

Automated Generation of Materialized Views in Oracle

 Rafi Ahmed Randall Bello Andrew Witkowski

Oracle Corporation Oracle Corporation Oracle Corporation
 500 Oracle Parkway 2300 Cloud Way 500 Oracle Parkway
Redwood Shores, CA 94065, U.S.A. Austin, TX 78741, U.S.A. Redwood Shores, CA 94065, U.S.A.

 rafi.ahmed@oracle.com randall.bello@oracle.com andrew.witkowski@oracle.com

 Praveen Kumar

Oracle Corporation
1 Oracle Drive

 Nashua, NH 03062, U.S.A.

 praveen.kumar@oracle.com

ABSTRACT
Automated generation of a right set of materialized views is a
challenging task. It is a highly desirable feature for autonomous
databases. The selection of materialized views must be based on
cost and verifiable in the actual database environment. This paper
describes an automated system that generates, selects, verifies,
and maintains materialized views in the Oracle RDBMS; it
presents a novel technique, called the extended covering sub-
expression algorithm, for the automated generation of materialized

views. An extensive set of experiments is described that
demonstrates the feasibility and efficiency of this approach. This
system has been fully implemented and is going to be deployed on
the Oracle Autonomous Database on the Cloud.

PVLDB Reference Format:

Rafi Ahmed, Randall Bello, Andrew Witkowski, Praveen Kumar.
Automated Generation of Materialized Views in Oracle. PVLDB,

13(12): 3046-3058, 2020.
DOI: https://doi.org/10.14778/3415478.3415533

1. INTRODUCTION
Current relational database systems process complex SQL queries
involving multiple fact and dimension tables and containing
several nested sub-query blocks. Such queries are becoming
increasingly important in Decision-Support Systems (DSS).
Generating optimal execution plans for such queries has become
critical for commercial database systems. Materialized view
rewrite [8, 14] is a well-known technique that is used for

optimizing such queries. The richness of structure of materialized
views makes the task of selecting the right set of materialized
views generally a daunting task for the DBA.

Automated generation of materialized views, on the other hand,
poses a variety of challenges [1, 17, 29] of its own. We could

consider generating every syntactically relevant materialized view
for workload queries based on all possible subsets of tables in
workload queries, but it would explode the search space even with
some heuristic-based pruning; arbitrary table subsets may

introduce Cartesian Products in the materialized view definitions.
At the other extreme, we could generate for each query, when
syntactically possible, one candidate materialized view that
exactly matches the text of the query; this would generally violate
the storage constraints and result in making materialized view
refresh an intractable task. The idealized objective is to generate a
small number of materialized views, which are of reasonable size,
contain large pre-computations of joins and grouping, and can

rewrite a substantial number of current and future workload
queries. This presents conflicting demands on the system. A
materialized view that contains large pre-computations is more
beneficial to the queries it rewrites, but it would normally rewrite
fewer queries. Further, a materialized view that rewrites many
queries tends to have large sets of grouping columns and very few
or no selection predicates, which tend to increase materialized
view size in terms of the number of rows it contains.

In this paper, we discuss a novel technique, called the extended
covering sub-expression (ECSE) algorithm, for automated
generation of materialized views. The ECSE algorithm seeks to
achieve a compromise between the conflicting demands and to
find a balance between the two extremes.

Automated materialized view project is a crucial component of a
wider effort called Oracle Autonomous Databases. Other
components of this project include task management, ML-based

automatic refresh of materialized views, etc.

The rest of the paper is organized as follows. We first give an
overview of the system architecture for the automated generation
of materialized views in Section 2. We describe the basic
concepts, the ECSE algorithm, and the technique for cost-based
selection of materialized views in Section 3. Section 4 describes
the verification module. Materialized view maintenance is
outlined in Section 5. In Section 6, we describe an extensive set of
experiments we performed on several customer workloads.

Finally, in Section 7 we survey the related work and provide our
conclusion in Section 8.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3415478.3415533

3046

mailto:andrew.witkowski@oracle.com
mailto:praveen.kumar@oracle.com

2. ARCHITECTURE FOR AUTOMATED

MATERIALIZED VIEWS

In this paper, we focus on a class of single query-block

materialized views that contain join of multiple tables, grouping,
aggregation, and – in rare cases – filter (i.e., selection) predicates;
these materialized views are based on queries containing one or
more query blocks (a query block contains SELECT, FROM,
WHERE, and, optionally, GROUP-BY clauses), which have filter
predicates, join of multiple tables, grouping, and aggregation. The
workload may contain arbitrarily complex SQL statements.

Figure 1. Architecture for Automated Materialized Views

Figure 1 presents an architectural overview of automated
generation of materialized views (MVs) in Oracle. Our starting
point is a workload containing a set of queries, for which a set of
materialized views capable of rewriting a substantial number of
current and future queries are to be generated. The key
components of the architecture are: (i) query transformations, such
as simple subquery unnesting and select-project-join view

merging, to reduce the number of query blocks in a query (Oracle
RDBMS performs complex transformations [4] in a cost-based
manner after materialized view generation and rewrite modules
have been invoked), (ii) candidate materialized view generation
using the ECSE algorithm, (iii) heuristic-based pruning of
candidate materialized views, (iv) enumeration of mapping

between queries and materialized view groups and cost-based
recommendation of materialized views, (v) verification of
recommended materialized views by executing relevant workload
queries with and without materialized view rewrite, and (vi)
creation of materialized views that pass verification; the

partitioning scheme, if any, of the underlying fact table is used to
partition the materialized views.

3. MATERIALIZED VIEW SELECTION

In the following, we highlight the distinguishing aspects of our
approach.

We consider queries containing multiple query blocks. Each query
block may be based on a star, snowflake, or snowstorm schema
[3]. The materialized views generated by our system may require
joins with other tables [6] for rewrite; this strategy is more
versatile than the view-lattice approach [14, 28], which assumes
that all workload queries have the same join pattern. In our
scheme, a materialized view is generally anchored on a large fact
table and can rewrite multiple queries; it can contain pre-

computations (i.e., joins and grouping) that do not appear in the
queries eligible for rewrite, as it may be based on referential
integrity constraints.

The ECSE algorithm, using pair-wise comparisons, considers all

possible relationships – equivalence, superset, subset, intersection,
and union – that can exist among join graphs of given queries and
exploits invariant join property, when applicable, for extracting
covering sub-expressions, which are then used to generate
candidate materialized views. The novel ECSE strategy is more
efficient than generating arbitrary subsets or subplans of every
query [1, 14, 19], and it is different from the reported works on
sub-expression selection, multi-query optimization, and

materialized view selection.

Since the problem of the selection of materialized views or
indexes has been shown to be NP-Hard [11, 26], it is critical that
the proposed solutions recommend high quality materialized
views in a scalable manner. Under the worst-case scenario, the
time complexity of the ECSE algorithm (Section 3.4) is O(N2), as
the ECSE algorithm does pair-wise comparisons of join graphs in

a given workload, which contains N query blocks. In order to
further restrict the search space, we apply several heuristics within
and after the ECSE algorithm (Sections 3.3 and 3.4).

3.1 Basic Concepts
Join Graph. The join graph of a query block may have undirected
edges resulting from inner or full outer joins and directed edges
resulting from left outer, anti, and semi joins. In our scheme, a
join graph is considered connected, if there exists at least one
vertex from which all other vertices are reachable by traversing
directed and undirected edges. For example, join graph {T1 ─ T2,
T2 → T3} is connected but {T1 → T3, T2 → T3} is not. We

consider only connected join graphs, as they do not produce
Cartesian product. In our scheme, a join graph may have cycles; a
join graph that has a cycle containing only directed edges is
considered illegal in Oracle.

