is not yet reclaimed. When this buffer
will be returned to the deleted pool, it will probably crash
the system. Our solution is to mark each buffer in the GC
with its origin pool, and before the pool P is going to be
deleted, under table exclusive lock, recycle all deleted buffers
that belong to P , so P will not be used after it has been
deleted.

3.4 JIT for Query Acceleration
The FDW adapter for the MOT engine contains a lite

execution path that employs Just-In-Time (JIT) compiled
query execution using the LLVM compiler (JIT, for short).
Current GaussDB contains two main forms of JIT query op-
timizations: (1) Accelerating expression evaluation (such as
in WHERE clauses, target lists, aggregates and projections),
and (2) Inlining small function invocations. These optimiza-
tions are partial (in the sense they do not optimize the entire
interpreted operator tree or replace it altogether), and are
targeted mostly at CPU-bound complex queries, typically
seen in OLAP use cases. The approach adopted by MOT
was to accelerate specific classes of queries that are known
to be common in OLTP scenarios, such as point queries and
simple range queries, rather than solving the general case.
This approach allowed to generate LLVM code in MOT for
entire queries.
It is noteworthy that current JIT optimization in GaussDB

still executes queries in a pull-model (Volcano-style process-
ing) using an interpreted operator tree. In contrast, MOT
provides LLVM code for entire queries that qualify JIT opti-
mization by MOT. This stands in stark contrast to existing
JIT optimizations in GaussDB, which still keeps the in-
terpreted operator tree for execution (albeit partially JIT
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optimized), whereas MOT generates LLVM code for direct
execution of the entire query over MOT tables, abandoning
completely the interpreted operator model, and resulting in
practically hand-written LLVM code generated for specific
query execution. As explained in [10], although the data-
centric model suggested there exhibits better performance
than the traditional operator-centric model, it is still argued
that hand-written plans in most practical cases exhibit the
best performance.
Although the execution plans for the query classes cho-

sen for JIT optimization in MOT result in rather small and
simplified interpreted operator trees (lacking any pipeline
breakers that force materialization points), the overhead of
executing such operator trees is significantly higher (up to
30%) than executing hand-written queries over MOT Ta-
bles. This outcome results directly from the efficiency of
MOT index access. When looking at the interpreted operator
model in the context of GaussDB, we see that each leaf node
represents table data access, while inner nodes represent the
processing of the query executor. In the case of MOT, the
relative part of table data access is much smaller than in the
case of GaussDB, such that overall query execution spends
relatively more time in the query executor. Therefore, re-
placing the query executor with a hand-written query results
in a visible performance gain, even with rather simplified
interpreted operator trees.
Another significant conceptual difference between MOT

and current JIT optimization in GaussDB, is that LLVM
code is generated only for prepared queries, during the PRE-
PARE phase of the query, rather than during each execution
of the query. This approach is inevitable due to the rather
short runtime of OLTP queries (relative to OLAP scenar-
ios), which cannot allow for code generation and relatively
long query compilation time during each query execution.
Still, this allows using more aggressive compiler optimiza-
tions without performance concerns during the PREPARE
phase, resulting in more efficient code ready for repeated
execution. On the other hand, this approach does not allow
taking into consideration any runtime plan costs, in case
there is more than one way to execute a query (e.g. JOIN
queries). Considering the query classes chosen for JIT op-
timization, this was not a significant factor. If such cases
become significant, two or more JIT plans can be generated
during query preparation, as well as the code for estimating
in runtime which plan is better.
Due to complexity of implementation, queries containing

aggregate operators that require materialization (such as
GROUP BY and COUNT DISTINCT) are not supported.

4. EXPERIMENTAL RESULTS
In this section we focus on the performance of MOT when

it is a part of GaussDB. The OCC algorithm is already
evaluated in numerous papers and we used a wide range of
microbenchmarks to verify the adjustments from Section 2
maintain that performance. We will analyze MOT improve-
ment to GaussDB performance on a Huawei ARM many-core
server [14] and an Intel x86 based server, where all network
is 10 Gb Ethernet.

