
SQL for Data Scientists:
Designing SQL Tutorials for Scalable Online Teaching

Uwe Röhm
The University of Sydney

Australia
uwe.roehm@sydney.edu.au

Lexi Brent
The University of Sydney

Australia
lexi.brent@sydney.edu.au

Tim Dawborn
Grok Learning

Australia
tim@groklearning.com

Bryn Jeffries
∗

Grok Learning
Australia

bryn@groklearning.com

ABSTRACT
The SQL query language is the ’lingua franca’ of transac-
tional databases, and is essential for scalable data analytics.
Learning SQL requires practical exercises with databases,
including those parts of SQL with side-effects such as DDL
statements, triggers, and stored procedures. Teaching this
effectively to a non-technical audience is a challenge, espe-
cially in times of COVID-19 without face-to-face classes.

The Grok Learning platform allows to design self-paced
online tutorials with auto-graded exercises – but it was orig-
inally built for teaching programming languages. In this
demo, we show how we extended the Grok platform to teach
SQL for Data Scientists with comprehensive online learning.
Grok supports a rich user interface with interactive exam-
ples where students can explore and experiment with each
example query. This is ideal for learning declarative query-
ing. Each query is executed in its own sandbox on a freshly
initialised database instance which allows to teach all parts
of SQL including DDL statements, stored procedures, trig-
gers and UDFs. At the same time, the platform scales to
thousands of concurrent users, while maintaining interactive
response times.

PVLDB Reference Format:
Uwe Röhm, Lexi Brent, Tim Dawborn, and Bryn Jeffries. SQL
for Data Scientists: Designing SQL Tutorials for Scalable Online
Teaching. PVLDB, 13(12): 2989-2992, 2020.
DOI: https://doi.org/10.14778/3415478.3415526

1. INTRODUCTION
Motivation SQL is the lingua franca for databases and

large-scale data processing systems. Its declarative nature
makes it possible to easily express complex analytical tasks
over large datasets without the need to know details of query
execution, data distribution, or parallelisation. This declar-
ative thinking has to be carefully taught though to be effi-
cient in query formulation. Users have also to be aware of

∗also Honorary Associate of the School of Computer Science,
the Faculty of Engineering, the University of Sydney.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415526

Figure 1: Screenshot from the SQL Tutorial.

some pitfalls of the SQL query language, such as the han-
dling of NULLs or not to attempt natural joins between
tables without common attributes.

In data science, SQL is important as a query language to
retrieve datasets from a shared database (such as the SQL
query interface of SkyServer [5]), to use SQL databases as
a sink, or as an effective way to parallelise analysis tasks
on distributed data processing platforms (Apache HBASE,
Spark or Flink). Silva et al.[3] have proposed that new
courses teach SQL in the context of these new systems.
Most SQL textbooks and tutorials are, however, written
with transactional databases in mind, typically with book-
ing or ordering systems examples - or university schemas.
None of those help to explain to data scientists the benefit
of SQL or how to formulate data cleaning, data transforma-
tion and statistical querying tasks effectively in SQL.

Learning SQL querying skills requires training and lots of
practice, and is best done with practical labs. This has led
to the development of several online teaching systems for
SQL, many of which are however quite static or not very
scalable (e.g. www.w3schools.com/sql/). Several univer-
sities offer self-paced mini courses or full-fledged MOOCs
(Massive Open Online Courses) on databases (e.g. [8, 6]).
Those offerings typically cover a wider content, e.g. includ-
ing relational design theory, with short videos and readings,
rather than an auto-graded SQL tutorial. The University of
Sydney is using the Grok platform as part of its OLET1301
“Managing and Analysing Data with SQL” mini-course [2].

2989



Students

Admins

L
o

a
d

 B
a
la

n
c
e
r

front
web

RabbitMQ

Redis 
Cache

EC2 instances

terminal

marker

marker

submission1

submission2

submissionN

public

Tutors

Web 

DB

bg 
web

marker

…

live examplesrun

mark

run / mark

…

Figure 2: System Architecture of the Grok Learning Platform.

Many automated or semi-automated assessment systems
have been developed to assist students in learning elements
of SQL. Some more recently reported systems include a unit
testing of schema representation to validate DDL [4]; visu-
alisation of relational algebra representations of queries; as-
sessment of SQL queries based upon their outcome as well
as use of keywords and formatting style [7].

Contribution In this paper, we present an online SQL tu-
torial that allows to effectively teach SQL to a non-technical
audience, such as Data Scientists, based on the Grok Learn-
ing platform [1]. It allows students to learn and experience
the complete set of SQL capabilities, including data defini-
tion statements, stored procedures, and user-defined func-
tions. To make this possible, Grok was extended to execute
each individual query in its own sandbox with a dynamically
created database instance. In addition, the systems allows
to integrate explanatory pages with text and figures, as well
as graded exercises with a flexible mechanism of test cases.

