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ABSTRACT
We demonstrate I-REX1, a system designed to help users under-
stand SQL query evaluation and debug SQL queries. I-REX lets
users interactively “trace” the evaluation of complex SQL queries,
including those with correlated subqueries. I-REX also explains
why a query returns an incorrect answer with respect to a refer-
ence query over a test database instance—a common use case in
education and software regression testing. To avoid the cognitive
overload caused by debugging over a large database instance, I-
REX lets users focus on smaller instances contained in the large
one (which we call “counterexamples”) that still distinguish the two
queries. Supporting these features for SQL queries poses two key
challenges. First, unlike debugging for procedural languages, it is
not clear how to trace a declarative SQL query, because its execu-
tion plan often differs from how it was originally written. I-REX
offers a novel interface for tracing SQL query evaluation in a way
faithful to how queries are written syntactically, even for complex
queries involving multiple levels of nesting and correlation. Sec-
ond, we need a method for finding small counterexamples that han-
dles the complexity of practical SQL. I-REX extends provenance
support for SQL in non-trivial ways to work with various query
constructs. This demonstration walks through use cases in which
I-REX helps users understand and debug SQL queries.
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1. INTRODUCTION
Data analytics has emerged as one of the most important skills

for modern jobs. Much analysis of structured data happens through
SQL. However, learning and debugging SQL can be challenging,
even for people with considerable experience with procedural pro-
gramming languages, partly because of the declarative nature of

1A video and other information about our system can be found at https://
dukedb-hnrq.github.io/; we will continue to update this website as we add new
features or release new versions.
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SQL. I-REX is a system designed to help users understand SQL
query evaluation and debug SQL queries. I-REX addresses two
key challenges. First, despite a plethora of debugging tools for pro-
cedural languages, there exist few tools for SQL—it is not even
clear how to “trace” a declarative query because it is often opti-
mized and executed differently from the way it is written. Second,
in many use cases, users may find out that a SQL query returns a
wrong answer for a given test database instance, yet debugging the
query over a large database is slow and poses significant cognitive
burden, especially for novices. These challenges are compounded
by the complexity of the SQL language, with constructs such as
nested, correlated subqueries. In the following, we illustrate these
challenges with examples and motivate our approach.

For the first challenge of tracing SQL evaluation, a strawman
solution is to convert the SQL query of interest into a logical plan
of relational algebra operators, and trace the evaluation of this plan
operator by operator, allowing users to examine all intermediate
results in a bottom-up fashion. While this solution is more palatable
than tracing the execution plan, there can still be a huge disconnect
between the logical plan and the original query, especially for those
with constructs such as correlated subqueries that are frequently
used but have no direct counterparts in relational algebra.

(a) Drinker relation

name addr

Ben 101 W.M. St. d1

Coy 101 W.M. St. d2

Dan 300 N.D. St. d3

(b) Frequents relation

drinker bar times

Ben The Edge 3 f1
Ben ToT 1 f2
Dan JJ Pub 1 f3
Dan ToT 2 f4

(c) Likes relation

drinker beer

Ben Amstel l1
Ben Budweiser l2
Coy Dixie l3
Dan Amstel l4
Dan Budweiser l5
Dan Corona l6

(d) Serves relation

bar beer price

The Edge Amstel 2.75 s1
The Edge Budweiser 2.00 s2

JJ Pub Amstel 3.00 s3
JJ Pub Corona 3.25 s4
JJ Pub Dixie 3.00 s5
ToT Corona 2.50 s6
ToT Dixie 2.75 s7

Figure 1: Example relations with tuples identifiers.

Drinker Serves
as S

Frequents
as F

MIN(a1)
GROUP BY drinker

⨝F.bar=S.bar

𝜋F.drinker, 1 as a1
σa1 is NULL

⟕name=drinker

𝜋name

Figure 2: Decorrelated query plan for Ex-
ample 1.