Classification of join graphs of a given query workload is an
important aspect of our candidate generation algorithm. We
examine the shape of each join graph, table cardinalities, and
number of distinct values (NDVs) of joining columns and identify

Workload

MV Candidate

Generation

Heuristic-based
Pruning

 pruning

MV Verification

Transformations

Oracle

RDBMS

MV Creation

Cost-based MV

Selection and
Recommendation

3047

fact, dimension, and branch tables (i.e., the tables that join with
dimension tables in snowflake and snowstorm schemas [3]). We
then divide the join graphs into classes, where join graphs in each
class reference a single common fact table. Each class of join
graphs is considered separately by the ECSE algorithm for

generating candidate materialized views, which contain the
common fact table and various dimension and branch tables. The
ECSE algorithm, however, will work correctly even if fact,
dimension, and branch tables cannot be identified and thus the
join graphs cannot be divided into classes.

Join set is an abstraction of a connected join graph that is based
on a query block. A join set, which is essentially a set of join
edges, allows us to apply set operations on the underlying join

graph. A join set has an associated field called QB set, which
represents a set of query blocks (QBs) that can be potentially re-
written in terms of a materialized view based on the join set. For
the sake of brevity, in this paper a join set is represented as a set of
simplified join edges that do not show columns or relational
operator: e.g., {F1 – D1, D1 – B1}, where F1 – D1 stands for a
join edge between tables F1 and D1 and D1 – B1 stands for a join
edge between tables D1 and B1.

Set operations (i.e., equivalence, subset, superset, union, and
intersection) are performed on join sets at various steps of the
ECSE algorithm. Two join edges, which may originate from two
different query blocks, are considered equivalent, if they are
defined in terms of the same pair of Table.Column, relational
operator (e.g., =, >, ≤, etc.) and join type (e.g., inner, outer, anti,
etc.). Two join sets are considered equivalent, if they contain
equivalent sets of join edges. The standard definitions of the set

operations subset, superset, union, and intersection on join sets
follow directly from the definition of equivalence of join edges.
The join sets that result from these operations must be connected.

Invariant joins can be derived from table and join properties. A
table T1 is invariant in a join with table T2, if the following five
conditions are satisfied: (i) The join is specified by a simple
equality, inner join predicate T1.fk = T2.pk; (ii) there is a
referential integrity constraint from T1.fk to T2.pk; that is, T1.fk
is a foreign key that references the primary key T2.pk; (iii) the

column T1.fk has a non-null constraint; (iv) T2 does not have any
filter or subquery predicates; (v) T2 is invariant in joins with
tables other than T1 (if any); e.g., dimensions that join with
branch tables in snowflake schema. The conditions (iv) and (v)
can be circumvented in materialized view creation by excluding
from the materialized view definitions filter predicates and tables
that violate the invariance property. The invariance of a table or
join set J with respect to its join with table T is denoted by

Invariant (J, T), which implies that table T joins with table(s) in J
without affecting the resulting rows of J. The presence of invariant
joins is used to identify a join set that is a union or superset of
underlying join sets thereby allowing materialized views to
contain larger pre-computations; i.e., a query block can be
rewritten with a materialized view that has more tables and joins
than the query block.

Partition of Join Set. In a snowstorm schema [3], a join set may

contain multiple fact tables, where each fact table has its own
dimension and branch tables. Consider an example where there
are two fact tables, F1 and F2, in a join set; JS1: {B1 – D1, D1 –
F1, F1 – F2, F2 – D2}. In such a case, JS1 will be partitioned into
two join sets JS2 and JS3, each containing a single fact table and

its dimension and branch tables; JS2: {F1 – D1, D1 – B1}; JS3:
{F2 – D2}. The join sets JS2 and JS3 inherit the QB set of JS1.

Reduction of Join Set. A join set may contain anti-joined or
semi-joined tables, which result from subquery unnesting [4].
However, materialized views in Oracle may not contain anti-

joined or semi-joined tables. A join set is, therefore, reduced by
removing tables that are anti-/semi-joined.

Filter Predicates. Most workload queries are repeatedly issued
over time where they differ only in the constant values of filter

predicates. Therefore, most materialized view definitions in our
system do not include filter predicates. This allows them to
rewrite current as well as future queries with the same signature.

Left Outer-Join. Oracle allows left outer-join in materialized
view definitions. Consider a query: SELECT * FROM T1 left
outer join T2 on T1.x = T2.y and T2.z = 5; in case of a many-to-
many join between T1 and T2, rows of both tables can be
duplicated. In our scheme, a materialized view definition with left

outer-join contains an indicator column, which has value 1
indicating inner-joined (i.e., matching) rows and 0 indicating anti-
joined (i.e., non-matching) rows. The rewrite of the above query,
which contains a filter predicate on the outer-joined table T2, with
a materialized view containing the left outer-join between T1 and
T2 and no filter predicate is non-trivial, if the materialized view
must appear only once in the rewrite. We use a technique that
involves the LEAD window function and the indicator column to

rewrite this type of queries by referencing the materialized view
only once. The details of the technique are beyond the scope of
this paper.

Scope of Materialized Views. We support nested subqueries,
views, standard aggregate functions in materialized view
definitions, and distinct aggregates based on a bitmap technique.

3.2 Operations on Join Sets
In this section, we present functions for five basic set operations,
which identify or create join sets for defining materialized views.
We use a list of items, referred to here as JQLST, for each class of
join graphs (Section 3.1). Every item in JQLST contains a join set
and its associated QB set. Initially, the join set is based on a single
query block; the QB set is initialized to the query block where the
join set originates. We define a function Tables () that takes a join

set and returns a set of tables that appear in the join set.

Every set operation involves pair-wise comparisons of items from
the list, where a union operation on QB sets shows the join set that
can rewrite all query blocks belonging to both the operands. After
the first step of the ECSE algorithm, a join set remains static,
whereas its QB set may dynamically grow.

Each set operation is illustrated by two single-block queries and a
materialized view definition derived from the two queries. In the

examples, every query is followed by the join set and QB set it
produces, whereas every materialized view definition is preceded
by join set and QB set, which are derived from the join and QB
sets of the two query blocks by performing one of the set
operations. We use the common notations () for a list, {} for a set,
and [] for a structure; the join sets (i.e., join graphs) and QB sets
are shown in bold.

The derived join and QB sets are used to generate materialized
view definitions. A derived join set is used to form the FROM and
WHERE clauses of the materialized view definition. The

3048

SELECT and GROUP-BY lists of the query blocks in the derived
QB set are merged to construct its SELECT and GROUP-BY lists.
The columns in the filter predicates of the query blocks in the
derived QB sets are added to the GROUP-BY and SELECT lists
to enable materialized views rewrite of query blocks with similar

signatures. The joining columns used in join predicates with tables
not included in the materialized view are also added to its
GROUP-BY and SELECT lists.

This materialized view definition can rewrite all query blocks in
the derived QB set; such query blocks are considered eligible for
the materialized view, and vice versa. In most of the following
examples, materialized view rewrite would involve re-
computation of grouping and aggregation.

3.2.1 Equivalence

If the join sets of two items are found to be equivalent, one of
them is removed and the QB set of the retained join set is

augmented by the QB set of the removed item indicating that the
join set of the retained item can be used to rewrite all the query
blocks in its QB set.

Figure 2. JS-Equivalence

Consider two query blocks Q1 and Q2, whose join sets are

equivalent; and therefore, one of the join sets can be discarded.