The contributions of this demo paper are as follows:

• We present a comprehensive online SQL tutorial to
effectively teach SQL to data scientist students with
a variety of real-world scenarios and datasets. In our
demonstration, attendees can interactively explore this
tutorial, can also try Grok’s online tutor helpdesk, and
can see the course design interface.

• We give an overview of how the Grok learning platform
provides scalability and how it can execute SQL in a
sandboxed execution with interactive response times.

• We discuss how to efficiently design test cases to auto-
grade SQL queries with detailed student feedback.

2. SYSTEM OVERVIEW
The SQL tutorial is built using the Grok Learning plat-

form [1]. Grok has been originally designed to teach pro-
gramming, and its auto-testing mechanism was extended to
work with SQL databases too. It is built with a series of clus-
tered micro-services in the AWS cloud, and hence is able to
scale to thousands of concurrent users.

The system consists of a front-end for students and tutors,
and a scale-out back-end as depicted in Figure 2. The plat-
form distinguishes between three kinds of users: students
who work through the material and attempt the different
exercises; tutors who give support and feedback to students
and check their progress, and course designers who can cre-
ate and edit content and exercises.

The front-end (blue in Figure 2) allows students to access
the course material, to navigate along the teaching material,
and to keep track of which learning modules and exercises
have been finished already. It is a responsive interface that
can be used from any modern web browser and on either
computers or mobile devices. It is served from a group of

load-balanced web servers which have internal access to a
persistent database in AWS RDS, and to volatile cache data
in a Redis instance which is managed by AWS Elasticache.

The back-end (green in Figure 2) is responsible for run-
ning the users’ code and the test cases. Marking tasks are
sent from the front-end web servers to the back-end mark-
ers via a RabbitMQ message broker. A marker instance
picks it up, marks it, and sends the result back to the Rab-
bitMQ message broker, where a background web instance
(“bg web”) picks it up and writes the result to the database.
The markers support different runtime environments. This
includes multiple programming languages such as Python,
Javascript, bash, R, Java, C/C++, Haskell, Prolog — and
database engines such as PostgreSQL or SQLite.

Live examples and users’ code executed with ‘Run’ are
handled by separate terminal machines which support the
same runtime environments than the markers, but are di-
rectly accessed via a WebSocket between the users’ browser
and the terminal server to provide interactive response times.

Both marker and terminal instances run user code and
queries in a sandbox. The sandboxing and process isolation
techniques used by Grok are similar to what modern con-
tainerisation libraries like Docker use underneath the hood.
For the SQL tutorial this means that every query and every
test case runs in its own database instance that only exists
during the runtime of a query. This gives students full flexi-
bility and enables us to comprehensively teach SQL, includ-
ing DDL commands with side-effects, but it also requires
good design and management of test cases (cf. Section 3).

To minimize the sandbox startup latency, Grok uses a
modified version of PostgreSQL which allows to set userid
and runtime RAM limits on the query execution process
by Grok’s sandboxer, and then starts Postgres with a pre-
serialised representation of its database template on a ram-
disk. This reduces startup latency to 500ms (cf. Figure 3b).

The admin console supports to create and manage the
courses, as described in more detail in the next section.
Course designers can create pages and exercises, as well as
monitor the progress of their classes.

3. SQL TUTORIAL DESIGN
In the following, we explain how to best design SQL tu-

torials on the Grok Learning platform, including advanced
features for automated testing and interactive exercises:

3.1 Database Preparation
In order to prepare either a marked exercise or an interac-

tive example, course designers can define a query workspace
which consists typically of the following components:

init.sql An SQL script that is executed immediately after
a new database instance is started. It is typically used
to create a schema and to load data.

2990



data.csv While it is possible to include INSERT statements
within init.sql, a more flexible approach is to pro-
vide one or more separate data files which are loaded
by init.sql (e.g. using Postgres’ COPY command).
By swapping these data files while keeping the default
init.sql, a course designer can efficiently create new
test cases with slight data variations.

query.sql Optionally course designers can also provide a
query template for the student’s query editor.

All files can be either internal or public, so that students
can see the default setup in different tabs of their workspace
editor. If required, they can be set as read-only for students.

3.2 Designing Test Cases for SQL
Exercises can have one or more test cases associated which

execute the student submission in the context of a test data-
base, and compare the output of the query against an ex-
pected output, similar to the idea of unit tests in program-
ming. The quality of these test cases is crucial to the learn-
ing effect for students, and we suggest the following struc-
tured approach to create an effective test bank for exercises:

Initialisation — All test cases share a common initialisa-
tion of the test driver which can be specialised per each test
case. This includes the specification of common files among
test cases, such as the database schema. Test cases can re-
place any of these common files which specialised versions
of the files, for example to introduce additional NULL val-
ues or to scale some table. Common files can also refer to
cloud storage locations which enables to easily upgrade the
database schema over the lifetime of the tutorial.

