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ABSTRACT
Existing binary join based plans may be suboptimal for

important, emerging applications. Typical query optimiz-
ers enumerate plans using binary joins only. In this paper,
we introduce the multi-way join aware optimizer in SAP
HANA. The naive way to extend the existing query opti-
mizer to be aware of multi-way joins (m-way joins for short)
is to enumerate m-way joins on top of a traditional binary
join enumeration framework. However, many different bi-
nary joins correspond to the same m-way join. Thus, unnec-
essary join enumerations would be required for such naive
integration. To solve this problem, we introduce the new
concept of an m-way join unit and explain how the con-
struction of join units is plugged into the SAP HANA query
optimizer. We also provide a series of optimizer enhance-
ments by exploiting m-way join unit characteristics. Using
TPC-H and our customer workloads, we showcase the supe-
riority of our m-way join aware optimizer.
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1. INTRODUCTION
Several fast multi-way join algorithms have recently been

developed. Existing binary join (i.e., 2-way join) based plans
may be suboptimal for important, emerging applications.
One example is OLAP-style analysis, where queries are of-
ten star-shaped (aka star-join) as illustrated in Figure 1(a).
For instance, when breaking down revenue by the combina-
tion of country, month, and product category, a big sales-
record table, called a fact table, is joined three times with
so-called dimension tables representing store locations, sales
dates, and product categories and then aggregation is exe-
cuted for the joined results. An m-way star-join algorithm
scans the fact table once [6,27] and quickly performs m− 1
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joins and aggregations. The other example is for graph anal-
ysis, where queries have cycles. Consider a query in Figure
1(b), which lists all triangles in a graph where the graph
is stored in an edge table E(src, dest). Then, the triangle
query is a three-way, self-join on E, and thus, any self binary
join on E would generate |E|2 intermediate results in the
worst case. However, the maximum output size is bounded
by O(|E|1.5), which indicates that any binary join plan could
be asymptotically suboptimal for graph queries [15, 26].

Figure 1: Multi-way join queries.

The naive way to extend the query optimizer to be aware
of m-way joins is to enumerate m-way joins on top of a tradi-
tional binary join enumeration framework. However, many
different binary join orders correspond to the same m-way
join, and if the m-way join is faster than those binary joins,
we end up performing unnecessary join enumeration, which
should be avoided. Note that this problem looks similar to
federated query optimization at first glance (aka optimiza-
tion in a mediator or capability-based optimization), in that
it tries to push large portions of subqueries down to subor-
dinators to minimize overall processing cost including the
network cost. However, the problem is very different from
federated query optimization in that traditional query opti-
mization in the mediator still assumes that both the media-
tor (or coordinator) and subordinators process binary joins
only.

A natural and challenging question is whether it is possi-
ble to extend the query optimizer with a little effort so that
it can enumerate traditional binary joins as well as m-way
joins efficiently. For this, we propose the novel concept of
m-way join unit, which is a new operator executing m-way
join. This join unit is expanded by merging with another
logical operator, such as join and group-by, or other join
unit. We treat this join unit as a special physical operator,
and the join unit enumeration is performed when we gener-
ate a physical operator for a given logical operator. In this
way, changes to logical enumeration can be minimized.

The contributions of the paper are summarized as follows.

• Cost-based m-way join enumeration: We present
an m-way join aware optimizer which considers multi-
ple m-way join algorithms together with group-by op-
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erator pushdown or eager aggregation [30] during logi-
cal/physical enumeration for cost-based decisions. This
paper focuses on the global optimization, which coordi-
nates various m-way join algorithms and group-by oper-
ators in cost-based enumeration, and how it coordinates
with the local optimization specific to each m-way join
algorithm.

• Single enumeration framework for both m-way
and binary join algorithms: Our m-way join aware
optimizer supports m-way joins for column tables, bi-
nary joins for row tables, and mixed joins between col-
umn and row tables in a single enumeration framework,
which significantly reduces the maintenance overhead.

• Easy extension of transformation-based enumer-
ation: The origin of the SAP HANA optimizer is P
*TIME [3], which is one of the foundations of SAP
HANA. It supports only binary join algorithms for row
tables without supporting m-way join algorithms. Pre-
viously, m-way join algorithms had been triggered via
an imperative programming interface without optimizer
consideration. This paper presents how the existing
transformation-based optimizer can be easily but still
effectively extended to support m-way join algorithms
for column tables.

Although SAP HANA does not currently support m-way
join algorithms such as LeapFrog TrieJoin (LFTJ) [26] for
graph queries, supporting such m-way join algorithms would
be interesting future work for guaranteeing the worst case
optimality. The global optimization framework can accom-
modate such m-way join algorithms, so that there is no need
to change the enumeration framework.

The rest of this paper is organized as follows. Section 2
compares our approach with related works, and Section 3
describes technical background for detailed m-way join al-
gorithms available in SAP HANA. In Section 4, we explain
the unique challenges of the SAP HANA optimizer, and Sec-
tion 5 describes the approach of the SAP HANA optimizer
to find an optimal query plan considering m-way join al-
gorithms. Section 6 explains how we handle mixed joins
between column tables and row tables when we enumerate
m-way join algorithms. Section 7 provides the experimental
evaluation results. Finally, Section 8 concludes the paper.

2. RELATED WORK
Star Join Optimization. Optimizing star-shaped queri-

es using a series of binary joins has existed for a decade
in disk-based row stores such as IBM DB2, Microsoft SQL
Server, and Oracle. When we have m-1 dimension tables,
all hash tables for those dimension tables can be built in-
memory simultaneously, so probing for the fact table can
be done in a pipeline fashion where the output of each join
operator is passed to the parent join operator without ma-
terializing the intermediate result (i.e., pipelined hash join).
Bitmap filtering from each dimension table to the fact table
can be regarded as semi-join reduction. That is, such row
stores simulate m-way join by using a series of binary joins.
However, such optimization is applied to star patterns in the
initial query via query rewrite, while our framework detects
such patterns during enumeration. Thus, we are able to de-
tect any subtree patterns during enumeration. Furthermore,

some m-way join algorithms can not be simulated by binary
joins [26].

Semi-Join Optimization. [24] extends dynamic pro-
gramming query optimizers to generate a good plan with
semi-joins. However, group-by operators were not consid-
ered for cost-based optimization. In [9], the semi-join re-
duction order is decided with a variant of the A* search al-
gorithm. Thus, the order decision method is faster than dy-
namic programming, since it exploits a guided search rather
than an uninformed, exhaustive search [9]. Our semi-join
algorithm uses this order decision method.

Worst-case optimal multi-way join algorithms. Re-
cently, a series of worst-case optimal algorithms have been
proposed. LFTJ [26] is a representative one. It performs
multi-way join and uses Trie to index relations. For a given
query, it first orders the attributes and selects a value for
each attribute in order. For instance, assume that it se-
lects < x, y, z > as the order for an example triangle query
R(x, y) ./ S(y, z) ./ T (x, z). Then, LFTJ finds all candidate
values of x using ΠxR(x, y) ∩ ΠxT (x, z). Here, the inter-
section is performed using a Trie on each table, where the
values of the first and second attributes are stored at height
one and two, respectively. For each value a for x, LFTJ then
finds candidate values of y using Πyσx=aR(x, y)∩ΠyS(y, z).
Again, for each value b for y, LFTJ finds the values for z
using Πzσy=bS(y, z) ∩ Πzσx=aT (x, z). For each value c for
z, LFTJ reports (a, b, c) as an output. Then, it backtracks
to y and searches for the next b. The process continues until
it backtracks to x and there is no next a.