SELECT F.n, F.g, SUM(F.m1), COUNT(F.m3), D2.z, D7.y
FROM F, D7, D2
WHERE F.f7 = D7.k and F.f2 = D2.k and
 F.x IN (4,6) and D7.c = 25
GROUP BY F.n, F.g, D7.y, D2.z;
[{F ─ D7, F ─ D2}, {Q1}]

SELECT F.n, MAX(F.m2), D7.p, D2.y
FROM F, D7, D2
WHERE F.f7 = D7.k and F.f2 = D2.k and
 F.x = 9 and D7.c = 5
GROUP BY F.n, D7.p, D2.y;
[{F ─ D7, F ─ D2}, {Q2}]

[{F ─ D7, F ─ D2}, {Q1, Q2}]
Create materialized view MV0 AS
SELECT F.n, F.g, D7.y, D2.z, D7.p, D2.y, F.x, D7.c,
 MAX(F.m2), SUM(F.m1), COUNT(F.m3)
FROM F, D7, D2
WHERE F.f7 = D7.k and F.f2 = D2.k and
 F.x IN (4, 6, 9) and D7.c IN (5, 25)
GROUP BY F.n, F.g, D7.y, D2.z, D7.p, D2.y, F.x, D7.c;

In materialized view MV0, merging of SELECT and GROUP-BY
lists have taken place. For the purpose of illustration only, we also

show, in the definition of MV0, a unification of filter predicates
that originate from Q1 and Q2.

3.2.2 Subset

Figure 3. JS-Subset

Consider two query blocks Q3 and Q4. The join set of Q4 is a

subset of that of Q3.

SELECT F.x, D1.y, D2.z, SUM(F.m1)
FROM F, D1, D2, B2
WHERE F.f1 = D1.k and F.f2 = D2.k and D2.c = B2.r and
 F.y = 5 and D1.c = 9 and D2.s < 25
GROUP BY F.x, D1.y, D2.z;
[{F ─ D1, F ─ D2, D2 ─ B2}, {Q3}]

SELECT F.x, D1.h, COUNT(F.m2),
FROM F, D1
WHERE F.f1 = D1.k and F.y = 7 and D1.g = 7 and D1.c = 9
GROUP BY F.x, D1.h;
[{F ─ D1}, {Q4}]

[{F ─ D1}, {Q3, Q4}]
Create materialized view MV1 AS
SELECT F.x, D1.y, D1.h, D1.c, D1.g, F.y,
 F.f2, COUNT(F.m2) , SUM(F.m1)
FROM F, D1
WHERE F.f1 = D1.k
GROUP BY F.x, F.y, D1.y, D1.h, D1.c, D1.g, F.f2;

In MV1, merging of the SELECT and GROUP-BY have taken
place. The SELECT and GROUP-BY have been augmented with
the columns in filter predicates and with F.f2, the column used in

join with D2. This enables the rewrites with MV1 of Q4 without
requiring any join and of Q3 by joining MV1 with D2.

3.2.3 Intersection

Figure 4. JS-Intersection

Figure 4. JS-Intersect

The function JS-Intersection in Figure 4 generates a new join set
from the given join sets. In order to maximize computations

Function JS-Subset (X, Y)
{
 // Identify join set based on subset.

 If (X.joinset ⊂ Y.joinset)
 X.qbset = X.qbset ⋃ Y.qbset;
}

Function JS-Equivalence (JQLST)
{
 // Prune join sets based on equivalence
 For each item X in JQLST do
 For each item Y in JQLST do

 If (X != Y ∧ X.joinset = Y.joinset)
 {
 X.qbset = X.qbset ⋃ Y.qbset;
 Remove Y from JQLST;
 }
}

Function JS-Intersection (JQLST)
{
 // Generate a new join set based on intersection.
 For each item X in JQLST do
 For each item Y in JQLST do
 If (X != Y ∧ Y.joinset ⊈ X.joinset ∧
 X.joinset ⊈ Y.joinset ∧
 X.joinset ⋂ Y.joinset ≠ ∅)
 {
 Z.joinset = X.joinset ⋂ Y.joinset;
 Z.qbset = X.qbset ⋃ Y.qbset;
 Insert Z into NLST;
 }
 Append NLST to JQLST;
}

3049

contained in derived join sets, we do not generate intersection
closure (i.e., derivation of intersection join sets from other
intersection join sets). Consider queries Q5 and Q6, whose join
sets overlap, and therefore intersection can be applied to them.

SELECT F.n, MIN(F.m1), D7.y, D2.z
FROM F, D7, D2
WHERE F.f7 = D7.k and F.f2 = D2.k and
 F.x IN (4,6) and D7.c = 25
GROUP BY F.n, D7.y, D2.z;
[{F ─ D7, F ─ D2}, {Q5}]

SELECT F.y, SUM(F.m2), D7.h, D3.x
FROM F, D7, D3
WHERE F.f7 = D7.k and F.f3 = D3.k and D7.y = 5
 F.x = 11 and D3.w > 15
GROUP BY F.y, D7.h, D3.x;
[{F ─ D7, F ─ D3}, {Q6}]

[{F ─ D7}, {Q5, Q6}]
Create materialized view MV2 AS
SELECT F.n, F.y, D7.y, D7.h, D7.c, F.x, F.f2, F.f3,
 MIN(F.m1) mn, SUM(F.m2) sm
FROM F, D7
WHERE F.f7 = D7.k
GROUP BY F.n, F.y, F.x, D7.y, D7.h, D7.c, F.f2, F.f3;

Here a new join set is generated. In MV2, merging of SELECT

and GROUP-BY lists have taken place; the SELECT and
GROUP-BY lists have also been augmented with the joining
columns of tables not included in the materialized view MV2.
Note that the rewrite of Q5 will require a join with D2 using F.f2
and the rewrite of Q6 will require a join with D3 using F.f3. In the
following, we show query Q6, which has been rewritten with the
materialized view MV2.

SELECT M.y, M.h, D3.x, SUM(M.sm) sm
FROM MV2 M, D3
WHERE M.f3 = D3.k and M.x = 11 and D3.w > 15 and
 M.y = 5
GROUP BY M.y, M.h, D3.x;

3.2.4 Superset
Figure 5 presents the derivation of a superset join set. Superset
join sets can be derived only if the invariance property is satisfied
for relevant joins. The condition in Figures 5 checks if the join set

of Y is invariant in join with all tables in the difference of join sets
of X and Y.

Consider two query blocks Q7 and Q8. The join set of Q7 is a
subset of that of Q8; the superset operation can be applied to
them, if the relevant join is invariant.

SELECT F.n, SUM(F.m1), D1.m
FROM F, D1
WHERE F.f1 = D1.k and F.x = 6 and D1.y = 25
GROUP BY F.n, D1.m;
[{F ─ D1}, {Q7}]

SELECT F.y, MIN(F.m2), D1.h, D5.z
FROM F, D1, D5
WHERE F.f1 = D1.k and F.fk5 = D5.pk and
 F.x = 11 and D1.y = 33 and D5.g > 6
GROUP BY F.y, D1.h, D5.z;
[{F ─ D1, F ─ D5}, {Q8}]

[{F ─ D1, F ─ D5}, {Q7, Q8}]
Create materialized view MV3 AS
SELECT F.n F.y, D1.m, D1.h, D5.z, D1.y,
 D5.g, F.x, MIN(F.m2), SUM(F.m1)
FROM F, D1, D5
WHERE F.f1 = D1.k and F.fk5 = D5.pk
GROUP BY F.n, F.y, F.x, D1.y, D1.m, D1.h, D5.z, D5.g;

Figure 5. JS-Superset

In Q8, F.fk5 must be a non-null foreign key (F.K.) that references

primary key (P.K.) D5.pk, which indicates that the join between F
and D5 is invariant (Section 3.1). Augmentation of SELECT and
GROUP-BY with joining columns is not required. No join is
needed to rewrite either Q7 or Q8 with materialized view MV3.

3.2.5 Union

Figure 6 presents the derivation of a new join set based on the
union operation, which applies to overlapping join sets X and Y.
The invariance condition is checked for all join edges that are

either in X or Y but not in both. A union join set can be derived
only if the invariance property is satisfied for relevant joins.