Correctness Tests — It is good practice to define test cases
in small, incremental steps where each test case focuses on
just one well-defined correctness aspect of the query. This
allows for detailed feedback to students on where they went
wrong (cf. Section 3.4). This can be achieved by configuring
the output checker to focus on specific result parts for each
test, and by specifying whether whitespaces and output or-
der should be ignored. In our experience, the following test
sequence works well: completeness of result (ignoring order),
correctness of output schema (column names), testing on a
larger dataset, and correct result ordering (if required).

Testing for Corner Cases — Testing for SQL corner cases
is interesting. It involves varying the common dataset with
additional NULL values or additional/missing join partners.

Cheating Protection is easily done by using at least one
hidden dataset which students don’t know and hence cannot
submit a static output query (SELECT correct result ).
When including one hidden dataset with varied key values,
one also finds queries which use ’magic’ constant IDs instead
of joins or sub-queries.

Scalability — Testing for scalability with at least one much
larger dataset (typically hidden and if it is really large, than
also best linked to a cloud store).

3.3 Teaching Statements with Side Effects
The SQL tutorial also supports SQL statements that do

not produce a relational output, but rather modify the data-
base instance or its schema. To do so, a course designer can
provide a final.sql script that is executed directly after a
user submission, and which can check side-effects:

• INSERT, DELETE or UPDATE statements typically
have no other output than n rows affected. final.sql

can check the actual modified database content.

• This mechanism can also be used to support DDL
statements such as CREATE TABLE or CREATE IN-
DEX by querying the Information Schema to check
that the expected tables or indices have been created.

• Triggers and stored procedures work this way too. The
final.sql script can invoke the stored procedures or
triggers and then check for expected outputs.

3.4 Student Feedback
An important part of an online SQL tutorial is the capa-

bility to provide meaningful feedback to students. In our
SQL tutorial this is achieved by several means:

Test Titles — Using focused, incremental tests with mean-
ingful titles helps students to understand where their code
fails. For example it is better to state “Testing correct or-
dering of the result” rather than “test 1, test 2, ...”.

Expected Output — For the correctness tests on smaller
datasets, it is helpful to provide students with a comparison
of the output of their submission with the expected output.

Example Solution — Course designers can provide exam-
ple solutions for each exercise which are either directly avail-
able, or after a deadline, or once the student solved a task.
The solution can include explanations with markup format-
ting, figures, and different alternatives (e.g. to explain dif-
ferent solution approaches, such as sub-queries versus join).

Online Helpdesk The Grok platform includes an online
helpdesk with which tutors can interact with students using
a chat and a sandbox environment in which they can see
and trial each student submission themselves.

3.5 SQL for Data Scientists
A SQL tutorial for Data Science students should intro-

duce the different SQL concepts in the context of usage
scenarios students can relate to, and with limited use of
technical jargon in its explanations. In our SQL tutorial,
we have use cases from environmental sciences, physics, or
social sciences, and the exercises use real datasets (some-
times simplified or shortened). The tutorial’s focus is on
data import, filtering, transformation, descriptive statistics
and correlations, and how SQL can be used in a typical Data
Science pipeline. After about four to six content pages, a
test exercise allows students to practice the new concepts in
context, typically with five exercises per module. With this
approach, we are able to built a comprehensive SQL tutorial
that covers all aspects of SQL in context.

4. DEMONSTRATION SCENARIO
We demonstrate our approach using a SQL tutorial that

we developed for teaching Data Science students at the Uni-
versity of Sydney. The whole tutorial consists of eight mod-
ules that cover the complete SQL query language from the
import of CSV files, to join queries, working with NULL
values, data cleaning and transformation in SQL, nested
queries and analytical queries with GROUP BY / HAV-
ING, window functions (e.g. median or rank), and statistical
functions such as correlation. Figure 3a shows an example
exercise from this tutorial that trains DDL statements.

This tutorial uses PostgreSQL as underlying database sys-
tem and makes use of several Data Science-oriented datasets
that were collected for this course: weather observations,
water quality measurements, and the historic Australian
convicts transportation database. The following usage sce-
narios can be demonstrated with this course:

2991



(a) Screenshot of CREATE TABLE exercise.

(b) PostgreSQL Latency Comparison

Figure 3: Demo Screenshot (left) and Latency Comparison of PostgreSQL Sandbox Startup (right)

4.1 Scenario 1: Live Examples and Exercises
The first part of the demo allows attendees to explore the

content of the SQL tutorial from the student perspective —
which topics are covered with which kind of Data Science-
oriented examples, and in particular to experience that all
examples on the different pages are live: live examples are
indicated with a small play button in the upper right corner
of the query box (cf. Figure 1). If attendees press this, the
content of the example box gets instantaneously executed on
one of the terminal instances of Grok (cf. Section 2). Ex-
ample queries can also be edited, which allows students and
demo attendees to freely experiment with the SQL syntax.

