
ESTOCADA: Towards Scalable Polystore Systems

R. Alotaibi‡ B. Cautis§ A. Deutsch‡ M. Latrache† I. Manolescu†

Y. Yang ‡

†Inria & Institut Polytechnique de Paris ‡UC San Diego §Univ. Paris-Saclay
{ralotaib, deutsch, yiy032}@eng.ucsd.edu, bogdan.cautis@u-psud.fr,

{moustafa.latrache, ioana.manolescu}@inria.fr

ABSTRACT
Big data applications increasingly involve diverse datasets,
conforming to different data models. Such datasets are rou-
tinely hosted in heterogeneous stores, each capable of han-
dling one or a few data models, and each efficient for some,
but not all, kinds of data processing. Systems capable of
exploiting disparate data in this fashion are usually termed
polystores. A current limitation of polystores is that appli-
cations are written taking into account which part of the
data is stored in which store and how. This fails to take
advantage of (i) possible redundancy, when the same data
may be accessible (with different performance) from distinct
data stores; (ii) previous query results (in the style of ma-
terialized views), which may be available in the stores.

We propose to demonstrate ESTOCADA [4], a novel ap-
proach that can be used in a polystore setting to transpar-
ently enable each query to benefit from the best combination
of stored data and available processing capabilities. The
system leverages recent advances in the area of view-based
query rewriting under constraints, which we use to describe
the various data models and stored data.

PVLDB Reference Format:
R. Alotaibi, B. Cautis, A. Deutsch, M. Latrache, I. Manolescu,
Y. Yang. ESTOCADA: Towards Scalable Polystore Systems.
PVLDB, 13(12): 2949 - 2952, 2020.
DOI: https://doi.org/10.14778/3415478.3415516

1. INTRODUCTION
Big Data applications increasingly involve diverse data

sources, such as flat or nested relations, structured or un-
structured documents, data graphs, etc. Such datasets are
routinely hosted in heterogeneous stores. One reason is that
the fast pace of application development prevents consoli-
dating all the sources into a single data format and load-
ing them into a single store. Instead, the data model of-
ten dictates the choice of the store, e.g., JSON documents
get loaded in a JSON store. Systems capable of exploit-
ing diverse data in this fashion are termed polystores [8, 3].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415516

Query evaluation in a polystore recalls to some extent medi-
ator systems; in both cases, sub-queries are delegated to the
underlying stores when possible, while the remaining opera-
tions are applied in the integration layer. Polystores process
a query assuming that each of its input datasets is available
in one store (chosen for its support of a dataset data model).

We identify two limitations of such architectures. First,
they do not exploit possible data redundancy: the same
data could be stored in several stores, some of which may
support a query operation much more efficiently than others.
Second, they are unable to take advantage of the presence of
previously computed query results, which may be available
in one or several stores (in the style of materialized views),
when the data model of the queried dataset differs from the
data model of the store hosting the view.

To overcome these limitations, we have described in [4]
ESTOCADA, a novel approach for allowing an application
to transparently exploit data stored in a set of heterogeneous
stores, as a set of (potentially overlapping) data fragments;
if fragments store results of partial computations applied
on the data, we show how to speed up queries using them
as materialized views, which reduces query processing effort
and seeks to take maximum advantage of the efficient query
processing features of each store. Our approach does not re-
quire any change to the application code. The example below
illustrates these performance-enhancing opportunities.

1.1 Motivating Scenario
Dataset. The Medical Information Mart for Intensive Care
III (MIMIC-III) [11] dataset comprises health data for more
than 40000 Intensive Care Unit (ICU) patients. The to-
tal size is 46.6 GB, and it consists of: (i) all charted data
for all patients and their hospital admission information,
ICU stays, laboratory measurements, caregivers’ notes, and
prescriptions; (ii) the role of caregivers and (iii) diagnosis
related groups’ codes descriptions.
Our motivation query Q1 is: “for the patients transferred
into the ICU due to “coronary artery” issues, with abnor-
mal blood test results, find the date/time of their admis-
sion, previous location (e.g., clinic referral), and the drugs of
type “additive” prescribed to them”. Evaluating this query
through AsterixDB [1] (v0.9.4) JSON store took more than
25 minutes; this is because the system does not support full-
text search by an index if the text occurs within a JSON
array. In SparkSQL (v2.3.2), the query took more than an
hour, due to its lack of indexes for selective data access. In
the MongoDB JSON store (v4.0.2), it took more than 17
minutes due to its limited join capability. Finally, in Post-
greSQL with JSON support (v9.6), Q1 took 12.6 minutes.