For the sake of brevity, in Figure 6 we do not consider the case
where two join sets have only a single (fact) table in common and
no common join edges.

Figure 6. JS-Union

Function JS-Superset (X, Y)
{
 // Identify invariance-based superset join set.

 If (Y.joinset ⊂ X.joinset ∧
 ∀ T ∈ Tables (X.joinset – Y.joinset),
 Invariant (Y.joinset, T))
 {

 X.qbset = X.qbset ⋃ Y.qbset;
 Return True;
 }
 Else
 Return False;
}

Function JS-Union (JQLST)
{
 // Generate invariance-based union join sets.
 For each item X in JQLST do
 For each item Y in JQLST do
 If (X != Y ∧ Y.joinset ⊈ X.joinset ∧
 X.joinset ⊈ Y.joinset ∧
 X.joinset ⋂ Y.joinset ≠ ∅ ∧
 ∀ T ∈ Tables ((X.joinset ⋃ Y.joinset) –
 (X.joinset ⋂ Y.joinset)),
 Invariant (X.joinset ⋂ Y.joinset, T))
 {

 Z.joinset = X.joinset ⋃ Y.joinset;
 Z.qbset = X.qbset ⋃ Y.qbset;
 Insert Z into JQLST;
 }
}

3050

A materialized view produced by the successive application of the
union operation may ultimately be not very useful, as it tends to
have a large group-by list and thus high cardinality. Therefore, the
operand (parent) join sets are also retained by the ECSE algorithm
in JS-Union (Figure 6) along with resulting (child) join sets. Both

parent and child join sets compete in the final selection of
recommended materialized views (Section 3.5).

Consider two query blocks Q9 and Q10, whose join sets overlap;
the union operation can be applied, if the relevant joins are
invariant.

SELECT F.n, D1.m, D5.x, SUM(F.m1),
FROM F, D1, D5
WHERE F.fk1 = D1.pk and F.fk5 = D5.pk and F.x = 6
 and D1.z = 25
GROUP BY F.n, D5.x, D1.m;
[{F ─ D1, F ─ D5}, {Q9}]

SELECT F.y, D2.w, D5.z, AVG(F.m2)
FROM F, D2, D5
WHERE F.fk2 = D2.pk and F.x = 12 and D2.g > 7 and
 F.fk5 = D5.pk
GROUP BY F.y, D5.z, D2.w;
[{F ─ D2, F ─ D5}, {Q10}]

[{F ─ D1, F ─ D2, F ─ D5}, {Q9, Q10}]
Create materialized view MV4 AS
SELECT F.n, F.y, D1.m, D2.w, D1.z, D2.g, F.x, D5.x, D5.z,
 SUM(F.m2), COUNT(F.m2), SUM(F.m1)
FROM F, D1, D2
WHERE F.fk1 = D1.pk and F.fk2 = D2.pk and F.fk5 = D5.pk
GROUP BY F.n, F.y, F.x, D1.m, D2.w, D1.z, D2.g, D5.x,
 D5.z;

In Q9, F.fk1 must be a non-null foreign key (F.K.) that references

primary key (P.K.) D1.pk. In Q10, F.fk2 must be a non-null F.K.
that references P.K. D2.pk. A new join set is generated here. The
filter predicates on the tables D1 and D2 cannot be included in the
definition of materialized view MV4. Augmentation of SELECT
and GROUP-BY lists with joining columns is not required, since
no join is needed to rewrite either Q9 or Q10 with MV4. The
rewrite module will validate the invariance property before query
rewrite with MV4.

3.3 Heuristics for Pruning Join Sets
In this section, we describe five heuristics for pruning join sets
based on (A) join set reduction, (B) join set size, (C) QB set size,

(D) maximal join and QB sets, and (E) the cardinality ratio of a
candidate materialized view and the fact table it references.

These heuristics use four threshold values α, β, λ, and ρ, which are
configurable. Precise determination of the threshold values
depends upon many factors, such as the count and complexity of
queries in the workload, cardinalities of fact tables, storage
requirement, etc. Automated derivation of these threshold values

for a given workload requires further research.

3.3.1 Heuristic A: Join Set Reduction

To prevent an explosion of materialized view size, it may become
necessary to reduce a join set by removing a dimension or branch
table that causes a many-to-many join.

We identify a many-to-many equi-join by examining its join
predicates to determine if neither of its operand columns has a
unique constraint/index or number of distinct values (NDVs) close
to the cardinality of the table. A join set is reduced by removing
the table that causes a many-to-many join; all branch tables of the

removed (dimension or branch) table are also recursively removed
from the join set.

3.3.2 Heuristic B: Join Set Size

A join set is pruned, if the number of tables it contains is below a

given threshold value α, which may be computed as half of the
average number of tables in all query blocks in all queries of a
given workload. In our experiments (Section 6), we set the value

of α to 2.

This heuristic ensures that only those materialized views are
recommended which have a certain number of join computations.

3.3.3 Heuristic C: QB Set Size

A join set is pruned, if the cardinality of its QB set is below a
threshold value, β (e.g., 2). This ensures that only those
materialized views are recommended which can rewrite at least β
query blocks. In our experiments (Section 6), the value of β is set

to 2; that is, we always prune a join set if it can rewrite only a
single query block.

3.3.4 Heuristic D: Maximal Join and QB Sets

Prune a join set Jk, if there exists a maximal join set Ji. Ji is
considered maximal in relation to Jk, if Jk is a subset (not
necessarily proper) of Ji and Jk’s QB set is a subset (not
necessarily proper) of Ji’s QB set.

For each item X in JQLST do
 For each item Y in JQLST do
 If (X != Y ∧ Y.joinset ⊆ X.joinset ∧ Y.qbset ⊆ X.qbset)
 Remove Y;

Here, a join set is pruned, if there exists another join set that
contains larger pre-computations and it can rewrite more query
blocks.

3.3.5 Heuristic E: Cardinality Ratio

In this scheme, every join set – or the materialized view based on
the join set – contains one fact table and one or more dimension
and branch tables. Experience has shown that in most cases if the
cardinality of a materialized view is not significantly smaller than
that of the fact table, then query rewrite based on the materialized

view does not prove to be beneficial. Since in our scheme,
materialized view definitions rarely contain any filter predicates,
pruning out materialized view candidates based on their
cardinality is crucial.

We define cardinality ratio as the number of rows of the
materialized view’s fact table divided by the number of rows of
the materialized view. We prune a materialized view, if its
cardinality ratio is smaller than a given threshold value, λ (e.g., 3).

The accurate cardinalities of fact tables are found in the database

dictionary tables. We do not use optimizer estimates of
materialized view’s cardinalities, as cardinality estimation error in
query optimizers remains a pervasive and persistent problem [16,
23, 24]. Instead, we issue a query based on the materialized view

3051

definition using a sample block clause to estimate the number of
rows of a materialized view; alternative methods include
approximate count distinct and the method described in [9]. For a
given percentage, ρ, of block sampling, the linearly scaled
cardinality is obtained by multiplying the number of rows returned

by the query with 100/ρ. Block sampling with a small percentage
gives a reasonably accurate estimate, since these materialized
view definitions contain no filter predicates and all joins are
many-to-one (Section 3.3.1).

Consider, for example, the following materialized view definition
for the TPC-DS schema.

Create materialized view MV10 AS
SELECT hd_vehicle_count, hd_dep_count,
 s_store_name, t_minute, t_hour,
 count (*), sum (ss_ext_sales_price)
FROM store_sales, household_demographics, store,
 time_dim
WHERE hd_demo_sk = ss_hdemo_sk and
 s_store_sk = ss_store_sk and
 t_time_sk = ss_sold_time_sk

 GROUP BY hd_vehicle_count, hd_dep_count,
 t_minute, t_hour;

The following shows a query that returns the cardinality of the
materialized view MV10 using 1% block sampling of the fact
table, stores_sales.