Another major part of the tutorial are marked exercises,
which attendees can try out too. As shown in Figure 3a, the
user sees the problem definition on the left hand side of the
browser window 1©. This can include schema figures to clar-
ify the example scenario, or as in the example of Figure 3a
some code examples which are expected to work on the so-
lution. The example exercise in Figure 3a is about testing
the capability to use the SQL’s CREATE TABLE statement,
including primary key and foreign key declarations, and NOT

NULL constraints. There are over 40 exercises which the at-
tendees can try out during the demo.

Users can enter their SQL solution into the editor window
on the right 2©, supported by syntax highlighting. They
then can first try out their solution on the provided test
dataset using the ‘Run’ button 3©, and the output of the
query will be shown below the editor 4©. Once users are sat-
isfied with this output, they can submit their solution to the
marking component by pressing ‘Mark’ 5©. Their SQL code
will now be tested with a combination of public and hidden
test cases, and the output of these tests displayed under-
neath 6©. Once a submission passed all tests, the user gains
some marks for her submission. There are different marker
scripts available, e.g. to always give full marks for correct
submissions, or to deduct marks for incorrect attempts.

4.2 Scenario 2: Live Tutor Helpdesk
The second part of the demo is about the live tutoring

helpdesk of the Grok Learning platform which allows stu-
dents to ask questions about their current submissions via
the ‘Tutoring’ menu 7©. These help requests can be an-
swered by a pool of tutors via a central request queue. Demo
attendees are able to take on the role of a tutor and expe-
rience how they have access to all submissions of a student,
including query outputs and error messages, and how they

can experiment with different query variants thanks to the
sandboxed query execution in Grok. If student and tutor
are online at the same time, tutors can chat with the stu-
dent directly and give them advice on how to improve their
queries to solve an exercise. In the current COVID-19 pan-
demic situation, this online tutoring helpdesk has proven to
be very effective to support off-campus online learning.

4.3 Scenario 3: Course Designer View
In the last part of the demo, attendees can see how course

designers can edit exercises and test cases. For each question
a workspace with initialisation scripts and dataset files can
be defined. Data can be specified either in form of small
data files which are also visible to students, or by referencing
a dataset located on some external cloud store. The latter
allows to define exercises on very large databases without the
need to download those large datasets to the user’s browser,
but rather the execution backend can read them directly
from the cloud.

Attendees can also see how different dataset variants can
be configured in order to check for corner cases of an SQL
query, such as NULL values in some attributes or either
missing or multiple matching join values. They can also
see how hidden test cases can be used with variations in
the dataset to avoid that students design test-case specific
answers rather than generic queries.

5. REFERENCES
[1] Grok Learning Platform, 2020.

https://groklearning.com/universities.
[2] U. Roehm. Managing and Analysing Data with SQL, 2019.

https://www.sydney.edu.au/units/OLET1301.

[3] Y. N. Silva, I. Almeida, and M. Queiroz. SQL: From
traditional databases to Big Data. In Proceedings of ACM
SIGCSE2016, page 413–418, 2016.

[4] N. Stanger. Semi-automated assessment of SQL schemas via
database unit testing. In Proc. of the 26th Int’l Conf. on
Computers in Education (ICCE), 2018.

[5] A. S. Szalay, J. Gray, A. Thakar, and P. Z. K. et al. The
SDSS SkyServer: public access to the sloan digital sky server
data. In SIGMOD2002, pages 570–581, 2002.

[6] UC Davis. SQL for Data Science, 2020.
https://www.coursera.org/learn/sql-for-data-science/.

[7] P. J. Wagner. The SQL file evaluation (SQLFE) tool: A
flexible and extendible system for evaluation of SQL queries.
In Proceedings of SIGCSE2020, 2020.

[8] J. Widom. DB: Introduction to Databases, 2020.
https://www.classcentral.com/course/
stanford-openedx-db-introduction-to-databases-1006.

2992

https://groklearning.com/universities
https://www.sydney.edu.au/units/OLET1301
https://www.coursera.org/learn/sql-for-data-science/
https://www.classcentral.com/course/stanford-openedx-db-introduction-to-databases-1006
https://www.classcentral.com/course/stanford-openedx-db-introduction-to-databases-1006

	Introduction
	System Overview
	SQL Tutorial Design
	Database Preparation
	Designing Test Cases for SQL
	Teaching Statements with Side Effects
	Student Feedback
	SQL for Data Scientists

	Demonstration Scenario
	Scenario 1: Live Examples and Exercises
	Scenario 2: Live Tutor Helpdesk
	Scenario 3: Course Designer View

	References