EmptyHeaded [1] generates a query plan by decomposing
a (hyper) query graph into a set of subgraphs where each
subgraph corresponds to a worst-case join. However, the
supported query is very limited; for example, it does not
handle group-by queries. Thus, in order to handle group-by
queries, one can apply group-by pushdown heuristic first.
This baseline can be simulated by our framework using the
group-by pushdown heuristic with m-way join units. How-
ever, this baseline could lead to generation of suboptimal
plans since it does not consider m-way joins together with
group-by operators in cost-based enumeration.

3. SAP HANA
The SAP HANA database is an in-memory data man-

agement system that leverages the capabilities of modern
hardware, especially with huge amounts of main memory
and multi-core CPUs, in order to improve the performance
of analytical and transactional applications [5, 6, 12,20,21].

SAP HANA supports both in-memory column tables and
in-memory row tables. While row tables, which take a row-
major layout, have been studied extensively, column tables
have not been studied much. SAP HANA invented vari-
ous storage techniques and query processing algorithms for
column tables.

3.1 Dictionary Encoding
Figure 2 illustrates dictionary encoding of column tables.

Figure 2(a) shows a conceptual layout of a sales record table.
It has three columns, date, amount and customer. Figure
2(b) shows the column table representation with dictionary
encoding. Each column consists of two arrays, value id
(vid) array and value array. The vid array stores one value
id per record. The value array maps vids into values. For
instance, the first record has vid 0 in date, which refers to
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Figure 2: Dictionary encoding.

the first element, 2018-12-31, in the value array. The value
array, called dictionary, stores distinct values in the sorted
manner.

The vids are sequential contiguous integers starting from
0. Such dense vids make dictionaries small and dictionary
lookups very fast. Dictionaries don’t have to store vids,
shown in dotted boxes, because vids are array indexes. Dic-
tionaries don’t need index structures like tree indexes, espe-
cially for fixed-size value types [2]. For instance, the date
column’s dictionary is a densely packed array of fixed-size
values. Consequently, small dictionaries are likely to fit in
the CPU cache, and their access by vid becomes a fast array
lookup without incurring a last-level CPU cache miss.

Dense vids often lead to an excellent compression ratio.
The vid array of date in this example is just two bits wide,
which is enough to represent three distinct values in its dic-
tionary. Since a date value usually takes four bytes, the com-
pression ratio is 16 times. In practice, when a sales table is
partitioned by year, each partition has at most 365 distinct
dates, which needs nine bits to represent [28]. Therefore, the
compression ratio becomes around 3.4 times. Further com-
pression can be achieved by applying other schemes, such as
run-length encoding after dictionary-encoding.

Although dictionaries can be global and shared among
tables, SAP HANA prefers column-specific dictionaries. It
makes vids denser, vid arrays smaller, and dictionaries small-
er. Consequently, it reduces both the memory footprint and
CPU cache misses.

3.2 Motivating M-way Join Example
Figure 3 shows a star-schema query example for a fact ta-

ble, Sales, and for dimension tables, Date and Customer.
Suppose that each column is stored as an array. For in-
stance, Date.Y is an array of [2018, 2018, 2019, 2019, 2019]
and Customer.nation is an array of [DE, US, US, KR, DE].
Date and Customer have two deliberately chosen properties.
1) Join columns, Date.d id and Customer.c id, are dense in-
tegers starting from 0. 2) Date and Customer records are
sorted by the join columns.

When tables are stored in this way, a join becomes sim-
ply array operations. For instance, consider the last Sales

s_id d_id c_id amount
0 1 0 100
1 1 1 200
2 1 3 150
3 3 2 100
4 3 4 500
5 4 3 200
6 4 1 400
7 4 2 300

Date

d_id Y M D
0 2018 12 30
1 2018 12 31
2 2019 1 1
3 2019 1 2
4 2019 1 3

c_id name nation
0 BMW DE
1 Ford US
2 GM US
3 KIA KR
4 VW DE

CustomerSales

from Sales s, Date d, Customer c
where s.d_id = d.d_id and s.c_id = c.c_id

and c.nation = 'DE’ and d.Y = 2019

!"#"$% !'()!*2(0'-%. 2! +","-'"

Figure 3: Example tables and a star-schema query.

record, (7, 4, 2, 300). Joining it with Date and finding the
sales year costs just one array operation, Date.Y [4], which
returns 2019.

When dimension tables are small enough to fit in the CPU
cache memory, query processing is extremely fast. Join sim-
ply looks up small dimension table arrays, so random array
access doesn’t incur CPU cache misses. The query shown in
Figure 3, which calculates the total revenue from German
customers in 2019, can be executed as follows. It scans the
Sales table once and performs two joins without building
any auxiliary index structures, such as hash tables.

sum = 0;

for i in |Sales|

d_id = Sales.d_id[i];

c_id = Sales.c_id[i];

if (Date.Y[d_id] == 2019)

if (Customer.nation[c_id] == ’DE’)

sum += Sales.amount[i];

Note that this is a three-way join and can easily be ex-
tended to an m-way join. Note also that Sales.c id and
Sales.d id are logical ids, but they are close to physical
pointers. It means no index or hash table is needed to map
logical id into physical pointers.

3.3 M-way Star Join
When applying the idea from Section 3.2, we often en-

counter that tables are not sorted by join columns, and join
columns are not dense integers. SAP HANA overcomes
these issues by introducing dictionary-based join indexes
(DJI) [25].

Figure 4 shows a DJI example. Figure 4(a) shows Sales
and Date tables when d id, the key column of Date, has the
form of YYYYMMDD. Figure 4(b) shows the Sales table
after dictionary encoding. Sales.d id has three distinct val-
ues, 20181231, 20190102, and 20190103, which are encoded
with three vids, 0, 1, and 2, respectively. Note a difference
from Figure 3, where d id has 1, 3 or 4, which are not vids
but values.

Figure 4(c) shows a per-query DJI, built for the Figure
3 query. When joining the last record with Date and get-
ting its year, Figure 3 does Date.Y [4], and Figure 4 does
Date.Y [d id idx[2]]. Note that the inner array lookup re-
turns 4. DJI d id idx can be built as follows. For each
dictionary entry of d id dict, look up Date. If a matching
record is found, check whether the record satisfies the where
condition, Y = 2019. If satisfied, store its record offset.
Otherwise, store -1.

DJI has two variations, per dictionary and per query.
Per-dictionary DJIs are incrementally built when executing
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Figure 4: Dictionary-based join index.

queries and cached for subsequent uses. Per-query DJIs are
built for a query on the fly and discarded. Since it is specific
to a query, two additional optimizations are often adopted.
First, filters are pre-evaluated as shown in Figure 4(c). Sec-
ond, DJI stores query-specific target-column values or vids.
For instance, the example query joins with table Date to
access column Y . Thus, d id idx is further optimized into
an array of [n/a, 2019, 2019], instead of [-1, 3, 4], where n/a
means no join pair. Then, Date.Y [d id idx[2]] is optimized
as d id idx[2].