SELECT count (*)
FROM (SELECT 1
 FROM store_sales SAMPLE BLOCK (1),
 household_demographics, store, time_dim
 WHERE hd_demo_sk = ss_hdemo_sk and
 s_store_sk = ss_store_sk and
 t_time_sk = ss_sold_time_sk

 GROUP BY hd_vehicle_count, hd_dep_count,
 s_store_name, t_minute, t_hour);

The estimation of cardinalities of candidate materialized views
serves a dual purpose. First, it is used for pruning out unpromising
materialized views. Second, the sampled cardinalities are injected
into the database dictionary tables replacing optimizer estimated
cardinalities; this enables the optimizer cost model to use more
accurate cardinalities thereby significantly improving the count
and quality of recommended materialized views (Section 3.5).

3.4 The Extended Covering Sub-Expression

(ECSE) Algorithm
We describe the ECSE algorithm in Figure 7. As can be seen, the
algorithm has in-built heuristics to weed out unpromising MV

candidates.

The input to automated materialized view candidate generation is
the SQL Tuning Set [15], which is an Oracle tool for storing,
managing, and tuning workloads. A SQL Tuning Set persistently

stores the texts of SQL statements, their SQL-IDs, execution
plans, optimizer estimated costs, execution statistics (e.g., CPU
time, elapsed time, buffer-gets, rows processed), execution
contexts, etc.

As described in Section 3.1, we analyze the join graph of each
query block in the given workload and classify the join graphs
based on their fact tables. The ECSE algorithm is invoked for each

class of join sets. The input to this algorithm is a list of items
containing join sets and QB sets.

Figure 7. Algorithm ECSE

3.4.1 ECSE Example

We present a simple example that demonstrates the workings of
the ECSE algorithm. Consider a workload of 8 single-block SQL
statements: Q1, Q2, Q3, Q4, Q5, Q6, Q7, and Q8. In this example,
there are no referential integrity constraints and thus no invariant
joins. As every query block here references a single fact table, the
partitioning of join sets is not required at Step 2 below.

1. Generate join graphs and identify fact, dimension, and branch
tables

2. Divide join graphs into classes (Section 3.1) based on fact
table: {Q2, Q3, Q5, Q6, Q8}, which references fact table F1,
and {Q1, Q4, Q7}, which references fact table F3.

3. Start with the initial JQLST for the class containing fact table

F1.

JQLST: ([{F1 – D4}, {Q2}],

 [{F1 – D4, F1 – D3}, {Q3}],

 [{F1 – D1, F1 – D5, F1 – D6}, {Q5}],

 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}],

 [{F1 – D1, F1 – D5, F1 – D6}, {Q8}])

3.1 Apply JS-Equivalence.

 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}] ←

 [{F1 – D1, F1 – D5, F1 – D6}, {Q5}],

 [{F1 – D1, F1 – D5, F1 – D6}, {Q8}]

 JQLST: ([{F1 – D4}, {Q2}],

Algorithm ECSE (JQLST)
{
 // Prune join sets based on equivalence

 JS-Equivalence (JQLST);

 // Generate intersection join sets.

 JS-Intersection (JQLST);

 // Generate invariance-based union join sets.

 JS-Union(JQLST);

 // Prune join sets based on equivalence.

 JS-Equivalence (JQLST);

 For each item X in JQLST do

 For each item Y in JQLST do

 {
 // Identify invariance-based superset.

 Valid := JS-Superset (X, Y));

 // Identify join sets based on subset.

 If (! Valid)
 JS-Subset (X, Y);
 }

 // Apply the heuristics in the given order.

 Prune the join sets based on heuristics A, B, C,

 D, and E;

 Form candidate materialized view definitions

 based on JQLST;

 JQLST;

}

3052

 [{F1 – D4, F1 – D3}, {Q3}],

 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],

 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}])

3.2 Apply JS-Intersection.

 [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}] ←
 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],
 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}]

JQLST: ([{F1 – D4}, {Q2}],

 [{F1 – D4, F1 – D3}, {Q3}],

 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],

 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}],

 [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}])

3.3 JS-Equivalence, JS-Superset, and JS-Union are not

applicable here.

3.4 Apply JS-Subset.

 [{F1 – D4}, {Q2, Q3}] ←

 [{F1 – D4}, {Q2}],
 [{F1 – D4, F1 – D3}, {Q3}]

 JQLST: ([{F1 – D4}, {Q2, Q3}],
 [{F1 – D4, F1 – D3}, {Q3}],

 [{F1 – D1, F1 – D5, F1–D6}, {Q5, Q8}],
 [{F1 – D1, F1 – D6, F1 – D7}, {Q6}],
 [{F1 – D1, F1 – D6}, {Q5, Q6, Q8}])

3.5 Apply heuristics A, B, C, D, and E, where α = 2, β = 2, λ =

2 and ρ = 10.

 JQLST: ([{F1 – D1, F1 – D6}, {Q5, Q6, Q8}],
 [{F1 – D1, F1 – D5, F1 – D6}, {Q5, Q8}],

 [{F1 – D4}, {Q2, Q3}])

Note that for the class containing fact table F3 steps similar to the
above take place.

3.5 Cost-Based Recommendation
In this section, we first discuss some basic concepts for the
algorithm used for the cost-based selection and recommendation
of materialized views.

Figure 8 shows an example of 6 queries and 5 materialized view
candidates. A query here is followed by the query blocks it
contains and the set of materialized views that can individually
rewrite the query block.

Q1. QB11 {MV1, MV2}, QB12 {MV3}
Q2. QB2 {MV2, MV4}
Q3. QB3 {MV5, MV4}
Q4. QB4 {MV3, MV5}
Q5. QB5 {MV2, MV4}
Q6. QB6 {MV5, MV1}

Figure 8. Eligible Queries and MVs

The relationships between candidate materialized views and

eligible query blocks can be many-to-many; i.e., a materialized
view can rewrite many query blocks and a query block can be
rewritten individually with multiple materialized views. Several
materialized view candidates can simultaneously rewrite a multi-
block or snowstorm query. These materialized view candidates are
collected together to form a unique set of materialized views
called MV-group. Figure 9 shows the enumeration of MV-groups
for the example in Figure 8. It represents many-to-many

relationships between MV-groups and eligible queries. All
materialized views in an MV-group simultaneously rewrite the
query.

The estimated benefit of an MV-group for an eligible query is
defined as the difference between the optimizer estimated costs of

the query without rewrite and with rewrite. The cumulative
estimated benefit of an MV-group is simply a summation over the
estimated benefits for all its eligible queries; this is the
performance metric used for the GGR algorithm below.

[MV1, MV3] ↔ {Q1}

[MV2, MV3] ↔ {Q1}

[MV1] ↔ {Q1, Q6}

[MV2] ↔ {Q1, Q2, Q5}

[MV3] ↔ {Q1, Q4}

[MV4] ↔ {Q2, Q3, Q5}

[MV5] ↔ {Q3, Q4, Q6}

Figure 9. MV-Groups and Queries

The reduction factor of a materialized view MVi is defined as the
sum of cardinalities of all tables referenced in MVi divided by the
cardinality of MVi.

The global greedy recommendation (GGR) algorithm, shown in
Figure 10, takes as an input a workload (a SQL Tuning Set), a set

of candidate materialized view groups M and their eligible query

blocks (Section 3.4), and a storage space constraint C. The

objective of the GGR algorithm is to select a set of materialized

view groups R (⊆ M) such that R maximizes the cumulative

estimated benefit under the storage space constraint C.

Although the GGR algorithm provides an efficient and effective
solution, it does not guarantee a globally optimal solution [14],
since the ECSE algorithm does not generate all possible
materialized view candidates (Section 3.4) and the GGR algorithm
uses heuristics to enumerate MV groups.