2949



Now, consider we had at our disposal three materialized
views, which pre-compute partial results for Q1. Consider
a SOLR (well-known full-text search engine) sever stores a
view V1 storing the IDs of patients and the caregivers’ notes
on the patients’ stay. Full-text search on V1 for ”coronary
artery” allows to efficiently retrieve the respective patients’
IDs. Further, consider that a PostgreSQL server stores a
view V2 with the patients information and their hospital ad-
mission information such as patients’ location prior to ad-
mission. Finally, assume available a view V3, which stores
all drugs prescribed for each patient with “abnormal blood”
test results, as a JSON document stored in PostgreSQL.

Using these views, we can evaluate Q1 by a full-text search
on V1 followed by a BindJoin with the result of filtering
V3, and projecting prescribed drugs as well as patients’ ad-
mission time and prior location from V2. Using a Poly-
store Java-based execution engine [4] (implementing select,
project, join, etc.) to access the views and join them, this
takes about speedup of 5× w.r.t. plain JSON query evalu-
ation in SparkSQL and AsterixDB. This is also a speedup
of 2× and speedup of 3× w.r.t. plain JSON query evalu-
ation in MongoDB and Postgres, respectively.

Lessons learned. We can draw the following conclusions
from the above example. (1.) Unsurprisingly, materialized
views improve query performance since they pre-compute
partial query results. (2.) More interestingly: material-
ized views can strongly improve performance even when
stored across several data stores, although such a hybrid
scenario incurs a certain performance penalty due to the
marshaling of data from one data model/store to another.
In fact, exploiting the different strengths of each system
(e.g., SOLR’s text search capability) is the second reason
(together with materialized view usage) for the performance
gains. (3.) Different system combinations work best for dif-
ferent queries. Thus it must be easy to add/remove a view
in one system, without disrupting other queries that may
be currently well-served. As known from classical data in-
tegration research [9], such flexibility is attained through
the “local-as-view” (LAV) approach, where the content of
each data source is described as a view. Thus, adding or
removing a data source from the system is easily imple-
mented by adding or removing the respective view defini-
tion. (4.) Application data sets may come in a variety of
formats. However, while the storage model may change as
data migrates, applications should not be disrupted. A sim-
ple way of achieving this is to guarantee them access to the
data in its native format, regardless of where it is stored.

Observe that the combination of 2., 3. and 4. above goes
well beyond the state of the art. Most LAV systems assume
both the application data and the views are organized ac-
cording to the same data model. Thus, their view-based
query rewriting algorithms are designed specifically within
the bounds of that model, e.g., relational or XML. Different
from these, some LAV systems [12, 7] allow different data
models for the stored views, but consider only the case when
the application data model is XML. As a consequence, the
query answering approach adopted in these systems is tai-
lored toward the XML data model and query language. In
contrast, we aim at a unified approach, supporting any data
model both at the application and at the view level.

The core technical question to be answered in order to
attain such performance benefits without disrupting appli-
cations is view-based query rewriting across an arbitrary set

Table 1: Supported Languages and Data Stores
Data model Query language/API Systems

Relational SQL Major vendors

JSON SparkSQL Apache Spark

JSON AQL/SQL++ Apache AsterixDB

JSON SQLw/JSON PostgreSQL

JSON MongoDB QL MongoDB

Array/Tensor DML Apache SystemML

Array/Tensor TensorFlow APIs TensorFlow

Key-value Redis API Redis

Full-text and JSON Solr API Apache Solr

Graph Cypher Neo4j

XML XQuery, XPath Saxon

of data models. Our research paper [4] covers the technical
details of ESTOCADA; here, we overview the system and
detail our demonstration walkthrough. Table 1 depicts the
supported systems, languages and data models; those added
since the publication of [4] appear in bold.

