
LMFAO: An Engine for Batches of Group-By Aggregates
Layered Multiple Functional Aggregate Optimization

Maximilian Schleich
University of Washington

schleich@cs.washington.edu

Dan Olteanu
University of Zurich

olteanu@ifi.uzh.ch

ABSTRACT
LMFAO is an in-memory optimization and execution engine
for large batches of group-by aggregates over joins. Such
database workloads capture the data-intensive computation
of a variety of data science applications.

We demonstrate LMFAO for three popular models: ridge
linear regression with batch gradient descent, decision trees
with CART, and clustering with Rk-means.

PVLDB Reference Format:
Maximilian Schleich and Dan Olteanu. LMFAO: An Engine for
Batches of Group-By Aggregates. PVLDB, 13(12): 2945-2948,
2020.
DOI: https://doi.org/110.14778/3415478.3415515

1. LMFAO’S APPROACH TO LEARNING
OVER RELATIONAL DATABASES

LMFAO is born out of the necessity to efficiently sup-
port ubiquitous data science workloads that involve learn-
ing models over relational queries [5]. From a database per-
spective, the data-intensive computation required by such
workloads can be expressed as batches of group-by aggre-
gates over the join of the underlying database relations. By
tightly integrating the query processing and the learning
tasks, LMFAO can outperform mainstream solutions based
on TensorFlow and scikit-learn over Pandas by several or-
ders of magnitude [5]. Such workloads pose new challenges
to relational data processing engines as they require the
computation of hundreds to thousands of similar yet distinct
group-by aggregates over the natural join of database rela-
tions. Prior experiments with commercial and open-source
database systems including MonetDB and PostgreSQL con-
firm that these challenges are not yet addressed satisfactorily
by existing database technology [5].

To address these challenges, LMFAO puts forward a lay-
ered architecture of optimizations that chiefly target com-
putation sharing at all data processing stages, factoring out
repeated computation, and code specialization.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/110.14778/3415478.3415515

Aggregate
Batch

Join
Tree

Find
Roots

Aggregate
Pushdown

Merge
Views

View Generation Layer

Group
Views

Attribute
Order

Decompose
Aggregates

Factorize
Computation

Multi-Output Optimization Layer

Data
Structures

Loop
Synthesis

Inline
Function Calls

Parallelize
Computation

Code Generation Layer

Figure 1: The layers of LMFAO.

We demonstrate LMFAO for three popular models: ridge
linear regression using batch gradient descent, decision trees
using CART [2], and clustering using Rk-means [3]. We
learn them over commercial (Retailer [5]; 84M tuples) and
public (Favorita [4]; 120M tuples) multi-relational datasets,
which have been previously used for benchmarking LMFAO
and its predecessors [6, 1, 5, 3]. Prior and on-going work
by the authors (https://fdbresearch.github.io) showed
that the LMFAO approach is useful for a variety of further
discriminative and generative models, e.g., Generalized Lin-
ear Models, Support Vector Machines, (robust) PCA, Fac-
torization Machines, and Sum-Product Networks.

2. LMFAO BY EXAMPLE
Figure 1 depicts the layered architecture of LMFAO. We

next explain these layers using an example with three group-
by aggregate queries over the Favorita dataset [4], whose
schema is depicted in Figure 2; D is the natural join S 1

T 1 R 1 O 1 H 1 I of all relations, h and g are user-defined
aggregate functions returning numerical values.

Q1 = SELECT SUM(units) FROM D

Q2 = SELECT store,SUM(g(item)*h(date)) FROM D GROUP BY store

Q3 = SELECT class,SUM(units*price) FROM D GROUP BY class

The View Generation layer takes the batch of queries,
the database schema, and cardinality constraints (e.g., sizes
of relations and attribute domains) and produces one query
plan for all queries. The backbone of this plan is a join tree.

In the absence of group-by clauses, LMFAO computes
each query Q in one bottom-up pass over the join tree by

2945



Sales: date, store, item, units, promo

Holidays: date, htype, locale, transferred

StoRes: store, city, state, stype, cluster

Items: item, family, class, perishable

Transactions: date, store, txns

Oil: date, price

Sales

Transactions

StoRes Oil

Items

Holidays

VT
→
S

VR
→
T

V
O
→
T

V
H
→
S

VI→S

VS→I

Q1Q2

Q3

Q1, Q2, VS→I

VT→S

VR→T VO→T

VI→S

VH→S

Q3 Group 6

Group 5

Group 1 Group 2

Group 4

Group 2

Group 3

Group 7

Figure 2: (left) The schema for the Favorita dataset. (middle) A join tree for this schema with directional views and three
queries, partitioned in 7 groups. (right) The dependency graph of the groups of views and output queries.

decomposing it into views computed along each edge in the
tree. The view at an edge going out of a node n computes
the subquery that is the restriction of Q to the attributes in
the subtree rooted at n and over the join of the relation at
n and of the views at the incoming edges of n.