Consider a star join, which is an m-way join, where a large
fact table F is joined with m-1 smaller dimension tables, D1,
D2, ..., Dm−1. A fact table stores dimension table keys, and
is joined with dimension tables via these key columns. When
processing an m-way star join, SAP HANA first builds m−
1 DJIs, as described above, for D1 to Dm−1. Then, SAP
HANA scans the large fact table and performs m − 1 joins
by looking up the DJIs.

The time complexity of the m-way star join algorithm
is O(|F |+ |D1|log|D1|+ ...+ |Dm−1|log|Dm−1|), where |F |
denotes the cardinality of table F . The strength of this algo-
rithm comes from the cost coefficient in its time-complexity.
Consider a two-way join of table D and table F . The hash
join complexity is O(|F |+ |D|). Suppose that ah|F |+ bh|D|
denotes the hash join cost, where aM |F |+ bM |D|log|D| de-
notes the m-way star join cost. The m-way star join wins
when |D| is small, since aM is significantly smaller than ah,
typically by orders of magnitude. The m-way star join re-
duces the cost coefficient of the table F term at the cost of
increasing the complexity of the table D term, from O(|D|)
to O(|D|log|D|). Thus, as |D| increases, this algorithm gets
less attractive. This trade-off works well for SAP HANA’s
in-memory column tables, especially for star(-schema) and
snowflake(-schema) queries [22].

3.4 M-way Column Join
SAP HANA uses another m-way join algorithm [9,10,23],

called m-way column join. This algorithm is a good alter-
native when each join reduces intermediate results.

Figure 5: Left-deep hash join vs. m-way column
join.

Consider a three-way join, R 1 S 1 T , with the join
conditions, R.x = S.x and S.y = T.y, respectively. Figure
5 compares a binary hash join scheme and the m-way col-
umn join of SAP HANA for this three-way join. For ease of
explanation, assume |R| < |S| < |T |, where |R| denotes the
cardinality of R, and |R 1 S 1 T | < |R 1 S| < |R|, meaning
that each join reduces intermediate results.

Figure 5(a) sketches a left-deep hash join tree.

• Step 1 is the build phase. It builds a hash table Hx,
which is a mapping from Rx to R, where Rx is the set
of distinct values in R.x.

• Step 2 is the probe phase. It scans S, looks up Hx for
each row in S, and checks the join condition, R.x =
S.x. Let S′ denote the subset of S that satisfies the
join condition.

• Step 3 materializes the join pairs from Step 2. Usually,
Step 2 and Step 3 are intermixed and thus, they are
indistinguishable. For the purpose of explaining the
m-way column join, we intentionally distinguish Step
2 from Step 3.

• Steps 4− 6 repeat the process for the next join. S′y in
Step 4 denotes the set of distinct y values in S′. Note
that S′y is a subset of Sy. Unlike Step 3, Step 6 doesn’t
have to materialize the join pairs (or triples). Whether
to materialize the join pairs depends on the consumer
operation. Since Step 4 builds a hash table, its input
or the output of Step 3 needs to be materialized. The
consumer operation of Step 6 is left unknown and thus,
it is left open whether to materialize.

Figure 5(b) sketches how the m-way column join works.

• Step a is equivalent to Step 1. The difference is that
Step a doesn’t build a hash table but rather a pro-
prietary index structure, denoted Ix, to best leverage
dictionary encoding. This index structure is similar to
the one in Figure 4(c). The details are omitted be-
cause the focus of this paper is not the algorithm itself
but optimizer integration of the algorithm.

• Step b is similar to Step 2 in the sense that it finds
S′, which is the semi join, S n Rx. This step can be
regarded as performing semi-join reduction, reducing
S into S′ leveraging Rx.
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• For the next join, Steps c and d repeat Steps a and b,
respectively, so Step c is dissimilar to Step 3 but similar
to Step 4, and Step d is similar to Step 5. Instead of
completing the first join R 1 S′ to find the join pairs,
Step c moves to the next join S′ 1 T and builds I ′y.
Step d performs the second semi join reduction to find
T ′, which satisfies the join condition, S′.y = T.y.

• Step e is similar to Step 6. It finds the join pairs
between S′ and T ′. Step e can be combined with Step
d. Thus, it doesn’t have to look up Iy additionally.

• Step f is similar to Step 3. It finds the join pairs
between R and S′ 1 T ′ by looking up Ix.

The m-way column join doesn’t perform m− 1 joins one
by one. It first builds a proprietary index per join, as shown
in Steps a and c. Each index building is followed by a semi-
join reduction, as shown in Steps b and d. Then, it finds the
join tuples of m record ids, as shown in Steps e and f .

This looks similar to a pipelined hash join plan, which
builds hash tables for S and R and then performs T 1 S
and (T 1 S) 1 R in a pipeline. They are similar in the sense
that both avoid materializing intermediate results. The dif-
ference is that the m-way column join first performs a semi-
join with S and then builds an index on S′. If this semi-join
is not selective, then the pipelined hash join has a better
chance to win. However, in such a case, it needs to compete
with the m-way star join. Note that the m-way star join is
regarded as an enhanced pipelined hash join plan leveraging
dense vids and DJIs.

This m-way join algorithm has three advantages. First, it
doesn’t materialize intermediate join tuples as Step 3 does.
Second, it indexes a smaller number of entries by doing a
semi-join reduction. Third, its index operations, build and
look up, are more efficient than hash table operations. Dense
vids are used as index keys. When comparing to hash tables,
hash key generation is not needed, hash collision doesn’t
exist, the number of index directory entries is optimal, and
index keys don’t have to be stored.

The disadvantage of this algorithm, far smaller than the
advantages, is more index lookup operations. Steps 3, 6,
and e can be intermixed with the preceding steps, Steps 2,
5, and d, respectively. Thus, they can reuse the index lookup
results of the preceding steps. However, Step f and Step b
are not adjacent and thus, they cannot share index lookup
results.

4. SAP HANA OPTIMIZER CHALLENGES
This section explains the unique challenges of SAP HANA

for m-way join enumeration in the optimizer.
SAP HANA currently supports multiple m-way join al-

gorithms for column tables only. Since they effectively ex-
ploit vids, as explained in the previous section, they are
faster than typical binary join algorithms for column ta-
bles. Therefore, the SAP HANA optimizer enumerates only
m-way join algorithms for column tables, while binary join
algorithms are enumerated for row tables. Both types of
algorithms are enumerated and compared for a mixed join
between column tables and row tables. The challenge is
to handle these variations together in a single enumeration
framework to avoid duplicate code maintenance overhead.

Another challenge is that group-by operators also need
to be considered together with m-way joins in a cost-based

enumeration. For example, pushing down a group-by oper-
ator through a join operator might be beneficial in certain
scenarios. However, it is not always beneficial especially
when a join operator reduces the intermediate result signifi-
cantly and the group-by operator does not reduce it. When
it is not applicable to push down a whole group-by opera-
tor, the partial group-by/aggregation pushdown by eager-
aggregation approach [30] needs to be similarly considered
together with m-way joins in a cost-based enumeration. In
Section 7, we compare the cost-based enumeration with the
group-by pushdown heuristics and show the effectiveness of
the cost-based enumeration.