Relation with prior work. A much earlier version of
ESTOCADA was presented in [6]. This demonstration im-
proves over it through several contributions at the level
of: (i) modeling : support for the array (matrix), JSON,
and graph models; (ii) algorithms: optimizing the state-
of-the-art algorithm for relational view-based rewriting un-
der constraints to make it scale to a polytsore setting [4],
and (iii) systems, by deploying ESTOCADA on top of three
existing polystore systems: BigDAWG [8], SparkSQL, and
Tatooine [5] and showing the performance benefits that our
approach can bring to these systems.

2. REWRITING PROBLEM STATEMENT
We assume a set of data model-query language pairs P =

{(M1, L1), (M2, L2), . . .} such that for each 1 ≤ i, an Li

query evaluated against an Mi instance returns an answer
which is also an Mi instance. The same model may be as-
sociated to several query languages (e.g., AsterixDB and
MongoDB have different query languages for JSON).

We consider expressive languages for realistic settings, sup-
porting conjunctive querying, nesting, aggregation, and ob-
ject creation. Without loss of generality, we consider that a
language is paired with one data model only.

We consider a polystore setting comprising a set of stores
S = {S1, S2, . . .} such that each store S ∈ S is characterized
by a pair (MS , LS) ∈ P, indicating that S stores instances
of the model MS and evaluates queries expressed in LS .

We consider a set of datasets D = {D1, D2, . . .}, such that
each dataset D ∈ D is an instance of a data model MD.
A dataset D is stored as a set of (potentially overlapping)
materialized views {V 1

D, V 2
D . . .}, such that for every 1 ≤

j, V j
D is stored within the storage system Sj

D ∈ S. Thus, V j
D

is an instance of a data model supported by Sj
D

1.
We consider a Polystore integration language IL [8, 3],

capable of expressing computations to be made within each
store and across all of them, as follows:

• For every store S and query qS ∈ LS , IL allows speci-
fying that qS should be evaluated over S;

• Further, IL allows expressing powerful processing over
the results of one or several such source queries.

1For uniformity, we describe any collection of stored data
as a view, e.g., a table stored in an RDBMS is an (identity)
view over itself.

2950



View V1:
FOR AJ:{ SELECT M.patientID AS patientID ,

A.admissionID AS admissionID ,
A.report AS report

FROM MIMIC M, M.admissions A}
RETURN SJ:{"patientID":patientID ,

"admissionID":admissionID ,
"report":report}

Figure 1: QBTXM Definition of View V1

We assume available a cost model which, given an IL ex-
pression e, returns an estimation of the cost of evaluating e
(including the cost of its source sub-queries). We outline the
concrete model we use in [4]. We term a rewriting of a query
q an integration query expressed in IL, which is equivalent
to q. We consider the following rewriting problem:

Definition 1 (Cross-model rewriting problem).
Given a query q ∈ IL over several datasets Di, 1 ≤ i ≤ n,
and a set of views V materialized over these datasets, find
the equivalent rewriting r of q using the views, which mini-
mizes the cost estimation c(r).

3. ESTOCADA OVERVIEW
We describe below our approach for solving the above

rewriting problem and the technical challenges this raises.
We refer readers to our paper [4] for details.

Polystore Integration Language. We designedQBTXM∈
IL, a concrete polystore integration language. QBTXM fol-
lows a block-based design, with blocks organized into a tree,
each block can be expressed in a different query language
and carry over data of a different data model. Other existing
polystore integration languages, e.g., [8] resemble QBTXM .

Cross-Model Views. Each materialized view V is defined
by an IL query; it may draw data from one or several data
sources, of the same or different data models. Each view
returns (holds) data following one data model, and is stored
in a data store supporting that model. Figure 1 depicts
the QBTXM definition of view V1 from Section 1. FOR
clauses bind variables, while RETURN clauses specify how
to construct new data based on the variable bindings. Blocks
are delimited by braces annotated by the language whose
syntax they conform to. The annotations AJ and SJ stand
for AsterixDB’s SQL++ and SOLR search, respectively.