Currently, the GGR algorithm considers only one type of
constraint – the size of available storage space – but, in the future,
it can be extended to also include materialized view maintenance
cost (Section 5).

Algorithm GGR {

1. For each candidate materialized view definition, parse its text
and create a virtual materialized view with only statistics and
meta-data by invoking optimizer cost functions on the parsed
structure to generate estimated statistics.

2. Modify the statistics of virtual materialized views with
sampling-based cardinalities (Section 3.3.5).

3. For each query block QBi of the workload queries do:

3.1. Sort all eligible materialized views of QBi in the
descending order of their reduction factors.

3.2. Retain only the top κ (e.g., 5) materialized views for QBi.

4. Enumerate M, the set of MV-groups, for all workload queries
using a greedy technique.

5. For each MV-group G in M do:

5.1. Rewrite all eligible workload queries with G (without
considering other MV-groups) and compute its
cumulative estimated benefit.

5.2. Discard G, if its cumulative estimated benefit is not
positive.

3053

6. For each query Qj in the workload do:

6.1. From all the MV-groups eligible for Qj, pick the MV-
group that has the highest cumulative estimated benefit

and mark it.

7. Discard MV-groups that have not been marked at Step 6.1 for
any query.

8. Let C be the specified storage space constraint. Sort all the
MV-groups in the descending order of their (cumulative
estimated benefit / estimated storage size).

9. T := 0. For each materialized view group G, in the order

generated at Step 8, do:

9.1. S := Estimated storage size of G;

9.2. If (S + T) > C, then discard G; else, T := T + S;

10. Recommend R, the set of all remaining candidate materialized
views. }

Figure 10. Algorithm GGR

The optimizer rewrite strategy used in recommending materialized
views at Step 5.1 in the GGR algorithm (Figure 10) is different
from the optimizer rewrite strategy applied in a user environment.
The objective of the former is to recommend the right set of
materialized view candidates for multiple workload queries,
whereas the objective of the latter is to optimize a single query at
a time given one or more materialized views. The latter strategy is

used in Section 4 for verification.

At Step 3.2 in Figure 10, the heuristic simply selects the best κ

materialized views for that query block without affecting any
eligible materialized view of other query blocks.

At Step 7 in Figure 10, the reason for discarding an MV-group
that is not the best for any of its eligible queries is that there exist
other MV-groups which are eligible for these queries and have
higher cumulative estimated benefits than that of the MV-group
being discarded.

4. MATERIALIZED VIEW

VERIFICATION
At the final step, we verify the performance of recommended
materialized views using an Oracle tool called SQL Performance
Analyzer [15], which accepts a SQL workload and allows us to
measure the impact of recommended materialized views on the
execution of workload queries using various performance metrics.

For the verification phase, the optimizer rewrite module decides in
a cost-based manner which recommended materialized view(s)

will be the most beneficial for the rewrite of each workload query.

A stratified sample of the workload queries that can be rewritten
with the recommended materialized views is used to verify their
performance. Stratification partitions a set of eligible queries into
non-empty disjoint strata such that every query appears in exactly
one stratum. Here the criterion used for forming a stratum is that
all queries in a stratum can be rewritten by the same set of
recommended materialized views. The idea behind stratification is

that it puts queries with structural similarity into a single stratum
and thus provides a more representative sample. A random
selection is used to choose a certain percentage of queries from
each stratum; this forms a sample that is used for verification.

Figure 11 shows an example of a workload of 19 queries Q1-Q19,
for which 6 strata, S1-S6, are formed based on 5 recommended

materialized views, MV1-MV5. Queries Q16 and Q18 do not
appear in Figure 11, since they are not eligible for cost-based
materialized view rewrite. Other subsets – e.g., {MV1, MV5} –
belonging to the power set of the recommended materialized view
set are not shown, since no queries are rewritten by the optimizer

using those subsets. Each stratum below shows a set of queries
and their eligible materialized view(s). The stratum S3, for
example, contains queries Q3, Q8, and Q12, which are rewritten
using materialized views MV1 and MV2 together. Unlike the
groupings in Figure 9, stratification, shown in Figure 11, puts an
eligible query in exactly one stratum.

S1. {Q2, Q9, Q11} → {MV1}
S2. {Q1, Q4, Q5, Q6} → {MV2}
S3. {Q3, Q8, Q12} → {MV1, MV2}
S4. {Q7, Q10} → {MV3}
S5. {Q14, Q15, Q17} → {MV4}
S6. {Q13, Q19} → {MV4, MV5}

Figure 11. Stratification of Queries

A percentage improvement (or regression) of a query Qi with

materialized view rewrite is called execution benefit (EB) and is

given by the following formula, where MVR and PM refer to
materialized view rewrite and performance metric (e.g., elapsed
time, CPU time, buffer-gets, etc.) respectively.

EB = [PM(Qi) – PM(MVR(Qi))] x 100 / PM(Qi).

The baseline queries against which execution benefit is measured
may involve pre-existing access structures.

If multiple MVs are used to rewrite Qi, then the execution benefit

of Qi is divided equally by the count of materialized views used in

Qi. This provides a rough estimate of partial impact each

materialized view has on execution benefit.

The materialized views are first created with data in an invisible
mode such that they are not accessible to the user. Once a
materialized view is created for verification, the optimizer collects
real statistics for it. The sampled queries are executed with
materialized view rewrite to determine its performance; the non-
rewritten performance numbers found in the given SQL Tuning

Set are used.

A materialized view is considered to have passed verification, if
its average execution benefit is more than a certain percentage.
The materialized views that pass verification are made visible to
the user; this step is called publication of materialized views.

The materialized views that do not pass verification are registered
in a feedback table before they are discarded. Subsequent runs of
the selection module will proactively discard recommended

materialized views that have a match in the feedback table.

5. MATERALIZED VIEW

MAINTENANCE

In this section, we briefly describe the maintenance [14] of
automated materialized views (auto-MVs). This topic deserves a
paper of its own.

5.1 Tracking of DML and MV Usage
Oracle provides Object Activity Tracking Subsystem (OATS) that
tracks data manipulation language (DML) operations, partition

3054

maintenance operations, materialized view query rewrites, and
materialized view refreshes.

Tracking, which is cumulative, is done for every 15-minute
interval. For each table, OATS tracks the number of inserts,
deletes, updates as well as the number of rows affected. For each

materialized view, it tracks the number of query rewrites, type of
rewrites (e.g., full, partial, etc.), method of refresh (e.g.,
incremental, complete, etc.), refresh times, and the number of
missed rewrites due to its staleness.

5.2 Materialized View Refresh
Auto-MV refresh is performed by a background job that executes
periodically every 15 minutes for a duration of one hour with pre-
defined resource limits.

Auto-MV maintenance uses a neural-net-based machine learning
algorithm [21] available in Oracle data mining package. The goal

is to schedule the refresh of all stale auto-MVs so that the number
of future query rewrites is maximized. For every 24-hour period,
we build a new neural net model to predict future DML operations
and future auto-MV usage. The data – number of inserted, deleted,
and updated rows, and the number of auto-MV rewrites – for
building the neural net model comes from OATS. Once a model is
built, it is validated using a five-fold cross-validation technique
[7], which divides the data from OATS into five equal chunks. To
ensure the accuracy of the model, the neural net algorithm is run

five times, each time using a different chunk as test set and the
remaining four chunks as training set.

The model, if it passes cross-validation for an auto-MV, provides
its expected rewrite count and its next quiet window (i.e., the time
period where the defining tables of the auto-MV’s are not
modified and thus it can be used for rewrite). For each auto-MV,
we determine its estimated refresh time using a generalized linear
regression algorithm [5], whose input includes the size of the

auto-MV, method of its refresh, affected number of rows in its
defining tables, and the average CPU time of its previous
refreshes. The stale auto-MVs are scheduled for refresh in the
descending order of their effective net impact, which is computed
from an auto-MV’s cumulative expected rewrite count, quiet
window, estimated refresh time, and execution benefit supplied by
the verification module (Section 4).