The last challenge is that SAP HANA must support com-
plex analytical queries for Hybrid Transactional/Analytical
Processing (HTAP). We examine a typical complex query
from an S/4HANA customer database [19], which is a HTAP
application that runs complex analytical queries directly
against OLTP tables without a separate ETL step. After
compiling this query, its initial query plan has 46 leaf nodes
referring to 11 distinct tables, 40 binary join nodes, three
union-all nodes, 31 group-by nodes, and many intermediate
filters and projection nodes. After query optimization, the
resulting query plan has 15 join units with a mixture of dif-
ferent m-way join algorithms. Some queries from S/4HANA
are used for the experiments in Section 7.

5. M-WAY JOIN AWARE OPTIMIZER
This section explains the approach of the SAP HANA op-

timizer to find an optimal query plan considering m-way
join algorithms explained in Section 3. We first define some
terminologies used throughout this paper. Since the HANA
optimizer is based on Volcano/Cascade [7,8], the terminolo-
gies are similar.

• A logical alternative, which is the same as an equiva-
lent logical algebra expression in Volcano/Cascade, is
a logical operator tree created from another logical al-
ternative by applying a transformation rule. A logical
operator tree translated from an initial query is also
referred to as a logical alternative.

• An equivalence class is the same terminology as that
of Volcano/Cascade and consists of logical alternatives
and corresponding physical operators (algorithms).

• The search space for a given query graph is the set of
all equivalence classes, logical alternatives, and physi-
cal operators explored during logical and physical enu-
meration.

5.1 M-way Join Unit
We first define a new operator called a join unit which

executes an associated m-way join algorithm over m tables.
For this, the join unit internally stores a join graph for an
m-way join. The join unit optionally contains a post-join
filter and a group-by operator followed by its m-way join.
Without loss of generality, we assume that both single table
operator (i.e., scan operator) and binary join operators are
regarded as special cases of m-way join units (i.e. when m=1
or 2). In this paper, we focus on the join and group-by oper-
ators only, since these two types of operators play important
roles on join unit creation; handling other types of operators
are straightforward. For example, a filter operator is already
pushed down to a target table in the query rewriting phase
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Figure 6: Basic unit of m-way join unit.

prior to the logical/physical enumeration phase. Thus, the
filter operator can be treated together with a corresponding
base table. In general, the join unit can include filter, order
by, and limit operators as well as join and group-by oper-
ators. Another common operator is an union-all operator,
and it is handled as a separate physical operator outside
the m-way join unit in HANA. Thus, it is not further de-
scribed in this paper because it is orthogonal to join unit
construction.

Figure 6 illustrates an example of the join unit that exe-
cutes a 4-way join over T1 ∼ T4 and then performs a group
by operation. Note that γ denotes a group-by operator in
this paper. This join unit is expanded by combining with
another logical operator, such as join and group-by, or other
join unit. SAP HANA uses the following three main proce-
dures to enlarge small join units into larger join units in a
bottom-up manner.

• CombineBaseTable(Tc): Tc is a base table operator,
and a special join unit is created with a base table Tc.

• CombineJoin(1c, Ci1, Ci2): 1c is a binary logical
join operator, and it has two child join units - Ci1

and Ci2. This function creates a larger join unit that
executes a multi-way join over tables in Ci1 and Ci2.
Here, two join graphs from Ci1 and Ci2 respectively
and binary join 1c are combined into a new join graph,
and they are stored in an expanded join unit.

• CombineGroupBy(γc, Ci): γc is a logical group-by
operator, and Ci is a child join unit of γc. A new
join unit is constructed by copying the join graph of
Ci and group-by information of γc. The output of
the new join unit is materialized in a temporary table,
since SAP HANA materializes the output of the group-
by operator into a temporary table. Once a group-by
operator is combined into the join unit, it cannot be
further expanded with another join or group-by oper-
ator. Instead, a new join unit is created, which can be
combined with another join or group-by operator by
referring to the materialized temporary table.

Figure 7 illustrates how two different logical alternatives
in the leftmost figures are combined into m-way join units
with these procedures. Note that we execute combine op-
erations in a bottom-up manner. In Figure 7(a), Com-
bineBaseTable creates special join units for T1 and T2
first. Then, a new join unit for 11 is created by calling
CombineJoin. The join units for T3 and 12 are created in
a similar way. CombineGroupBy is called for γ to create
a bigger join unit that contains the group by operator on
top. Here, TT1 is a temporary table constructed by this
final join unit. In Figure 7(b), a join unit is constructed in
a similar way to Figure 7(a) until C1 and C2 are created.
During the creation of join unit C3, C1 cannot be further
expanded because its output needs to be materialized into a
temporary table. Therefore, a new join unit C3 is created,
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Figure 7: Sequence of combine operations of m-way
join units.

and it refers to the temporary table TT1. Correspondingly,
the join condition for 12 is changed to refer to TT1 instead
of T1 or T2. In this case, the final plan has two join units,
while Figure 7(a) has one join unit.

Now, we introduce a heuristic to limit search space when
we consider join units during plan enumeration.

• Larger join unit heuristic: Due to the characteristics
of the m-way join implementations in SAP HANA, our
optimizer prefers an m-way join unit rather than se-
lecting a plan performing a binary join between k-way
join and (m-k)-way join for any k. Note that, when k
= 1, k-way join corresponds to a table scan operator.
Otherwise, we need to generate all logical alternatives
by varying k and make a cost-based decision. Hence,
we expand m-way join units as much as possible with-
out cost-based comparison with other binary join al-
ternatives. However, this heuristic is not applied to
a group-by operator. Instead a logical alternative is
enumerated for cost-based decisions, and details are
explained in the next section.

5.2 Search space enumeration
The previous section describes how m-way join units are

constructed for a given logical alternative. This section ex-
plains the global optimization - i.e., how m-way join units
can be incorporated with transformation-based search space
enumeration in the SAP HANA query optimizer. Note that
this paper focuses on m-way join enumeration, and the other
aspects considered by the SAP HANA query optimizer dur-
ing search space enumeration, such as input property, dis-
tributed query optimization, and branch-and-bound prun-
ing, are not the scope of this paper. Thus, they are omitted
in the following algorithm and explanation.

As explained before, the HANA optimizer is conceptually
based on the Volcano/Cascade framework, but there is a
slight difference in the internal representation. Instead of
maintaining a MEMO table to avoid duplicate enumeration,
the HANA optimizer keeps a DAG structure for a search
space similar to [18]. Figure 8(a) shows an example of a
search space. The box denotes an equivalence class, and
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(a) Search space considering binary joins only.

(b) Search space with m-way join units.

Figure 8: M-way join unit enumeration.

operators inside the box represent logical alternatives that
refer to child equivalence classes.

Our design principle for enumerating m-way join units
is to minimize changes to the existing query optimizer tar-
geted for binary join algorithms. For this, a join unit is
enumerated as a special physical operator, and the join unit
enumeration is performed when we generate a physical op-
erator for a given logical operator. The m-way join unit has
different aspects from other physical operators in that it has
two choices of m-way join algorithms, and additional local
join order optimization, which will be explained in Section
5.3, is needed inside the join unit. However, we chose a
physical operator to localize m-way join unit changes inside
physical operator implementations. In this way, changes to
logical enumeration and global enumeration framework can
be minimized. Additionally, it has an advantage in that the
impact on the binary join enumeration, which is needed for
row tables and a mixed join between row and column tables,
is minimized.