Encoding into a Single Pivot Model. We reduce the
cross-model rewriting problem to a single model setting,
namely relational constraint-based query reformulation, as
follows (see Figure 2; yellow background identifies the areas
where we bring contributions in this work.). First, we encode
relationally the structure of original datasets, the views’ def-
initions and the application query. Note that the relations
used in the encoding are virtual, i.e., no data is migrated into
them; they are also hidden, i.e., invisible to both the appli-
cation designers and to users. They only serve to support
query rewriting via relational techniques.

The virtual relations are accompanied by integrity con-
straints that reflect the features of the underlying data mod-
els (for each model M , a set enc(M) of constraints). The
pivot model is fully detailed in [4].

From Cross Model to Single Model Rewriting. Our
reduction translates the declaration of each view V to addi-
tional constraints enc(V ) that reflect the correspondence be-
tween V ’s input data and its output. Constraints have been

Figure 2: Outline of our approach

used to encode single-model views and correspondences be-
tween source and target schemas in data exchange [9]. The
novelty here is the rich collection of supported models, and
the cross-model character of the views. An incoming query
Q ∈ IL is encoded as a relational query enc(Q) over the
relational encoding of the datasets it refers to.

The reformulation problem is thus reduced to a purely
relational setting: given a relational query enc(Q), a set of
relational integrity constraints encoding the views, enc(V1)∪
. . . ∪ enc(Vn), and the set of relational constraints obtained
by encoding the data models M1, . . . ,Ml, find the queries
RW i

r expressed over the relational views, for some integer k
and 1 ≤ i ≤ k, such that each RW i

r is equivalent to enc(Q)
under these constraints.

The challenge in coming up with the reduction consists
in designing a faithful encoding, i.e., one in which rewritings
found by (i) encoding relationally, (ii) solving the resulting
relational reformulation problem, and (iii) decoding each
reformulation RW i

r into a IL query R = dec(RW i
r) over the

views in the polystore, correspond to rewritings found by
solving the original problem. That is, R is a rewriting of Q
given the views {V1, . . . , Vn} if R = dec(RW i

r), where RW i
r

is a relational reformulation of enc(Q) under the constraints
obtained from encoding V1, . . . , Vn, M1, . . . ,Ml.

Relational Rewriting Using Constraints. To solve the
single-model rewriting problem, we need to reformulate rela-
tional queries under constraints. The algorithm of choice is
the recent Provenance-Aware Chase& Backchase algorithm
(PACB, in short) [10]. PACB was designed to work with
relatively few views and constraints. However, in the poly-
store setting, each of the many datasources is described by
a view, and each view is encoded by many constraints. ES-
TOCADA also includes a set of optimization techniques we
brought to PACB to make it scale in a polystore setting [4].

Decoding Relational Rewritings. On each relational
reformulation RW i

r issued by our modified PACB rewriting
engine, a decoding step dec(RW i

r) is performed to translate
RWr into IL syntax by (i) grouping the reformulation atoms
by the view they pertain to, (ii) translating each such atom
group into a query which can be evaluated over a single view,
and (iii) if several views reside in the same store, identify
the largest subquery that can be delegated to that store.

Choice of an Efficient Rewriting. Decoding may lead to
several rewritings R1, . . . , Rk; for each Ri, several evaluation
plans may lead to different performance. For each rewriting
Ri, we denote by c(Ri) the lowest cost of an evaluation plan
that we can find for Ri; we choose the rewriting Rbest that
minimizes this cost. We architectured ESTOCADA to take
the cost model as a configuration parameter2.

2Devising cost models for polystore settings is beyond the
scope of this paper

2951



(a) Browsing through datasets (b) Query rewriting (c) Understanding constraints

Figure 3: Screenshots of various ESTOCADA demonstration GUIs

4. DEMO WALKTHROUGH
The ESTOCADA approach can be combined with (ap-

plied on top of) any polystore, to enhance its performance
through exploiting materialized views. We propose to demon-
strate it on three existing polystores: BigDAWG [8], Spark-
SQL, and Tatooine [5], with underlying data stores: Post-
greSQL, PostgresSQL with JSON support, Apache Solr, and
Apache SystemML. We extended ESTOCADA to support
array(matrix) and graph data models in addition to the sup-
ported data models in [4].