4.1 Hardware
We tested our database on two separate hardware environ-

ments:

Figure 5: MOT standalone microbenchmark on ARM(96)
vs. x86

• Huawei ARM64: TaiShan servers based on Huawei
Kunpeng 920− 4826 [14] processors with 48 cores and
Kunpeng 920− 6426 [12] with processors 64 cores. The
server provides computing cores at a 2.6 GHz frequency,
1 TB of DRAM and 4TB Huawei ES3000 V5 series
NVMe PCIe SSD with a bandwidth of 3.5 GB/s. We
use three different configurations of the servers:

– 2-sockets of 48 cores, adding to 96 cores.
– 2-sockets of 64 cores, adding to 128 cores.
– 4-sockets of 64 cores, adding to 256 cores.

In the experiments we write ARM(n) where n denotes
the number of cores in the server.

• Intel x86: A 2-socket machine, each socket contains
a Intel(R) Xeon(R) Gold 6154 CPU, with 18 cores
running at 3 GHz. Each core runs two hyperthreads,
to a total of 72 hyperthreads. The system includes
SAMSUNG MZILS400HEGR0D3 SSD of 0.4 TB.

4.2 Benchmark and Configuration
The clients in both cases are running on unloaded machines

which are connected with 10Gb Ethernet to the server.
For all the following tests, the disk-based GaussDB had

enough buffers to place all data and indexes in memory. This
is fair as in this configuration both MOT and the original
storage engine use the same amount of DRAM, and the root
of performance difference is not IO latency.

4.3 Results
For Figure 5 we used hand written and hard coded TPC-C

transactions which run to completion and use the MOT di-
rectly in the style of [37]. In this implementation we eliminate
the impact of networking and durability. The benchmark
emulates full TPC-C and runs a hand written version of
the standard TPC-C consistency tests at the end to verify
correctness. Being hard coded make its absolute performance
irrelevant to the final product, but it can show the upper
limit of MOT performance. We used it also to verify the GC
and optimistic multi-index did not hurt performance.
This benchmark demonstrates that a core in ARM [12]

is comparable to 0.75 hyperthread of x86. This result is
consistent with the results in Figure 6 where 96 ARM cores
performance is roughly comparable to 72 x86 hyperthreads,
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(a) x86 (b) ARM(96)

Figure 6: Full TPC-C performance with scale factor of 500 warehouses and low contention on ARM and x86.

Figure 7: TPC-C with 1000 warehouses on ARM(256)

i.e., ARM is doing with N cores the work of 0.75N hyper-
threads.

Figure 8: Speedup of Basic SQL queries

To understand the performance of GaussDB with MOT
we start by looking at the performance of a single query on
a single core, and later look in the performance of a single
TPC-C transaction, and conclude by showing the scalability
of MOT to multicore and its reaction to contention. MOT
speedup of the basic SQL queries on a table with two integer
fields which one of them is used for primary indexing, is
presented in Figure 8, to understand the basic components
of MOT performance. We are only interested in the SQL
commands that access row data directly as that the area

MOT is taking place. To measure the performance of range
queries we measure the time of scanning 20 rows, so the
initial Lookup operation to the first row is amortized and we
actually compare the cursor next method. As seen in Figure
8 the lowest speedup is demonstrated by the scan operation,
and the reason is that cursor increments are very light also
in GaussDB, which is already tuned for analytical workloads.
Inserts which require chasing pointers through page offsets

in the disk-based GaussDB, to locate B-Tree nodes and data,
are more than 2x faster in MOT which is using Masstree
highly optimized data structure. The ability to use cache
friendly and lock-free data structures such as Masstree is an
advantage of being in-memory. The same speedup is observed
on a plain lookup. Actually an insert is a lookup with an
additional store. A delete is again not far from GaussDB but
while MOT is actually removing the row from the indexes
and the table, GaussDB is only marking it for a future
VACUUM operation which is not executed in this test. A
point update is giving the highest speedup as it involves both
a more efficient Lookup in MOT, and an inefficient locking
operation in GaussDB. One interesting point is that our
speedup is higher on ARM than on x86. The reason for this
difference is that ARM relaxed memory model suffers more
from the memory barriers which are introduced by the 2PL
concurrency control and concurrent B-Tree implementation
of GaussDB, and minimized by MOT OCC and Masstree
index implementations.
The rest of this section is using the TPC-C benchmark,

where the database and workload 1 were created by the
BenchmarkSQL tool [24].

In Figure 9 we see a comparison of the TPC-C transactions
speedup with and without JIT vs. GaussDB, on a single
connection and with 300 connections.
StockLevel transaction does not show any improvement

since it contains an aggregate operator (COUNT DISTINCT
operator), which does not qualify for MOT JIT optimization
(since it contains pipeline breaker requiring operator mate-
rialization). However all the other transactions gain about
30% from the JIT compilation.