(a) Result of ref. Q0

name

Coy r1
Dan r2

(b) Result of wrong Q

name

Coy r3

Figure 3: Results of
queries in Example 2.
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EXAMPLE 1 (TRACING SQL QUERIES). Figure 1 shows a
database about drinkers, beers, bars, and relationships among
them. Consider the following query:

SELECT name FROM Drinker
WHERE NOT EXISTS

(SELECT s.bar FROM Serves s, frequents f
WHERE f.bar=s.bar AND name=f.drinker );

Note that name in the WHERE clause of the nested subquery refers
to a column from the Drinker table in the outer query. Because
of this correlation, we cannot “trace” intermediate results of the
query in a bottom-up fashion from the subquery to the outer query.
One possible workaround is to decorrelate the query, such that the
resulting query can be translated into a logical plan that allows
bottom-up tracing. This workaround is universal as decorrelation
is routinely done in most database query optimizers. However, a
serious drawback is that the decorrelated query may not resem-
ble the original. For example, for the query above, the popular
open-source SQL query planning tool, Apache Calcite [1], would
generate an overly complex decorrelated logical plan depicted in
Figure 2 (already simplified for presentation). Tracing this decor-
related query plan will not help users understand the original query
and may cause more confusions.

Instead, I-REX provides a novel interactive interface that allows
users to trace query evaluation in a way faithful to how the query
is written originally. Intuitively, each subquery is executed in a
“context” with specific variable bindings provided during the eval-
uation of its outer queries. For example, the result of the subquery
above (within WHERE NOT EXISTS (...)) depends on the par-
ticular name value from the Drinker tuple being examined by the
outer query. I-REX’s interface adheres to this standard evaluation
semantics of correlated subqueries and supports tracing through
nested SQL query blocks, without requiring any additional knowl-
edge of relational algebra or its mapping from SQL.

For the second challenge of debugging queries over a large
database, we focus on a common use case that arises in education
and software regression testing, where users notice that a query is
wrong because it returns different answers from a “reference” (cor-
rect) query on a test database instance.2 To avoid the cognitive
overload caused by debugging over a large instance, I-REX lets
users focus on small instances contained in the large one (which
we call “counterexamples”) that still distinguish the two queries.

EXAMPLE 2 (SMALL COUNTEREXAMPLES). Suppose a
SQL assignment asks students to write a query to find drinkers who
frequent only bars that serve some beers they like. The instructor
provides the reference query Q0:

SELECT name FROM drinker
WHERE NOT EXISTS (

SELECT bar FROM frequents
WHERE drinker = name AND bar NOT IN

(SELECT bar FROM serves , likes
WHERE drinker=name AND serves.beer=likes.beer ));

A student writes the following incorrect query Q, which considers
the three relationship tables in a different order and actually finds
drinkers who frequent only bars that serve only beers they like (we
have observed this mistake to be typical for students learning SQL
in our database courses):

SELECT name FROM Drinker
WHERE NOT EXISTS (

2Note that returning correct answers for a finite number of test instances does not
guarantee that a query is correct—however, this practice of using test instances to
gauge correctness is both common and practical given the general undecidability of
query equivalance testing.

SELECT s.bar FROM Serves s, Frequents f
WHERE f.bar=s.bar AND name=f.drinker
AND s.beer NOT IN (

SELECT l.beer FROM likes l WHERE name=l.drinker ));

Over the test database instance shown in Figure 1, Q0 outputs tu-
ples r1 = 〈Coy〉, r2 = 〈Dan〉, while Q outputs only one tuple
r3 = 〈Coy〉. Instead of showing the full instance with 20 tu-
ples, we can show a counterexample consisting of only 5 tuples
d3, f3, l4, s3, s5(highlighted in the tables), over which Q0 would
still return r2 (Dan) but Q will return an empty result. Besides
reducing the cognitive overload, this small counterexample also
“pinpoints” an error in Q: that Q would fail to find a drinker
when the drinker frequents some bar serving both beers he likes and
beers he does not like. For a real test database instance involving
thousands of tuples, the small counterexample still contains only 5
tuples, significantly smaller than the entire database.