In Figure 8(a), a part of the search space is extracted for
an initial query plan γ0((T1 10 T2) 12 (T3 11 T4)) for ease
of explanation. Figure 8(a) has another logical alternative
created by applying the group-by push transformation rule
to the initial query plan in the equivalence class T1T2T3T4G.
Figure 8(b) illustrates how m-way join units are constructed
for the given search space in Figure 8(a). The pseudo code
on how m-way join units are constructed during the search
space enumeration is described in Algorithms 1 to 4. Al-
though logical enumeration and m-way join unit creation
are not separate steps but interleaving steps, in Figure 8 and
this section, they are explained as separate steps for easier
understanding. Other parts of the search space, which are
not illustrated in the figure, are explored in a similar way to
what is described in the algorithm.

Algorithm 1 presents the main function for enumerating
the search space, Enumerate. It takes a logical operator op

Algorithm 1: Enumerate(op)

Input: A logical operator op
1 if op.IsPhysicalEnumFinished() then
2 return
3 foreach child equivalence class ce of op do
4 if ce.HasNotEnumeratedLogicalAlt() then
5 Enumerate(ce.GetTargetLogicalAlt())

6 if op.GetEquivClass().IsLogicalEnumFinished() ==
false then

7 ApplyLogicalTransformations(op)
8 op.GetEquivClass().SetLogicalEnumFinished()
9 PhysicalEnum(op)

10 if op.HasNextLogicalAlt() then
11 Enumerate(op.GetNextLogicalAlt())

Algorithm 2: PhysicalEnum(op)

Input: A logical operator op
1 new mju := EnumerateMwayJoinUnit(op)
2 op.AddPhysicalOp(new mju)
3 op.SetPhysicalEnumFinished()

as input and performs the search space enumeration (both
logical and physical) for op starting from a root operator.
It first checks if the physical enumeration for op, which is
performed after logical enumeration, is finished. If it is not
finished, the search space enumeration for op’s child oper-
ators needs to be recursively performed first as described
in Lines 3-5 because enumeration is performed in a bottom
up manner. By iterating each child equivalence class, Enu-
merate is called for the logical alternative whose logical or
physical enumeration is not finished.

Once the enumeration for every child of op is finished,
logical and physical enumeration for op itself are started if
they have not been performed before. In Lines 6-8, logical
enumeration is performed by applying all valid transforma-
tion rules between op and each logical alternative in its child
equivalence class. For example, 13 in Figure 8(a) is newly
enumerated in this step by pushing down a group-by opera-
tor, and eager/lazy aggregation alternatives are enumerated
in this step as well for cost-based comparison. Note that
this part is similar to the other transformation-based opti-
mizers [7, 17], group-by transformations [4, 29, 30], and join
transformations [13]. Therefore, we omit the detailed expla-
nation on logical transformations of the HANA optimizer
in this paper. The current equivalence class is marked as
logically enumerated to avoid duplicate enumeration (Line
8).

Once the logical enumeration is finished, physical enumer-
ation for op is performed, and its details are described in Al-
gorithm 2 and Algorithm 3. After that, we process the next
available logical alternative for further enumeration, since
the enumeration for op is finished.

In the physical enumeration for op in Algorithm 2, we
need to perform physical enumeration for the m-way join
unit, which is a unique part of the SAP HANA optimizer.
Once an m-way join unit is created, it is attached to op.
The details for m-way join unit enumeration are given in
Algorithm 3. Since the entire enumeration is performed in a
bottom up manner, the m-way join unit is also constructed
in this order. Depending on the type of op, we have to set
properties of the m-way join unit accordingly. When op is a
base-table operator, a special join unit with a base table is
created (Lines 2-3). If op is a join operator, the correspond-
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Algorithm 3: EnumerateMwayJoinUnit(op)

Input: A logical operator op
1 new mju := CreateNewMJU()
2 if op == TABLE then

/* CombineBaseTable(op) */
3 new mju.join graph := op.GetTable()
4 else if op == JOIN then

/* CombineJoin(op, c1, c2) */
5 c1 := op.GetLeftChild().GetMinCostMJU()
6 c2 := op.GetRightChild().GetMinCostMJU()
7 j1 := GetJoinGraphForCombine(c1)
8 j2 := GetJoinGraphForCombine(c2)
9 new mju.join graph := CombineJoinGraph(op,j1,j2)

10 else if op == GROUP BY then
/* CombineGroupBy(op, c) */

11 c := op.GetChild().GetMinCostMJU()
12 new mju.join graph :=

GetJoinGraphForCombine(c)
13 new mju.group by := GetGroupByInfo(op)
14 new mju.temporary table := MatIntoTempTable(op)

15 return new mju

Algorithm 4: GetJoinGraphForCombine(c)

Input: An m-way join unit c
1 if c.group by == NULL then
2 return c.join graph
3 else
4 return c.temporary table

ing code is described in Lines 4-9. First, the existing join
unit with a minimum cost is chosen for each child equiv-
alence class of op (i.e. c1 and c2). In function GetMin-
CostMJU, local optimization and cost estimations for join
units in the equivalence class are performed when there is
a join unit whose cost estimation was not done before. The
details of cost estimation for a join unit will be explained in
Section 5.3. The corresponding join graphs for the combine
operation is stored in j1 and j2 respectively. These two join
graphs are combined together with op, and the newly com-
bined join graph is stored in a new join unit. For example,
in Figure 8(b), join units for 10, 11, and 12 are created in
this way.

Lines 10-14 describe a combine operation for the group-
by operator. The minimum cost of join unit c in the child
equivalence class is chosen, and the join graph for the com-
bine operation is copied from c (Lines 11-12). Information
about the group-by operator is stored in a new join unit
(Line 13). Since the output of a group-by operator is mate-
rialized into a temporary table, the temporary table name
is stored in the new join unit as well. GetJoinGraphFor-
Combine of Algorithm 4 returns either a join graph stored
in the join unit or a temporary table where the output of
the join unit is materialized with no join edge, depending
on whether a group-by operator has already been combined
in the join unit. Once a join graph is returned, the current
join unit will be further expanded while a new join unit is
started if a temporary table is returned.

Note that CombineJoinGraph, which is called in Line
9 of Algorithm 3, modifies the join condition for op so that
it refers to the materialized temporary table instead of the
original tables in the query if j1 or j2 contains a temporary
table. For example, during join unit enumeration for 13 in
Figure 8(b), the join condition of 13 is changed to refer to
TT1 instead of T1 or T2.

5.3 Local optimization and cost estimation of
m-way join unit

Before estimating the cost of a join unit, we first check
which algorithms are available for a given m-way join unit,
since available algorithms may be different depending on
the join shape. For example, the m-way star join algorithm
explained in Section 3.3 is available only for specific join
shapes such as star join and snowflake join. If both m-way
star join and m-way column join algorithms are possible, we
need to estimate the cost for both and choose the cheaper
one.