1Like those of other in-memory systems (e.g. [39]), our
results do not satisfy the TPC-C scaling rules for number of
warehouses.
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Figure 9: Speedup of TPC-C transactions (x86)

Figure 10: Full TPC-C performance on x86 with high
contention

Figure 11: Replication overhead for TPC-C with 1000
warehouses and 812 clients on ARM(128)

All transactions are showing higher speedup with 300 con-
nections than with 1 connection. One reason is that the
lock-free index and OCC allow all transactions to make
progress. Another reason is that according to the OCC al-
gorithm readers are invisible, i.e. never write, which saves
many, potentially NUMA, cache misses.

Figures 6a and 6b show that the overhead of logging is very
low. The reason is that modern SSD and NVM hardware are

very fast and have enough bandwidth and log insertion is non
blocking. However, we do see performance degradation for
the x86 server (Figure 6a), over 250 connections. We verified
this is due to waiting for flush to complete, that is built into
the parallel logging of GaussDB. In the ARM server (Figure
6b) we do not see the degradation as the SSD bandwidth
there is higher.
Another insight is that GaussDB is scalable to the amount

of cores in the hardware, and over subscription of multiple
threads per core is not improving its performance while MOT
keeps scaling. MOT better scalability comes again from the
lock-free index and OCC which implies transactions can al-
ways make progress, and never wait for locks of slower or
swapped concurrent transactions. To sharpen this insight,
Figure 7 presents performance on a large ARM server with
256 cores, where MOT scales up to 768 connections.

In an OCC algorithm transactions never wait, but if there
is contention, some work is aborted at commit time. This
fact is demonstrated in Figure 10, where the scale factor
is 12 warehouses, and parallelism grows to 120 threads, i.e.
ten threads per warehouse. Contention of ten threads per
warehouse is the upper limit of contention allowed by Bench-
markSQL. As the amount of serializable work is limited
by the number of warehouses, the amount of aborted work
grows with contention. However, the MOT keeps 2x speedup
through the entire workload.

As demonstrated by Figure 11, in MOT the replication
overhead of Primary/Standby high availability scenario is
7% on ARM(128) while for disk-based tables it is 20%.

5. RELATED WORK
We mentioned key related works about concurrency con-

trol[1, 38, 36, 2, 7, 8, 9, 23], indexing [4, 21, 25, 18] and
multi-index tables [32], logging and recovery [17] and check-
pointing [28], and JIT [10] in their relevant context in pre-
vious sections. In this section we add a few explicit related
works that were not mentioned earlier.
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Prototypes and Frameworks: The research on main
memory OLTP engines produced many algorithms, as well
as lightweight and extendable open source frameworks to
compare them. In concurrency control a useful framework
is DBX [37] which compares a wide range of algorithms,
including 2PL, OCC, e.g. Silo, MVCC and simplified versions
of H-Store and Hekaton in-memory databases. Although the
micro benchmark is not realistic, it does stress the algorithms
and shows the advantages and weaknesses of them. Silo type
of OCC demonstrated the best performance on our many
cores hardware on the workloads which we targeted.

Microsoft’s Hekaton: SQL Server Hekaton [6] employs
a commit verification protocol similar to Silo. One difference
is that Hekaton uses the Bw-tree [22] for range-accessed
indexes, which has a read-lock to prevent writers from access-
ing the row until the transaction that read the row commits.
This protocol can reduce aborts, but instead even a read
incurs an atomic write to shared memory. In other words,
although both Silo and Hekaton employ OCC, Silo is more
optimistic.
PostgreSQL Storage Engines: In [19] they describe a

prototype of in-memory OLTP storage engine, implemented
using FDW. However, their implementation is missing sec-
ondary indexes, DDL support and other essential compo-
nents, which make it not production ready.
MOT: Fully optimistic, in-memory, production level stor-

age engine, and integrated with PostgreSQL-based GaussDB,
which adds to its industrial strength.

6. CONCLUSION
MOT is a new database storage engine designed for ex-

cellent OLTP throughput and scalability on large multicore
machines with practically unbounded memory. All aspects
of the MOT are optimized, including memory management,
concurrency control and garbage collection. MOT is inte-
grated into the fully-featured GaussDB SQL engine, to give
users a seamless performance acceleration.
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