However, if the model fails cross-validation, we use a simpler

algorithm called change events. It first excludes those auto-MVs
whose defining tables have undergone modifications within the
last four time-intervals thereby avoiding the auto-MVs that are
likely to become stale in the near future. The remaining stale auto-
MVs are then scheduled for refresh in the descending order of
their execution benefit.

6. EXPERIMENTS
An implementation of the system of automated generation of
materialized views was used to perform extensive experiments on
several customer workloads. In this section, we provide a
summary of these experiments for three customer workloads. The

experiments were done on an Exadata X2-8 machine with 2
compute nodes, each with 8x8-core Intel X7560 processors. Our
performance reports show results in terms of three performance
metrics buffer-gets, CPU time, and elapsed time, but we show the
results of our experiments only in elapsed times.

6.1 Customer Workload-P
A customer workload, referred to here as Workload-P, has a star
schema and contains 91 queries. These queries reference over 200
base tables. The number of tables in the queries ranges from 1 to
5. Seven of these tables are fact tables; the 3 largest fact tables
contain about 2.4 B rows.

In one experiment with Workload-P, we used the following

threshold values: α = 2, β = 2, and λ = 2. There were only 2
recommended materialized views, which contained 2 and 3 tables.
These materialized views rewrote 5 queries, whose elapsed times
showed an average improvement of over 250%. The reasons for
the small numbers of recommendations are manifold: the query
blocks have very few tables in common, as 91 queries reference
over 200 tables; 26 of these queries contain only a single table;
and our heuristics require that join sets must contain at least 2

tables (α = 2) and the final derived join sets must rewrite at least 2

query blocks (β = 2). If the restrictions on α and β were relaxed
by setting them to 1, then many materialized views could be
recommended.

6.2 Customer Workload-G
One customer workload, referred to here as Workload-G, has a
snowstorm [2] schema and contains about 650 queries, which

were used for this experiment. These queries reference over 30
base tables. The number of tables in the queries ranges from 1 to
19; four of these tables are fact tables. The average number of
tables per query is 11. The largest fact table contains about 791 M
rows.

In an experiment with Workload-G, we used the following

threshold values: α = 2, β = 2, λ = 2, and ρ = 0.1. There were 29
recommended materialized views. The verification module
discarded 12 materialized views, because the benefits of 7

materialized views were below the required percentage and 5
materialized views were not selected by the optimizer to rewrite
any queries. It published 17 materialized views that rewrote a total
of 83 queries.

The scatter graph in Figure 12 compares the elapsed times of these
queries before and after rewrite with the published materialized
views. In the graph, every data point under the diagonal represents
a query with improvement and a data point that appears above the

diagonal represents a query with regression.

Figure 12. Elapsed Times for Workload-G

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

R
e

-w
ri

tt
e

n
 q

u
e

ri
e

s
(s

)

Original queries (s)

3055

The 17 published materialized views, which rewrote a total of 83
queries, provided an average performance improvement of more
than 440% in terms of elapsed time.

6.3 Customer Workload-H
Another customer workload, referred to here as Workload-H, has
a snowflake schema and contains 64 queries and 12 base tables.
The average number of tables per query is 7. There is only one

fact table, which contains 3.6 B rows.

In experiments with Workload-H, all 64 queries were selected.

We used the following threshold values: α = 2, β = 2, λ = 2, and ρ
(the block sampling percentage) was varied from 1 to 25. The
results of recommendation and verification modules are
summarized in Table 1.

Since we inject sampled materialized view cardinalities into the
dictionary tables, which are used by the optimizer cost model
(Section 3.3.5), we observed increasingly better materialized view
selection with larger sampling percentage, although the primary

purpose of sampled cardinalities is to prune out unpromising
materialized views.

Table 1. Impact of Block Sampling Percentage

Sampling

% (ρ)

Count of

Recommended

MVs

Count of

Published

MVs

Count of

Rewritten

Queries

1 4 4 15

2 4 4 15

5 4 4 15

15 5 5 21

20 6 6 23

25 8 7 32

The scatter graph in Figure 13 compares the elapsed times of 32
queries with ρ = 25 before and after rewrite with the published
materialized views.

The 7 materialized views, which rewrote a total of 32 queries,
provided a performance improvement of more than 400% in terms
of elapsed time.

Figure 13. Elapsed Times for Workload-H

7. RELATED WORK
The literature on materialized view selection uses many ideas
developed by multi-query optimization and common sub-
expression selection research [17, 18, 19, 20, 22, 25, 27, 29], as
they share similar strategies, though not necessarily the same
goals. The problem of materialized view selection is much more
general than that of sub-expression selection, as the former can

consider computations that do not appear in the workload queries;
this increases the space of possible solutions and complicates
query containment and materialized view rewrites.

In [19], the authors use an ILP-based formulation and focus on the

problem of sub-expression selection for large workloads by
selecting common parts of logical plans of queries and
materializing them to speed-up the evaluation of subsequent jobs;
they consider one optimizer generated logical plan at a time and
consider all its sub-plans. This technique has been integrated with
Microsoft SCOPE. Another approach was previously taken in [27]
for utilizing common sub-expressions for cloud query processing;
this work has also been prototyped in SCOPE. Both these works

present formal treatments of their techniques.

There are currently several automated physical design tools [2, 15,
31] offered by commercial database vendors and by third-party
tool developers. These tools support tuning of different aspects of
physical design.

IBM’s DB2 Advisor [30, 31] recommends materialized views and
indexes; this tool uses the query optimizer itself to both suggest
and evaluate candidate MV’s and indexes; the algorithm, which is
based on the Knapsack problem, trades off the cost of MV or

index storage against its benefits of workload queries, builds a
new ‘explain plan mode’ to build hypothetical configuration and
exploits multi-query optimization techniques developed in [22] to
construct candidate MVs. DB2 design Advisor is architected to
have independent advisors for each physical design structure; the
search step that produces the final integrated recommendation
iteratively invokes each advisor for a physical structure in a staged
manner.

Oracle 10g shipped the SQL Access Advisor [15], which takes a
workload and provides index and materialized view
recommendations for the overall workload. The current work
described in this paper is very different from the existing SQL
Access Advisor.

The Database Tuning Advisor (DTA) from Microsoft SQL Server
2005 [2] is a tool that provides fully integrated recommendations
for indexes, materialized views, and horizontal range partitioning.

DTA builds upon the Index Tuning Wizard and improves it in
several aspects. The basis of DTA’s recommendations is the
“what-if” analysis of MS SQL Server [10] extended to support
simulation of materialized views; it uses a three-step process of
candidate recommendation, which is described in detail in [1].
The idea of workload compression [2, 12] as a technique to
improve the scalability of workload was adapted into DTA. A
workload is partitioned based on the signature of each query; two

queries have the same signature, if they are identical in all respects
except the literals. Workload compression chooses a subset from
each partition using a clustering-based method.

Given a workload of queries, [1] describes a technique for
recommending materialized views. It uses table cardinalities and
optimizer estimated costs of workload queries for exploring

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

R
e

-w
ri

tt
e

n
 q

u
e

ri
e

s
(s

)

Original queries (s)

3056

arbitrary subsets of all tables in the database schema to come up
with interesting table subsets, which can be used to generate
hypothetical candidate materialized views. It then applies the
Greedy (m, k) algorithm [13] to enumerate configurations for each
query, at a time, and to choose the lowest cost configuration using

estimated cost of the rewritten query. Lastly, it merges two or
more materialized view definitions using heuristics involving their
optimizer estimated cardinalities. This work has been
implemented for the MS Tuning Wizard.