In this demonstration, we will showcase a representative debug-
ging scenario, to illustrate how I-REX can help explain errors in
user queries using small counterexamples and further help users
trace the evaluation of their queries to understand their behaviors.
With each counterexample pinpointing one error in the user query,
users can focus on fixing their queries one “bug” at a time, until
they pass the whole test database instance.
Related work. Conceptually, I-REX shares its two key features
with our previous system, RATEST [6], which supports evaluation
tracing and finding small counterexamples for relational algebra
queries. RATEST has been deployed in undergraduate database
courses and benefited hundreds of students; its success motivated
us to support similar features for SQL. It turns out that moving from
procedural relational algebra to declarative SQL, also a much more
complex language, requires both a complete redesign of the front-
end tracing interface and significant reworking of the back-end pro-
cessing methods. As motivated in Example 1, the simple bottom-up
tracing of RATEST does not work for I-REX. Support for prove-
nance [5], which underpins our techniques for finding small coun-
terexamples, has been lacking for general SQL queries; I-REX
has extended provenance support to more SQL constructs beyond
SPJUDA (select-project-join-union-difference-aggregate) queries.

Besides RATEST, a number of other systems are also related to
I-REX. For tracing SQL evaluation, Dietrich and Grust [3] built
an observational debugger that allows users to mark some parts of
the query and then observe the intermediate results produced by
the selected parts, helping users learn how a specific query com-
ponent executes. A discussion of additional related work can be
found in [6]. For instance, the work on “Why-Not” queries aim to
explain missing answer tuples by data or query modifications that
would instead include them in the query result. In contrast, I-REX
intends to explain and trace more complex SQL queries while re-
maining faithful to the original database (albeit via a much smaller
counterexample) and original queries.

2. IMPLEMENTATION AND SYSTEM
Figure 5 depicts the architecture of I-REX. As a web application,

I-REX allows users to issue SQL queries in the front-end. Then, the
two major components of the back-end handle the query separately:
the counterexample finder returns a small counterexample database
w.r.t. the user query and a given reference query; the query evalua-
tion tracer supports interactive tracing in the front-end by decom-
posing the user query and executing rewritten subqueries against
the database. More details are presented below.
Capturing How-Provenance for SQL Query. In our recent
work [6], we studied the smallest counterexample problem (SCP):
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SELECT *  
FROM R  
WHERE...

WITH rat0(a0) 
AS (SELECT A 
FROM R),
rat1(a0) AS...

Logical
Plan
Generator

Provenance
Instrumentation WITH rat0(a0,prv) 

AS (SELECT A,prv 
FROM R),
rat1(a0,prv) AS... 

Input SQL
Query

Logical 
Query Plan

Algebraic 
Query

π

σ
⟕

...

Algebraic Query with 
Provenance Annotation

Parser

Figure 4: Provenance instrumentation pipeline for SQL.

User
Inter-
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Provenance
Instrumentation SMT Solver

Syntax
Parser

Input SQL
 Query

DBMS

Query Evaluation Tracer

Subquery
Hierarchy
Generator

WHERE
Condition
Evaluator

Correlation
Rewriter

Figure 5: I-REX system architecture.

given a database instance D and two queries Q1 and Q2 where
Q1(D) 6= Q2(D), find a sub-instance D′ ⊆ D with minimum
number of tuples such that Q1(D

′) 6= Q2(D
′). We proposed a

solution to SCP by considering each tuple t in Q1(D) \Q2(D) (or
Q2(D) \ Q1(D)) and finding the smallest D′ ⊆ D (witness for
t) such that still t ∈ Q1(D

′) \ Q2(D
′). The solution consists of

first capturing Boolean how-provenance [5] (encoding how an out-
put tuple t is derived from input tuples by annotating input tuples
with Boolean variables), and then finding a satisfying model for
the how-provenance formula with the least number of variables set
to true, which can be efficiently done using an SMT (satisfiability
modulo theories) solver. We developed additional techniques in [6]
to improve the scalability of this approach; experiments show that
we can deliver interactive response time even for databases with
millions of tuples.

In [6], we implemented a how-provenance tracker by translat-
ing relational algebra queries into SQL fragments and then instru-
menting queries according to the logic of SPJUDA operators. But
this rewriting does not apply to general SQL queries, especially
when there are correlated subqueries. Decorrelation is theoreti-
cally possible, but not well supported in practice, and often intro-
duces extraneous operations including aggregation that complicate
provenance. Therefore, we avoid decorrelation and apply an instru-
mentation pipeline inspired by [4] as shown in Figure 4 to capture
how-provenance for SQL. First, we obtain the logical query plan
of the input SQL query using the explain command of Cock-
roachDB [2]. The resulting tree-structured logical plan uses an
Apply operator instead of decorrelating the query. The Apply op-
erator takes a relation R as input, evaluates an expression E for
each row r ∈ R, and then combines the results of each E(r) as
the output. Next, we build a new algebraic query from the logical
query plan. For instance, queries with NOT EXISTS subqueries like
the one we show in Example 1 can be represented as an antijoin be-
tween the outer relation and the inner query’s result. Furthermore,
if there are deeper nested correlated subqueries (such as Q and Q0

