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ABSTRACT
Understanding cause-and-effect is key for informed decision-
making. The gold standard in causal inference is performing
controlled experiments, which may not always be feasible
due to ethical, legal, or cost constraints. As an alternative,
inferring causality from observational data has been exten-
sively used in statistics and social sciences. However, the
existing methods critically rely on a restrictive assumption
that the population of study consists of homogeneous units
that can be represented as a single flat table. In contrast, in
many real-world settings, the study domain consists of het-
erogeneous units that are best represented using relational
databases. We propose and demonstrate CaRL: an end-
to-end system for drawing causal inference from relational
data. In addition, we built a visual interface to wrap around
CaRL. In our demonstration, we will use this GUI to show
a live investigation of causal inference from real academic
and medical relational databases.
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1. INTRODUCTION
The importance of causal inference for making informed

policy decisions has long been recognised in health, medicine,
social sciences, and other domains. However, today’s decision-
making systems typically do not go beyond predictive ana-
lytics and thus fail to answer questions such as “What would
happen to revenue if the price of X is lowered?” While pre-
dictive analytics has achieved remarkable success in diverse
applications, it is mostly restricted to fitting a model to ob-
servational data based on associational patterns [9]. Causal
inference, on the other hand, goes beyond associational pat-
terns to the process that generates the data, thereby enabling
analysts to reason about interventions (e.g., “Would requir-
ing flu shots in schools reduce the chance of a future flu
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Figure 1: CaRL architecture.

epidemic?”) and counterfactuals (e.g., “What would have
happened if past flu shots were not taken?”).

Rubin’s Potential Outcome Framework [10] and Pearl’s
Causal Models [9] are two well-established frameworks which
have been extensively explored in the literature and used
in various applications for estimating causal effects in obser-
vational studies [2, 11, 8, 7, 1]. These causal frameworks,
however, rely on the critical assumption that the units of
study are sampled from a population of homogeneous units;
in other words, the data can be represented in a single flat
table. This assumption is called the unit homogeneity as-
sumption [6, 1]. In many real-world settings, however, the
study domain consists of heterogeneous units that have a com-
plex relational structure; and the data is naturally represented
as multiple related tables. For instance, as presented later in
our demonstration on real data [5], hospitals can record in
several tables information about patients, medical practition-
ers, hospital stays, treatments performed, insurance, bills,
and so on. Standard notions used in causal analysis—such
as units, or the subjects who receive a treatment—no longer
readily apply to relational data, prohibiting us from adopting
existing causal inference frameworks to relational domains.

The CaRL project aims to provide a foundation for causal
inference from relational data. At the heart our framework
is a declarative language that allows researchers to represent
domain knowledge and assumptions as well as ask causal
queries on relational data. Our framework gives semantics
to complex causal queries where the treatment units and
outcome units might be of different types and controlling
for confounding may require performing multiple joins and
aggregates. Using CaRL, we can answer complex causal
queries like: “What is the effect of not having insurance on
mortality of a patient?”

In this demonstration, the attendees will go through the
three key steps of the causal inference from relational data:
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a) ReviewData dataset b) NIS dataset

Figure 2: Relational causal model specification via CaRL on two datasets.

(1) Articulating and encoding their domain knowledge using
a declarative language that consists of Datalog-like rules.
(2) Encoding their causal queries using the same declarative
language. (3) Estimating the results using an algorithm
that constructs a unit-table specific to the query and the
relational causal model by identifying a set of attributes that
are sufficient for confounding adjustment.

As a benchmark for causal inference methods is not yet
available [3], we test on two real-life datasets. Overall, this
demonstration makes the following contributions:

• It presents CaRL, a first-of-its-kind system for causal
inference and policy evaluation from relational data.

• It demonstrates that ignoring the relational structure of
data and performing causal inference on the universal
table obtained from joining base tables leads to spurious
findings and perplexing insights.

• It enables the attendees to experience the challenges
of causal inference from real relational data in the
academic and medical domains to find answers to the
following interesting causal queries:

– How effective is single- vs. double-blinding at
reducing bias in academic peer review?

– What is the effect of hospital size on the afford-
ability of medical care?