To estimate the cost of the m-way join unit, local join or-
der optimization as opposed to global join order optimiza-
tion needs to be performed inside the given join unit. For
example, in the star join algorithm, we need to determine
which table is a fact table. For snowflake join, there can
be multiple candidates for a fact table, and the candidate
with the lowest cost among them is chosen. Conversely, in
the column join algorithm, the order of semi-join reduction
needs to be determined. The semi-join reduction order is
decided with a variant of the A* search algorithm, and the
order with the lowest cost is stored inside the join unit. We
refer readers to [9] for details of the algorithm which deter-
mines the semi-join reduction order. This local join order
optimization is implemented inside a join unit operator as
part of the cost estimation, so it doesn’t have to change
the global enumeration framework explained in the previ-
ous section. The cost of the join unit is the summation
of the m-way join cost, group-by cost, and materialization
cost. Once the local join order optimization is done, they
can easily be calculated using the predefined cost models for
each algorithms.

5.4 Optimizer enhancements by exploiting m-
way join unit characteristics

As explained in Section 5.2, our approach for enumerating
m-way join units starts from the binary joins and finds m-
way join unit boundaries in a search space. In this section,
we explain how the HANA optimizer reduces the overhead
of search space enumeration by exploiting the characteristics
of the m-way join unit. Even if these enhancements are
applied, we guarantee that the optimal query plan is not
overlooked.

5.4.1 Reduce unnecessary join enumeration
If there exist join operators only in a query, and only col-

umn tables are involved, we might be able to completely
skip join enumeration for different binary join orders since
a whole query plan can be mapped to an m-way join unit,
and the local join order optimization can be performed in-
side the join unit. However, in general, we should con-
sider queries that have group-by operators in many ana-
lytic applications. In transformation-based enumeration,
how deep a group-by operator can be pushed down de-
pends on what types of different binary join orders exist
in the search space. For example, let’s consider an ini-
tial query graph of γ((T1 1 T2) 1 T3). Depending on
the group-by operator, there is a case that the group-by
operator can be pushed down, and a logical alternative of
(γ(T1 1 T3)) 1 T2 is enumerated. To enumerate the logical
alternative, γ((T1 1 T3) 1 T2) is enumerated first with join
reordering, and then the group-by operator is pushed down
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Figure 9: An example of join enumeration reduc-
tion.

towards the equivalence class, T1T3. Thus, binary join re-
ordering is still important for group-by operator pushdown,
and complete join enumeration cannot be simply skipped
when there is a group-by operator involved in the query.
When it is not applicable to push down a whole group-
by operator, an eager-aggregation [30] alternative is con-
sidered in the HANA optimizer. In the previous example,
γ2((γ1(T1 1 T3)) 1 T2)) can be enumerated with the eager
aggregation. The same binary join reordering is needed as
well for eager aggregation, and the only difference is that
a post group-by operator γ2 is additionally needed. How-
ever, the required binary join reordering is the same for both
alternatives, so there is no separate mention of the eager ag-
gregation in the remaining sections.

For the group-by operator pushdown, we don’t have to
enumerate all binary join orders. Ideally it is enough to gen-
erate all possible equivalence classes with a minimal number
of binary join enumerations so that the group-by operator
can be pushed down to the appropriate equivalence class.
The join enumeration that does not contribute to the gen-
eration of a new equivalence class is not needed for this
purpose and can be skipped safely.

Our philosophy is to minimize the change to existing bi-
nary join enumeration as explained in Section 5.2 but to take
still effective solution. The basic idea is that 1) all logical
enumerations are still performed for the equivalence classes
that exist in the initial query graph, and 2) logical enu-
meration for the newly generated equivalence classes can be
skipped if logical alternatives for the equivalence class con-
sist of join operators only, since its logical enumeration does
not generate new equivalence classes.

Figure 9 illustrates which join alternatives are skipped
for a query graph of γ((((T1 1 T2) 1 T3) 1 T4)... 1 Tn).
Equivalence classes and logical join alternatives that are not
shaded exist in an initial query graph, and newly generated
ones during logical enumeration are shaded. (12, 3) denotes
a logical alternative of T1T2 1 T3. Note that edges between
a logical alternative and child equivalence classes are omit-
ted in the figure, and the equivalence class with a base table
only is also omitted for simplicity. Let’s consider T1T2T3 and
T1T2T3T4 that exist in the initial query graph. All binary
join enumerations are performed in these two equivalence
classes, and new logical alternatives and equivalence classes
are generated together. For example, during the logical enu-
meration of T1T2T3, two logical join alternatives, (13, 2) and
(1, 23), and two new equivalence classes, T1T3 and T2T3, are
newly generated. Similarly, new join alternatives and new
equivalence classes are generated for T1T2T3T4. As shown in
the figure, all possible equivalence classes are generated only
with the enumeration in the equivalence class that exists in

Algorithm 5: Enumerate Enhanced(op)

7 ApplyLogicalTransformations(op)
8 op.GetEquivClass().SetLogicalEnumFinished()
9 if op.GetEquivClass().ConsistsOfJoinOnly() then

10 foreach logical alternative l alt in current equivalence
class do

11 foreach child equivalence class ce of l alt do
12 ce.SetLogicalEnumFinished()

the initial query graph. Therefore, additional logical enu-
merations in 3 new equivalences classes (i.e. T1T2T4, T1T3T4,
and T2T3T4) are skipped, and the logical alternatives that
are crossed out in the figure are not enumerated accordingly.
Note that equivalence classes that consist of two tables do
not have logical alternatives in the SAP HANA optimizer
anyway, since two children of the logical inner join opera-
tor are unordered, and the order is decided during physical
enumeration.

The corresponding algorithm change shown in Algorithm
5 is simple, and it is a slight modification of Algorithm 1.
Lines 9-12 in Algorithm 5 are newly added for reducing un-
necessary join enumeration. After logical enumeration is
finished, the child equivalence classes are marked as logical-
enumeration-finished to skip unnecessary join enumeration if
the current equivalence class consists of join operators only.

Our approach above still generates all necessary equiva-
lence classes for group-by operator pushdown even though
some binary join enumerations can be skipped. To prove
this and show how effective the SAP HANA approach is,
we first define three variables below for a join query of
((T1 1 T2) 1 ...) 1 Tn. For simple explanation, a left-deep
join tree is assumed in the initial query graph but bushy
join trees are also considered during logical enumeration,
and completely-connected query graph is assumed.

Sn is a search space for the join query graph ((T1 1 T2) 1
...) 1 Tn. An is the number of logical alternatives in the
equivalence class T1T2...Tn. Jn is the number of logical join
operators in the search space Sn. It is analogous to the size
of MEMO table in Volcano/Cascade [17] and the number
of join pairs of connected sub-graphs (#ccp) in DP-based
enumeration [14,16].

Lemma 1. In the SAP HANA optimizer approach, Sn

contains all possible equivalence classes even though some
binary join enumerations are skipped.