in Example 2), Apply is introduced and columns from outer rela-
tions are replaced with placeholders. Then we rewrite this algebraic
query into SQL with additional provenance information, and exe-
cute it separately for every value binding. Beyond correlated sub-
queries, we also have to consider NULL and bag semantics, which
are not handled in [6]. For example, outerjoins may introduce NULL
if there are input tuples that do not join with others.

Tracing Query Evaluation through Blocks and Context. As dis-
cussed earlier, tracing is non-trivial due to SQL’s complexity—for
example, it would not make sense to trace a query with correlated
subqueries as a tree of operators in a bottom-up manner. Existing
approaches all require transforming SQL queries into an alternative
representation, e.g., (i) tracing through the physical query plan re-
turned by the query optimizer (which may not resemble the original
query at all), (ii) tracing through a tree of operators using a new op-
erator for correlation (e.g., as what we did to capture provenance),
or (iii) tracing through equivalent procedural code. All these ap-
proaches impose additional cognitive burden: users must familiar-
ize themselves with a new representation and must be able to trans-
late insights they gained from tracing the alternative representation
back to how to fix their original SQL query. Instead, we want to
trace a SQL query at a logical level and in a way consistent with
how the query is written.

Instead of letting a query optimizer dictate how to execute a SQL
query, I-REX uses the syntax of the query to derive an evalua-
tion structure that faithfully reflects how the query is written. We
break the query syntactically down into a hierarchy of blocks (sub-
queries); a block always corresponds to a contiguous substring of
the original query string and can be executed under a context, which
provides values for columns referenced in this block but coming
from outside the block. The user can choose which block to focus
on individually, and when the user focuses on a particular block to
explore, our interface highlights the corresponding part of the orig-
inal query string. For query Q in Example 2, the root block in the
hierarchy represents the entire query; this root has one child block
Q1, which represents the nested SELECT statement that serves as
the input to NOT EXISTS in the outermost WHERE; Q1 in turn has
another child block Q1.1 representing the subquery that serves as
an input to NOT IN.

If a block b represents a correlated subquery, it may refer to
columns from tables in FROM clauses of b’s ancestor blocks, thus
the behavior of b needs to be understood from the context provided
by evaluating its ancestors. Note that while we treat the hierar-
chy of blocks as a tree, the column references for constructing the
context is modeled as a directed graph. For example, in Q1.1, the
column reference name refers to the Drinker table in Q’s FROM

clause. Imagine that Q examines one Drinker row at a time; the
particular Drinker row being examined by Q provides the context
for Q1.1 and a specific binding for name to be used for evaluating
Q1.1. In general, the context and bindings for a block b can be
provided by any ancestor blocks of b.

When a user focuses on a block b, our interface clearly shows
the current context and bindings for b’s external (correlated) refer-
ences, if any. The user can adjust the context and explore how b’s
result changes accordingly. For an uncorrelated subquery whose
result does not depend on the context, our interface intelligently
omits the option to adjust context, avoiding clutter and confusion.

Tracing Evaluation of Each Block. Given the context, our inter-
face further allows the user to focus on specific contexts to under-
stand the evaluation of any block b. For example, consider block
Q1, which is a two-table SELECT with a conjunctive WHERE with
three predicates. Below the context for Q1, our interface shows
the contents of the two input tables for Q1 as well as its output
(under the current context provided by Q). By selecting a com-
bination of input rows, the user can see the truth values of the
predicates in WHERE to understand why this particular combination
yields an output row (then it will be highlighted automatically) or
not (then a warning will be displayed). In general, our interface
would display the entire WHERE condition as a Boolean expression
tree whose leaves are annotated with truth values; hovering on ref-
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Figure 6: Overview of I-REX debugger interface.

erences made within the condition reveals the corresponding bind-
ings. Conversely, the user can select a specific output row, and the
input rows contributing to it will be automatically highlighted.