2. ARCHITECTURE
The overall architecture of CaRL is shown in Figure 1.

A detailed description of the system can be found on [12].
CaRL allows the users to encode their domain knowledge in
terms of relational causal models, write causal queries, and
estimate the query answer based on data stored in a DBMS.
Specifically, relational causal models represent (large) causal
models in relational domains using a knowledge base that
consists of a few number of first order sentences. The ac-
tual causal model obtained by grounding the formulas in the
knowledge base with all constants in a given domain. The
ground causal models give semantics to complex external
interventions and will be used to answer complex causal

queries. CaRL uses techniques such as embedding and ag-
gregation to construct a flat unit-table from which the query
answer can be estimated using traditional causal inference
methods. A web GUI is provided to facilitate demonstration
and exploration, and is shown in Figures 2-3.

3. DEMONSTRATION OUTLINE
Data. In our demonstration, we will operate on two real

relational databases. (1) ReviewData which consists of pa-
per submissions to previous academic venues, both accepted
and rejected. This is a dataset of 2075 paper submissions by
4490 authors to 10 computer science conferences and work-
shops, spanning the years 2017–2019. Some venues follow a
single-blind review policy, while others follow a double-blind
one. In all cases, the identities of the authors have been
revealed once review concluded. Each submission is associ-
ated with a number of reviews, a numerical score by each
of the reviewers, and an acceptance decision. Additionally,
scholarly information, such as affiliation and citation count,
is associated with each author. (2) NIS which contains med-
ical outcome and insurance data regarding 8 million hospital
stays in the US during the year 2006 [5]. This relational
dataset contains tables for admissions, hospitals and diag-
noses. Columns include type of medical insurance, length
of stay, size of hospital and mortality rate. The NIS only
contains deidentified data and is about 15GB in size. CaRL
uses SQLite and Postgres to store the data in the backend.

Relational Causal Models. Our demonstration will
start by specifying relational causal models (cf. Section 2)
that encode intuitive background knowledge about the data
sets used throughout the demonstration. Relational causal
models consist of a set of Datalog-like rules where each rule
is composed of a head, body and Boolean conjunctive query
(BCQ) and has the format head⇐ body WHERE BCQ. The
head and body are composed of atomic attributes from the
schema, along with free variables and/or constants. For every
set of constants that satisfy the BCQ, the rule encodes a
causal link between the head and body of the corresponding
ground rules obtained by replacing the free variables in the
head and body of the rules with these constants.
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Figure 3: Causal queries, their answers and for comparison, the corresponding naive SQL query. Queries are input and
executed one-by-one, similar to cells in a Jupyter notebook.

An an example in our demonstration we use the following
simple relational causal model for ReviewData:

Prestige[A] ⇐ Qualification[A] WHERE Person(A) (1)

Quality[S] ⇐ Qualification[A],Prestige[A] WHERE Author(A,S)
(2)

Score[S] ⇐ Prestige[A] WHERE Author(A,S) (3)

Score[S] ⇐ Quality[S] WHERE Submission(S) (4)

For instance rule (3) encodes the assumption that for every
submission S and author A that satisfies the predicate Au-
thor(A, S) (i.e. “A is an author on S”), the attributes in the
body (prestige of the author A) causally affect the attribute
in the head (review score P receives). Specifically, this rule
is a template for generating ground causal rules obtained
by grounding, i.e., replacing the free variables of the rule
with constants. For example, given the instance People =
{Bob,Carlos, Eva}, Submissions = {s1, s2, s3}, Authors =
{(Bob, s1), (Eva, s1), (Eva, s2), (Eva, s3), (Carlos, s3)} The
following ground causal rules are obtained from (3):

Score[s1] ⇐ Prestige[Bob], Prestige[Eva]

Score[s2] ⇐ Prestige[Eva]

Score[s3] ⇐ Prestige[Carlos], Prestige[Eva]

These ground rules can be represented graphically using the
causal diagram in Figure 2. Hence, relational causal models
can be seen as a template for generating causal diagrams.
Similarly, (1) specifies the assumption that the qualification
of an author causally affects their prestige, (2) encodes that
quality of a paper is causally affected by the prestige (and
thus access to resources) and qualification of its authors, and
(4) encodes the assumption that the score of a submission
causally depends on its quality.

In our demonstration we use the following relational causal
model for the medical insurance dataset, NIS:

Bill[P ] ⇐ Illness Severity[P] (5)

Bill[P ] ⇐ Private Ownership[H]

WHERE Admitted(P,H) (6)

Bill[P ] ⇐ Surgery Performed[P] (7)

Admitted to large[P ] ⇐ Illness Severity[P] (8)

The rule (5) above encodes the belief that more severe
illnesses cause higher bills, (6) encodes that privately owned
hospitals bill patients differently from public hospitals, (7)
holds that surgical admissions cause greater medical expenses
than diagnostic admissions, and (8) indicates that a more
severe class of illness causes admission to a large hospital
rather than a small hospital.