Proof. We define Sn as root-complete iff An contains all
possible logical join alternatives. Each join alternative in
An has k relations in the left child and n−k relations in the
right child for 1 ≤ k ≤ n−1. Thus, once Sn is root-complete,
An =

∑n−1
k=1

(
n
k

)
/2 = 2n−1 − 1. Then, each equivalence

class in Sn except a root equivalence class (i.e. T1T2...Tn)
is referenced by one of logical alternatives in An. Note that
the root equivalence class already exist in the initial query
graph. That is, Sn contains all possible equivalence classes
if Sn is root-complete. We prove by induction that Sk is
root-complete for any k >= 2 as follows.

• For k = 2, S2 is root-complete because T1T2 has only
one possible join alternative, and it exists in the initial
query graph.

• For k > 2, Sk is root-complete if Sk−1 is root-complete.
Since Sk−1 is root-complete, Ak−1 = 2k−2−1. If we add
Tk to either left or right side of each join alternative
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in Ak−1, we can generate two new join alternatives
including Tk. Thus, we generate 2 ∗ (2k−2 − 1) new
join alternatives as well as one join alternative that
exists in the initial query graph. They are same as
Ak.

Figure 9 and the proof above do not explicitly mention a
group-by operator, since original Sn is unchanged but ex-
panded when a group-by operator is pushed down towards
the illustrated search space. A new equivalence class includ-
ing the group by operator is created on top of the existing
equivalence classes for join operators. For example, when a
group-by operator is pushed down towards T1T2T4, a new
T1T2T4G equivalence class is created by referencing the ex-
isting T1T2T4.

When all possible join combinations are considered, Jn
for a completely connected query graph is (3n−2n+1 + 1)/2
as calculated in [17].1 However, in our approach, it can be
reduced to 2n+1 − 3n− 1, which is beneficial as long as n is
greater than or equal to four relations.

Lemma 2. Jn for a completely connected query graph is
2n+1 − 3n− 1 in the SAP HANA optimizer approach.

Proof. During the enumeration for Sn after the enumer-
ation for Sn−1 is finished, the number of newly added logical
join operators (i.e. Jn − Jn−1) equals to the summation of
An and the number of newly generated equivalence classes
as illustrated in Figure 9, since each newly created equiva-
lence classes has a logical join operator. Since all of newly
generated equivalence classes during the enumeration for Sn

contain Tn, its number is the summation of
(
n−1
k−1

)
where k

is the number of tables involved in the equivalence class and
can be varied from 2 to n − 1. Therefore, Jn can be calcu-
lated as follows.

• Jn − Jn−1 = An +
∑n−1

k=2

(
n−1
k−1

)
(for n ≥ 3), J2 = 1

• Jn =
∑n

k=3(2k − 3) + 1 = 2n+1 − 3n− 1

For the star-schema query, Jn is (n − 1)2 for n relations
while (n − 1) ∗ 2n−2 join operators are needed in the orig-
inal approach. The proof is skipped due to lack of space.
The improvement is smaller compared to completely con-
nected query because Cartesian product is already skipped
in the SAP HANA optimizer regardless of this optimiza-
tion. It means that the benefit of this optimization can
be limited depending on the query shape and correspond-
ing search space size. The different behavior depending on
query shapes will be shown empirically in Section 7.

5.4.2 Avoid redundant m-way join unit generation
An m-way join unit corresponds to a join among m tables

where the join order among the m tables is determined lo-
cally. Thus, the same m-way join unit can be created from
different binary join trees. For example, the m-way join unit
created from the binary join tree (T1 1 T2) 1 T3 is the same
as the one created from (T1 1 T3) 1 T2.

Thanks to the enhancement in Section 5.4.1, logical enu-
meration for different binary join orders is skipped for newly
created equivalence classes, and redundant m-way join units

1The equation in [17] is divided by 2 because two children
of logical join operator are unordered in SAP HANA.

are not created accordingly. However, this enhancement is
limited because different binary join order is still enumer-
ated in the equivalence class that exists in the initial query
graph such as T1T2T3 and T1T2T3T4 in Figure 9. Note that
we may have several redundant join units in an equivalence
class.

To avoid generating redundant m-way join units, we use
the concept of a join unit set, whose key consists of both the
corresponding equivalence class and a list of tables involved.
As shown in Figure 8(b), the equivalence class T1T2T3T4G
requires two join units because both of them are meaningful.
The list of involved tables of the first join unit for γ0 includes
T1, T2, T3 and T4, while the other join unit for 13 refers to
TT1, T3, and T4. This example explains why we maintain
a list of involved tables for the key of join unit set as well
as an equivalence class. Whenever trying to generate a new
join unit for an equivalence class, we need to associate it
with the corresponding join unit set. That is, unnecessary
join unit creation is checked with the set before creating a
new join unit.

5.4.3 Reduce local optimization of m-way join unit
The cost estimation for an m-way join unit can be expen-

sive, since local join order optimization explained in Section
5.3 needs to be performed from scratch. Once a join unit is
expanded by combining a join operator, a local join order
such as fact-table decision or determining the order of semi-
join reduction, needs to be re-calculated without relying on
the local join orders of the smaller join units. To reduce the
expensive local join optimization of an m-way join unit, the
cost estimation is deferred until truly necessary.

The cost is meaningful only if the equivalence class con-
sists of at least one group-by operator to make a cost-based
decision in the event that a group-by operator pushdown or
an eager aggregation is better than the original plan. For
example, in T1T2T3T4G of Figure 8(b), two join units fall
into the case. However, if the equivalence class consists of
join operators only, the cost-based comparison is not needed
thanks to larger join unit heuristic, and the cost estimation
for the corresponding join unit can be skipped. T1T2, T3T4,
and T1T2T3T4 fall into the category.

6. MIXED JOIN BETWEEN COLUMN TA-
BLE AND ROW TABLE

As previously mentioned, SAP HANA supports row tables
as well as column tables, and a mixed join between a row
table and a column table is also supported [11]. Therefore,
the optimizer needs to consider additional physical operators
to the scenario of the column table alone, which is the main
assumption in Section 5.

In SAP HANA, two different types of mixed join algo-
rithms are considered as described in Figure 10. Figure
10(b) and Figure 10(c) are two different physical operators
enumerated for the given logical alternative in Figure 10(a)
- a join between the two column tables CT1, CT2, and a join
with the row table RT1. In Figure 10(b), the contents of RT1

are materialized in a temporary column table, and a dictio-
nary is built over it on-the-fly. Then, one of m-way join
algorithms is executed together with CT1 and CT2. This
kind of physical operator is better when the size of the row
table is relatively smaller than other column tables. Con-
versely, in Figure 10(c), the result of the join between CT1
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(a) Logical alternative.
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(b) m-way join execution. (c) Hash join execution.

Figure 10: Comparison of mixed join executions.

and CT2 is materialized in a temporary row table, and a
binary join algorithm such as hash join is executed.

Figure 10(c) illustrates a single hash join algorithm, but
different types of binary join algorithms such as index join
and merge join can be enumerated as well with separate
physical operators. Here, a cost-based decision is made
among all available physical operators. These steps are ad-
ditionally handled in Algorithm 2 when a mixed join is in-
volved. For a mixed join, it is still important to enumerate
all available binary join orders for binary join algorithms.
Therefore, reducing unnecessary join enumeration is not ap-
plicable to the mixed join.