In the presence of group-by clauses, these views would
have to carry the values for the group-by attributes along
the paths from leaves to the root of the join tree. These
views may be large and require significant compute time.

To alleviate this problem, one approach is to use a dif-
ferent join tree for each query so as to minimize the sizes
of these views, e.g., by choosing a tree whose root has the
group-by attributes of the query with the largest domains.
This approach is however expensive as it would require to
recompute the joins for each query. There is also no sharing
of computation across the queries.

Instead, LMFAO compromises between the two aforemen-
tioned approaches. It uses one join tree for all queries, but
assigns one root per query (using a simple heuristic [5]).
Each query is thus decomposed into one view per edge in
the join tree in a top-down traversal starting at its assigned
root. This means that some edges may be traversed in both
directions. This can reduce the sizes of the views and in-
crease the sharing of their computation, thereby reducing
the overall compute time. In our example, we choose Sales
as root for Q1 and Q2, and Items as root for Q3.

After each query is decomposed into views at edges in
the join tree, LMFAO merges views whenever they have the
same direction and group-by attributes. A single view may
thus be used for several queries. Figure 2 (middle) depicts
the merged views for Q1, Q2, and Q3. Several edges in the join
tree only have one view, which is used for all three queries.

The Multi-Output Optimization layer groups the vie-
ws and output queries going out of a node such that they
can be computed together over the join of the relation at
the node and of its incoming views. For our running exam-
ple, LMFAO groups Q1, Q2, and VS→I because they can be
computed together over the join of Sales with the incoming
views VT→S , VH→S , and VI→S . The groups form a depen-
dency graph as shown in Figure 2 (right).

LMFAO constructs a multi-output execution plan for each
group that computes all of its outgoing views and output
queries in one pass over the relation at the node and using
lookups into the incoming views. This is yet another in-
stance of sharing in LMFAO: The computation of different
views share the scan of the relation at the node.

item

date

store

β0 = 0;
foreach i ∈ πitem(S 1item VI→S)

α1 = VI→S(i); α2 = g(i) · α1;

β1 = 0;
foreach d ∈ πdate(σitem=iS 1date VH→S 1date VT→S)

α3 = VH→S(d); α4 = h(d) · α2 · α3;

β2 = 0;
foreach s ∈ πstore(σitem=i,date=dS 1store σdate=dVT→S)

α5 = VT→S(d, s);

β3 = 0; α6 = |σitem=i,date=d,store=sS| · α4 · α5;
foreach u ∈ πunitsσitem=i,date=d,store=sS

β3 += u;

β2 += β3 · α5;
if Q2(s) then Q2(s) += α6 else Q2(s) = α6;

β1 += β2 · α3;

β0 += β1 · α1; VS→I(i) = β1;
Q1 = β0;

Figure 3: Multi-output execution plan for Q1, Q2, VS→I .

The execution plan for a group is subject to fine-grained
optimizations, e.g., factorized aggregate computation and
shared computation. To enable them, LMFAO constructs
a total order on the join attributes of the node relation.
The relation and the incoming views are organized logically
as tries: first grouped by the first attribute in the order,
then by the next one in the context of values for the first,
and so on. LMFAO then decomposes the group computation
into simple arithmetic statements and lookups into incoming
views that are executed at different levels in the tries.

Figure 3 exemplifies the execution plan for Group 6 in
the dependency graph of Figure 2. The attribute order for
the trie iteration is shown on the left. For simplicity of ex-
position, we assume that incoming and outgoing views are
functions that map tuples over their group-by attributes to
aggregates. The computation of the outgoing views is de-
composed into partial aggregates, which are pushed past
loops whenever possible (loop invariant code motion) and
stored as local variables (α’s) or running sums (β’s). This
code optimization decreases the number of arithmetic opera-
tions and dynamic accesses to incoming and outgoing views.
For instance, we only look up into VI→S once for each item
value and not for each (item, date, store) triple. Similarly,
we only update the result to Q1 once at the very end. This

2946



optimization also allows for sharing computation across the
group. For instance, VS→I shares most of its computation
with Q1, reflected by the running sum β1.

Finally, the Code Generation layer compiles the multi-
output execution plan for each group into efficient, low-level
C++ code specialized to the database schema and the join
tree. This layer also performs low-level code optimizations,
e.g., optimizing cache locality, choosing data structures for
the views such as sorted arrays and (un)ordered hashmaps,
and inlining function calls. LMFAO computes the groups in
parallel by exploiting both task and domain parallelism.

3. FROM LEARNING TO AGGREGATES
We next show the aggregates needed for learning the three

models. LMFAO computes these aggregates over the non-
materialised dataset D, which is defined by a feature extrac-
tion query with n attributes over a multi-relational database.