8. CONCLUSION
In this paper, we described a novel extended covering sub-
expression (ECSE) algorithm for the automated generation of
candidate and recommended materialized views on various set-
based relationships among queries in a given workload. As
searching the space of all possible materialized views in a scalable

manner is of paramount importance, we apply the in-built
heuristics in the ECSE algorithm, a set of external heuristics, and
the optimizer-estimated cost-based selection for recommending
effective and efficient materialized views, which are then verified
by creating the recommended materialized views and comparing
performance of a sample of workload queries with and without
rewrite. These experiments show that our techniques provide
significant performance gains for various customer workload
queries. This system has been fully implemented and will be

deployed on the Oracle Autonomous Database on the Cloud.

Our future research may involve determining the threshold values,

α, β, λ, ρ, and κ, based on factors such as the count and
complexity of queries in the workload, cardinalities of fact tables,
storage requirement, etc. Another direction our future work may
take is the periodic monitoring of workload queries to identify
static and dynamic filter predicates. The filter predicates that are
static (i.e., their constant values do not change over time) can be
included in the candidate materialized view definitions thereby

making rewrites more efficient. We also plan to incorporate in the
GGR algorithm the expected materialized view maintenance cost,
which can be predicted by the neural-net-based machine learning
algorithm.

9. ACKNOWLEDGEMENT

We wish to thank Murali Thiyagarajan, Mohamed Ziauddin,
Srinivasan Ramakrishnan, and Peter Damron, the members of the
auto-MV team, for their help and support in the implementation.

10. REFERENCES
[1] Agarwal, S., Chaudhuri, S., and Narasayya, V., Automated

Selection of Materialized Views and Indexes for SQL
Databases, Proc. of the 26th Int. Conf. on VLDB, Cairo,
Egypt, 2000.

[2] Agarwal, S., Chaudhuri, S., Kollar, L., Marathe, A.P.,
Narasayya, V., and Symala, M., Database Tuning Advisor
for Microsoft SQL Server 2005, Proc. of the 30th VLDB
Conf., Toronto, Canada, 2004.

[3] Ahmed, R., Sen, R., Poess, M., and Chakkapen, S. Of
Snowstorms and Bushy Trees. PVLDB, 7(13):1452-1461,
2014.

[4] Ahmed, R., Lee, A., Witkowski, A., Das, D., Su, H., and
Cruanes, T., Cost-Based Query Transformation in Oracle,
Proc. of the 32nd VLDB Conf., Seoul, S. Korea, 2006.

[5] Annette, J.D. and Barnett, A.G., An Introduction to
Generalized Linear Models, Fourth Edition, 2018.

[6] Arfati, F. and Chirkova, R., Selecting and Using Views to
Compute Aggregate Queries, Journal of Computer and
System Sciences, vol. 77, no. 6, 2011.

[7] Arlot, S. and Celisse, A., A survey of Cross-Validation
Procedures for Model Selection, Statistics Surveys. vol. 4, p.
40–79, 2010.

[8] Bello, R., Dias, K., Downing, A., Feenan, J., Finnerty, J.,
Norcott, W., Sun, H., Witkowski, A., and Ziauddin, M.,
Materialized Views in Oracle, Proc. of the 24th Int. Conf. on
VLDB, New York, U.S.A., 1998.

[9] Charikar, M., Chaudhuri, S., Motwani, R., and Narasayya,
V., Towards Estimation Error guarantees for Distinct
Values, Proc. of the 19th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, May 2000.

[10] Chaudhuri, S. and Narasayya, V., Auto-Admin: ‘What-If’
Index Analysis Utility, Proc. of ACM SIGMOD, 1998.

[11] Chaudhuri, S., Datar, M., and Narasayya, V., Index Selection
for Databases: A Hardness Study and a Principled Heuristic
Solution, IEEE Trans. Knowl. and Data Engg. 16(11), 2004.

[12] Chaudhuri S. and Narasayya, V., Self-Tuning Database
Systems: A Decade of Progress, Proc. of the 33rd VLDB
Conf., Vienna Austria, 2007.

[13] Chaudhuri S. and Narasayya, V., An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server, Proc. of 23rd

VLDB Conf., Athens, Greece, 1997.

[14] Chirkova, R. and Yang, J., Materialized Views, Foundation
and Trends in Databases, vol. 4, no. 4, p. 295-405, 2011.

[15] Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M., and
Ziauddin, M., Automatic SQL Tuning in Oracle 10g, Proc. of
the 30th VLDB Conf., Toronto, Canada, 2004.

[16] Das, S., Grbic, M., Ilic, I., Jovandic, I., Jovanovic, A.,
Narasayya, V., Radulovic, M., Stikic, M., Xu, G., Chaudhuri,
S., Automatically Indexing Millions of Databases in

Microsoft Azure SQL Database, ACM SIGMOD,
Amsterdam, Netherlands, 2019.

[17] Goldstein, J. and Larson, P.A., Optimizing Queries Using
Materialized Views: A Practical Scalable Solution, ACM
SIGMOD, Santa Barbara, U.S.A, 2001.

[18] Gupta, H., and Mumick, I.S., Selection of Views to
Materialize Under Maintenance Cost Constraint, Intl. Conf.
on Database Theory, Jerusalem, Israel, 1999.

[19] Jindal, A., Karanasos, K., Rao, S., and Patel, H. Selecting
Subexpressions to Materialize at Datacenter Scale. PVLDB,
11(7):800-812, 2018.

[20] Kathuria, T. and Sudarshan, S., Efficient and Provable Multi-
Query Optimization, PODS, Chicago, U.S.A., 2017.

[21] Kubat, M., An Introduction to Machine Learning, Springer,
2015.

3057

https://dl.acm.org/doi/proceedings/10.1145/335168
https://dl.acm.org/doi/proceedings/10.1145/335168

[22] Lehner, W., Cochrane, B., Pirahesh, H., and Zaharioudakis,
M., Applying Mass Query Optimization to Speed Up
Automatic Summary Table Refresh, Intl. Conf. on Data
Engineering., 2001.

[23] Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A.,
and Neumann, T., How Good are Query Optimizers, Really?,
PVLDB 9(3), November 2015.

[24] Lohman, G., Is Query Optimizer a ‘Solved’ Problem?,
http://wp.sigmod.org/?p=1075, 2015.

[25] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S., Efficient
and Extensible Algorithms for Multi Query Optimization,
ACM SIGMOD, 2000.

[26] Shapiro, G.P., The Optimal Selection of Secondary Indices is
NP-Complete, SIGMOD Record 13(2), 1983.

[27] Silva, Y. N., and Larson, P-A., Zhou, J., Exploiting Common
Subexpression for Cloud Processing, ICDE, 2012.

[28] Talebi, Z. A., Chirkova, R., Fathi, Y., and, Stallman, M.,
Exact and Inexact Methods of Selecting Views and Indexes
for Performance Improvement, EDBT, Nantes, France, 2008.

[29] Zhou, J., Larson, P-A., Freytag, J-C. and Lehner, W. Efficient
Exploitation of Similar Subexpressions for Query Processing,
ACM SIGMOD, Beijing, China, 2007.

[30] Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A.,
Garcia-Arellano, C., and Fadden, S., DB2 Design Advisor:
Integrated Automatic Physical Database Design, Proc. of
30th VLDB Conf., Toronto, Canada, 2004.

[31] Zilio, D. C., Rao, J., Lightstone, S., Ma, W., Lohman, G.,
Cochrane, R., Pirahesh, H., Colby, L.S., Gryz, J., Alton, E.,
Liang, D., and Valentin, G., Recommending Materialized

Views and Indexes with IBM DB2 Design Advisor, Proc. of
Intl. Conf. on Autonomic Computing, 2004.

3058