7. EXPERIMENTS

7.1 Setup
This section compares three enumeration variants, BJ,

NM, and EM. BJ refers to a normal transformation-based
enumeration for binary join algorithms without considering
m-way joins. NM refers to a naive integration of m-way
joins in the optimizer. EM strengthens NM by applying
the enhancements mentioned in Section 5.4.

We use two sets of queries, TPC-H SF100 queries and
customer queries from a S/4HANA customer database. The
former queries are prefixed with T, and the latter are pre-
fixed with C. We show the results for eight TPC-H queries
and four customer queries to save space. Table 1 shows how
many tables and relational operators are in each initial query
plan. For instance, C2 has 22 tables, 16 joins, 17 group-by’s
and three union-all’s. All tables used in the measurement
are column tables, which are the main focus of the paper.

7.2 Results
Figure 11 reports the overall optimization times of NM

and EM, relative to that of BJ. NM shows the worst op-
timization time for all queries, since the m-way join algo-
rithms are naively considered in addition to the binary join
enumeration of BJ. However, EM shows significant reduc-
tion of query optimization time compared to NM for all
queries. Especially for T2, C3, and C4, more than 90% of
the query optimization time of NM is reduced in EM. In the
other seven queries, more than 60% of the optimization time
is reduced in EM. This demonstrates that our enhancements
are very effective. Two TPC-H queries, T11 and T20, show
smaller reductions in the optimization time, at 30% and
44%, respectively. The reason reduction ratios are smaller

Table 1: Query characteristics: number of logical
operators.

Query Table Join Group-by Union
T2 9 8 1 0
T5 6 5 1 0
T7 6 5 1 0
T8 8 7 1 0
T9 6 5 1 0
T11 6 5 2 0
T20 5 4 2 0
T21 5 4 2 0
C1 13 10 4 2
C2 22 16 17 3
C3 11 10 1 0
C4 18 17 3 0

Figure 11: Query optimization times.

in these queries will be explained with the analysis of other
metrics. Compared to BJ, eight of 12 queries are slower in
EM, since EM still requires some portions of binary join
enumeration.

Although there is significant improvement of query op-
timization time, Figure 12 shows that both NM and EM
configurations show similar query execution times for all
queries. This demonstrates that the optimization time im-
provement of EM does not sacrifice the query plan quality.
The comparison of BJ with EM (or NM ) shows how much
faster m-way join algorithms are compared to binary join al-
gorithms for column tables in SAP HANA. Additionally, an-
other baseline that enumerates m-way join algorithms with
the group-by pushdown heuristic is compared. This baseline
is slower than EM in most queries and demonstrates why
the cost-based enumeration of group-by operators is impor-
tant. It is even slower than BJ in three queries, since BJ
considers group-by operators in cost-based enumeration.

To show the impact of each enhancement for efficient m-
way join enumeration, additional metrics are analyzed. In
Figure 13, we compare the number of logical join operators
(Jn) in the search space to show the effect of unnecessary
join enumeration reduction, as explained in Section 5.4.1.
The results of BJ and NM are the same for all queries since
no enhancement is applied to NM, and m-way join is con-
sidered during physical enumeration only. However, Jn is
reduced in EM for all queries except for T11. T2, C3, and
C4 have the biggest optimization time reduction; more than
90% of Jn is also reduced, and the significant reduction of
Jn contributes to the overall optimization time reduction
for these queries. The reduction ratio of Jn generally gets
higher as the number of joins increases since the correspond-
ing search space gets bigger. The reason these three queries
show significant improvement is that they have many joins.

However, there are other factors that affect Jn. Depend-
ing on the query shape, much of the search space is not sub-
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Figure 12: Query execution times.

Figure 13: Total number of logical join operators
(Jn).

ject to enumeration to avoid Cartesian product and invalid
transformation, which limits Jn reduction. For example, T8
has a larger number of joins than T5 and T9, but the re-
duction ratio of these three queries are similar (61%-68%),
since their original search space sizes in BJ and NM are
not so different. Another example is a join operator whose
join condition refers to the aggregate value of a child group-
by operator. Then, the join operator cannot be reordered
with a group-by operator. T11 has no improvement for this
reason, while T5, T7, and T9, each of which has the same
number of join operators as T11, show 41%-68% reduction.
T11 consists of two sub-queries, and each of them has joins
with three tables followed by a group-by operator. Two
sub-queries are joined by comparison of the aggregate value
of each sub-query. Therefore, there is no chance that join
reordering can happen across these two sub-queries. Join
reordering in each sub-query is still possible, but the reduc-
tion of unnecessary join enumeration is not applicable, since
it has three tables only. Four or more tables are required
for the enhancement to be applicable. For the same reason,
the improvement is limited in T20 and C2, which shows 9%
and 6% of reduction, respectively.

Figure 14 compares the number of m-way join units that
exist in the search spaces for NM and EM. It is not applica-
ble to BJ where m-way join algorithms are not considered.
As shown in the figure, EM significantly reduces m-way join
unit creations for all queries. It shows 29%-94% of reduc-
tions in all queries (69% on average). There are two reasons
for this. First, the number of logical join operators is signifi-
cantly reduced, as shown in Figure 13, so the corresponding
physical enumeration, which corresponds to m-way join unit
creations, is also reduced. The second reason is that redun-
dant join unit creation is avoided by maintaining the join
unit set, as explained in Section 5.4.2. That’s why the re-
duction ratio of a join unit is usually higher than that of
Jn. T11 shows a 29% reduction in join unit creations, even
though it has no reduction in Jn.

Figure 14: Total number of m-way join units.

Figure 15: Effect of local optimization reduction.

Figure 15 compares the total number of m-way join units
with the number of join units where the cost estimation and
corresponding local optimization are performed. It demon-
strates that local optimization reduction, explained in Sec-
tion 5.4.3, is beneficial for all queries. (21%-82%)

8. CONCLUSION
This paper has presented a multi-way join aware query

optimizer in SAP HANA. We first introduced a new con-
cept of m-way join unit. We then provided a mechanism to
enlarge small join units into larger join units in a bottom-
up manner. We next provided detailed algorithms on how
we implement the join unit in the SAP HANA query opti-
mizer. We then provided a series of optimizer enhancements
by exploiting m-way join unit characteristics.

Our empirical results with TPC-H and customer work-
loads show that our m-way join aware optimizer often finds
significantly faster execution plans containing m-way joins
with a marginal overhead, compared to the typical binary
join optimizer. Our framework is general enough to accom-
modate otherm-way join algorithms such as leapfrog triejoin
for graph queries. Overall, we believe we have provided com-
prehensive insight with a framework for future research.

9. ACKNOWLEDGMENTS
We thank all anonymous reviewers for valuable comments.

The continuous efforts of HANA Optimizer Team to im-
prove the product are also appreciated. Additionally, we
thank two alumni - Sangyong Hwang, who built a foun-
dation of the P*TIME/HANA query optimizer, and Sangil
Song, who contributed to this paper at the beginning. The
paper review and valuable comments of Guido Moerkotte
are appreciated as well. Lastly, we thank Donghun Lee for
coordinating research projects.

Wook-Shin Han was partly supported by the National Re-
search Foundation of Korea (NRF) grant funded by the Ko-
rea government (MSIT) (No. NRF-2017R1A2B3007116).

3030



10. REFERENCES
[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli,
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