We propose to show ESTOCADA in action on a set of sce-
narios similar to the one described in Section 1. We use three
datasets: (i) MIMIC-III [11], described in Section 1.(ii)
GDELT [2], which captures worldwide events (e.g., protests,
peace appeals) and consists of the events’ structural infor-
mation (e.g., event’s id and date), events’ actors, geogra-
phy, and various links to articles describing each event. The
dataset is in a relational form, and 26GB (2015 events) in
file size. (iii) GENOMICS [13], comprising patients, gene
metadata and microarray data (matrix form-dense). The
size of the dataset is 32GB.

Demo attendees can interact with the systems through
the following interfaces:

Datasets Interface. This allows to browse, for each data
source, the schema (or its structural summary, for semistruc-
tured data such as JSON lacking a schema), and sample of
the data, to get familiar with its structure and help formu-
late queries (see Figure 3(a)).

Query Rewriting Interface. The user can interact with
this interface by selecting a dataset, a polystore system
query language (QBTXM , SparkSQL or BigDAWG) to use,
and a query (expressed in the chosen polystore’s system
query language) from a workload we prepared, as shown in
Figure 3(b). Each dataset comes with a previously specified
workload, and a set of stored overlapping/redundant views
(their definitions, storage model, and location will be shown
to the user); the users also have the option to write their
queries and views. On the same interface, the user can in-
spect the cross-model query rewriting, its translation in the
pivot model, and its translated form in the chosen language.

Understanding Constraints Interface. This interface
enables the users to select one of the supported data mod-
els, inspect the relational integrity constraints that capture
the properties of that model, disable/enable/add some con-
straints, and observe the query rewritings thus obtained. In
the same interface, we provide a real-time visualization of
which constraints are exploited by the rewriting engine.

Performance Enhancement Interface. In this interface,
users can see the performance comparison between a native
polystore query execution and the one enabled by cross-
stores views-based rewriting.

5. CONCLUSION
The goal of our demonstration is to show that query eval-

uation performance in polystore architectures can be signif-
icantly enhanced by exploiting materialized views. In such
a setting, operating over multiple data stores, with poten-
tially different data models, dramatic performance enhance-
ments can be attained by materializing the right view in the
right store, that is: the one which can provide the best per-
formance for the operations that need to be applied on it.
ESTOCADA supports this functionality by enabling local-
as-view query rewriting over a large range of data models
and heterogeneous stores. Its immediate benefit is flexibility
since it enables taking advantage in an optimal way of any
combination of underlying data stores. At the technical core
of ESTOCADA lies the constraint-based query rewriting.

As part of our future work, we will devise cost-based rec-
ommendation algorithms to pick the best possible placement
of a materialized view.

6. REFERENCES
[1] AsterixDB. https://asterixdb.apache.org/.
[2] GDELT.https://www.gdeltproject.org/data.html.
[3] D. Agrawal et al. RHEEM: enabling cross-platform data

processing - may the big data be with you! PVLDB,
11(11):1414–1427, 2018.

[4] R. Alotaibi et al. Towards scalable hybrid stores:
Constraint-based rewriting to the rescue. In SIGMOD,
2019.

[5] R. Bonaque et al. Mixed-instance querying: a lightweight
integration architecture for data journalism. PVLDB,
9(13):1513–1516, 2016.

[6] F. Bugiotti et al. Flexible hybrid stores: Constraint-based
rewriting to the rescue. In ICDE, 2016.

[7] A. Deutsch et al. MARS: A system for publishing XML
from mixed and redundant storage. In Proc. of VLDB,
pages 201–212, 2003.

[8] J. Duggan et al. The BigDAWG polystore system. In
SIGMOD, 2015.

[9] A. Halevy. Answering queries using views: A survey. The
VLDB Journal, 10(4):270–294, 2001.

[10] I. Ileana et al. Complete yet practical search for minimal
query reformulations under constraints. In SIGMOD, 2014.

[11] A. Johnson et al. MIMIC-III. Available at:
http://www.nature.com/articles/sdata201635, 2016.

[12] I. Manolescu et al. Answering XML queries on
heterogeneous data sources. In Proc. of VLDB, pages
241–250, 2001.

[13] R. Taft et al. Genbase: A complex analytics genomics
benchmark. In SIGMOD, 2014.

2952