We support these block-level tracing functionalities by dynam-
ically constructing a query for a block b from its corresponding
subquery. Specifically, we replace any external references with
bindings from b’s current context, and rewrite the query to cap-
ture provenance between its input and output rows, as well as truth
values returned by constituent predicates in WHERE. We execute the
constructed query against the backend and extract relevant infor-
mation to update the state of our interface. The query for block
b is constructed every time the user chooses the block and selects
the specific binding (and the result would be cached in the fron-
tend), since evaluating subqueries against all possible bindings is
not necessary and would hamper interactivity. Moreover, by en-
abling users to select different external reference bindings and dif-
ferent combinations of input rows, I-REX allows examinations of
context that might never arise by simply executing the whole query.

Note that the third predicate in Q1’s WHERE further contains a
subquery Q1.1. If the user is interested in why that predicate eval-
uates to true or false, she can drill down to block Q1.1; in that case,
the currently selected combination of input rows to Q1 becomes
part of the context for Q1.1.

Besides the SPJ block described above, we also support a vari-
ety of other blocks, including blocks with grouping, HAVING, and
aggregation, as well as SQL set/bag operations such as UNION and
EXCEPT (ALL). In general, a complex block may be traced as mul-
tiple steps, each with its own intermediate result (e.g., a block in-
volving HAVING may additionally show the rows before grouping
as well as the groups before HAVING); the user will be able to se-
lect any intermediate result row and trace how it is derived from
input(s) and how it contributes to the output of the block. We omit
details from this paper but will show details in our demonstration.

3. DEMONSTRATION
We will walk through a use case of I-REX in the classroom set-

ting, where students write SQL queries to answer questions (with
corresponding hidden reference queries) against a database. The
student first writes a wrong query; I-REX will show a small coun-
terexample and let the student trace the wrong query over it.

Consider again Example 2, where the problem asks for “all
drinkers who frequent only bars that serve some beers they like”;
instead, the wrong student query would find drinkers who “frequent
only bars that serve only beers they like.” Even if we show a small
counterexample and results of both correct query Q0 and wrong
query Q, the student may still have a hard time seeing why her
query fails to return 〈Dan〉; so she goes to the Debugger panel to
find out why.

The debugging process begins with the root block that takes
Drinker as input but returns empty output. The student starts by
selecting the row Dan in Drinker in the “From Tables” view, to
see how the query evaluates this input tuple. The details of WHERE
conditions will be displayed, and the student finds that the NOT

EXISTS condition is highlighted red, indicating that it fails. The
student then wonders, “Why is the result of the subquery in NOT

EXISTS(...) not empty?” To answer this question, she focuses
on block Q1 by clicking on the corresponding node in the context
navigation ( b in Figure 6). I-REX then displays the context in-
formation for Q1 including bindings for external references (e.g.,
Drinker.name = ‘Dan’, c ), input tables for Q1 ( d ), and its
output ( f ).

Upon seeing the output tuple 〈JJ Pub〉, the student clicks on
it to locate input tuples in FROM tables (Serves and Frequents)
that yield this output. Three satisfied WHERE conditions will be dis-
played: f.bar=s.bar, ‘Dan’=f.drinker, and s.beer NOT IN

(..) ( e ). Finally, the student goes to the innermost block Q1.1

and finds that beer Dixie is served in JJ Pub but is not liked by
Dan. She keeps exploring block Q1 by selecting another Serves
tuple 〈JJ Pub, Amstel, 3〉, which does not yield any output be-
cause the NOT IN condition is not satisfied. During the exploration
process, the student would understand that her query fails to find
the drinker who frequents some bar that serves some beer (from
block Q1) not liked by the drinker (from block Q1.1), and might
reconsider the interaction between Likes and Serves in her query.
Demonstration scenarios. During our demonstration, audience
can (i) walk through example queries from a SQL assignment to
see typical bugs in student submissions and how I-REX helps re-
veal them; (ii) look into some extremely complex queries that are
difficult to understand without the help of I-REX; (iii) trace their
own queries over the sample database, which is helpful in under-
standing SQL evaluation semantics; and (iv) work on our assign-
ment problems to experience how students can use I-REX.
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