The interface that CaRL provides for communicating this
background knowledge is illustrated in Figure 2, along with
the partial previews of the causal diagrams that the system
provides. Once we perform the initial demo, we will allow
the audience to experiment with their own causal rules.

Causal Queries. CaRL supports three types of causal
queries: (1) Average Treatment Effect (ATE) queries which
estimate the difference in outcome between all units receiv-
ing the treatment and none receiving it. For example the
following computes the ATE of Prestige of authors on Score
of papers across double-blind and single blind conferences
(dictated by the GROUP BY operator), i.e., it compares pa-
pers’ scores in two hypothetical worlds in which all authors
are and are not affiliated with prestigious institutions.

Score[S] ⇐ Prestige[A]? GROUP BY Blinding (9)

(2) Aggregated Response queries, which allow estimating
the effect of a treatment on an aggregation of response vari-
ables. The following is an example of this type of query,
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indicated by the use of the prefix AVG , which compares the
average hospital bill in the two hypothetical worlds in which
all patients are admitted to all large hospitals vs all small
hospitals (as measured by number of beds):

AVG Bill [H] ⇐ Admitted to Large[P ]? (10)

(3) Isolated/Relational Effect queries, which allow decom-
posing treatment effects into those caused by one’s own
treatment and those caused by peers’ treatments. This al-
lows for studying network effects in the data, for example
comparing the effects of the coauthors’ prestige with the
effect of an author’s own prestige on a paper’s acceptance.
The following query of this type, indicated by the usage of
WHEN LESS THAN to define the threshold used for peer treat-
ments, performs two-way comparisons of the hypotheticals:
no prestigious authors and no prestigious coauthors, all pres-
tigious authors and no prestigious coauthors, no prestigious
authors and all prestigious coauthors:

Score[S] ⇐ Prestige[A]? WHEN LESS THAN 1/3

PEERS TREATED GROUP BY Blinding (11)

The interface for querying, as well as sample results, can
be seen in Figure 3. For convenience and comparison, the
interface also allows the user to execute simple SQL queries
and visualize them.

As with the relational causal model, the audience can
interact with CaRL and pose customized queries of their
own choosing after the initial demonstration. For example,
the audience may be interested in the effect of different
treatments (e.g. public vs. private ownership) or different
outcomes (e.g. mortality rate).

Query Answering. The query answering component of
CaRL accepts as input a causal query, a relational database
and a ground causal model. It then, performs a static analysis
of the causal query, and it constructs a unit-table specific to
the query and the relational causal model by identifying a set
of attributes that are sufficient for confounding adjustment.
We refer the reader to [12] for more details.

Result interpretation. For query (9), CaRL estimates
that in single-blind conferences, prestigious authors are 6%
more likely to be accepted, while in double-blind conferences
they are 0.1% more likely. The corresponding SQL query
obtained by joining all tables finds the reduction in bias
is only 11% vs 9%, a much smaller change. We note that
experimental studies favor our result in finding a large de-
biasing effect due to double-blinding [13].

Query (11), which decomposes query (9) into the effect of
an author’s own prestige and his or her coauthors’ prestige
estimates that 5% is attributable to the author, while 1%
is attributable to the coauthors. This is in accordance with
intuition.

On Query (10), we find that admittance to a large hospital
reduces costs by 11%. The corresponding SQL query run
on the universal table obtained by joining all tables finds
that patients who entered a large hospital had bills increase
by 33%. We argue that our result is more accurate: large
hospitals benefit from economies of scale (which reduce the
actual cost of care) while also treating more severe cases
(which increase their correlation with high cost care). In
fact, insurance literature supports the existence of healthcare
economies of scale and it is the policy of several national
governments to consolidate small hospitals to increase care
efficiency [4].

In both cases, CaRL identifies the correct trend while
naive SQL queries that ignore the relationality of data lead
to incorrect and perplexing insights.

4. CONCLUSION
We have outlined CaRL, a framework for causal inference

in relational domains. Key components are the domain-
specific language, which captures essential information about
the mechanisms of the system under study and allows for
expressive queries; an interpreter that creates a causal model,
summarizes and embeds it such that it can be computed,
and provides estimates of the average treatment effect, along
with other causal quantities. We demonstrate CaRL on two
real-life datasets from academia and medicine, demonstrating
that it avoids the false discoveries made by existing methods
and that its predictions are in line with experts’ expectations.
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