Linear Regression models are linear functions:

LR(x) = 〈θ,x〉 =
∑
j∈[n]

θj · xj .

with parameters θ = (θ1, . . . , θn) and feature vector x =
(x1, . . . , xn). We assume without loss of generality that (1)
x1 only takes value 1 and θ1 is the intercept of the model,
and (2) the label is part of the feature vector x and its
corresponding parameter is fixed to −1.

We learn the parameters θ using batch gradient descent
(BGD), which requires the computation of the least-squares
objective function J(θ) and its gradient ∇J(θ):

J(θ) =
1

2|D|θ
>
(∑

x∈D

xx>
)
θ +

λ

2
‖θ‖2

∇J(θ) =
1

|D|

(∑
x∈D

xx>
)
θ + λθ

The data-intensive computation of the optimization algo-
rithm is given by Σ =

∑
x∈D xx

>, which defines the non-
centered covariance matrix. The (j, k)-entry in Σ accounts
for the pairwise multiplication of attributes Xj and Xk. LM-
FAO computes each of these entries as one aggregate query.

If both Xj and Xk are continuous attributes, we compute:

SELECT SUM(Xj ∗ Xk) FROM D

Categorical attributes are one-hot encoded in a linear re-
gression model. In LMFAO, such attributes become group-
by attributes. If only Xj is categorical, we compute:

SELECT Xj,SUM(Xk) FROM D GROUP BY Xj

If both Xj and Xk are categorical, we compute instead:

SELECT Xj, Xk,SUM(1) FROM D GROUP BY Xj, Xk

For the Retailer dataset, LMFAO computes 814 aggre-
gates to learn the linear regression model [5]. Since Σ does
not depend on the parameters θ, the aggregates are com-
puted once and then reused for all BGD iterations.

Decision Trees are popular machine learning models
that use trees with inner nodes representing conditional con-
trol statements to model decisions and their consequences.
Leaf nodes represent predictions for the label. We focus on
learning decision trees for regression scenarios.

We learn the tree with the seminal CART algorithm [2],
which greedily constructs the tree one note at a time. The al-
gorithm learns binary trees, with the inner nodes represent-
ing threshold conditions Xj op t, where op ∈ {≤,≥,=, 6=}.
For each node N , the algorithm explores all attributes Xj

and possible thresholds tj to find the condition Xj op tj
that minimizes the variance of the label Y :

VARIANCE =
∑

(x,y)∈T

y2 − 1

|T |

( ∑
(x,y)∈T

y
)2

where T is the fragment of the dataset D that satisfies the
condition Xj op t and all conditions along the path from
the root to N . The algorithm thus requires the aggregates
SUM(1), SUM(Y), and SUM(Y2) over T , which can be com-
puted in one query over D:

SELECT SUM(1),SUM(Y),SUM(Y2) FROM D WHERE cond

where cond is the conjunction of Xj op t and all threshold
conditions along to the path from root to current node.

For the Retailer dataset, LMFAO computes 3,141 aggre-
gate queries for each node in the decision tree [5].

Rk-means computes a constant-factor approximation of
the k-means clustering objective by computing the k clusters
over a small coreset of D [3]. A coreset of D is a small set
of points that provide a good summarization of the original
dataset D. Rk-means constructs a so-called grid coreset,
which is defined as the Cartesian product of cluster centroids
computed over the projections on each attribute of D.

Given the feature extraction query that defines D and the
constant k that defines the number of clusters, Rk-means
clusters the dataset D in four steps.

Step 1. We project D onto each attribute Xj and compute
the weight for each point in the projection. This can be
computed as one query for each attribute Xj :

SELECT Xj, SUM(1) FROM D GROUP BY Xj

Step 2. We perform weighted k-means on each projec-
tion. We assume that the algorithm returns a “cluster as-
signment” relation Aj which records for each x ∈ πXj (D)
the closest centroid Cj in the projection.

Step 3. Using the results of these clusterings we assemble
a cross-product weighted grid G of centroids, which defines
the coreset of D. A grid point g in the coreset is composed of
tuples of size n, with the value in dimension j ∈ [n] ranging
over the possible cluster means for the projection on Xj

computed in Step 2. The weight of a grid point g ∈ G is the
number of data points in D closest to the grid point. The
grid coreset G and the grid point weights can be computed
with one aggregate query:

SELECT C1, . . . , Cn,SUM(1) FROM P GROUP BY C1, . . . , Cn

where P = D ./ A1(X1, C1) ./ · · · An(Xn, Cn) is the join of D and
the cluster assignments from Step 2.

Step 4. Finally, we perform weighted k-means clustering
on the coreset G to compute the desired result of k centroids.

We use LMFAO to compute steps 1 and 3 of the algorithm.
This requires n+ 1 queries.

4. DEMONSTRATION SCENARIOS
We next describe how users can interact with LMFAO’s

user interface. Figure 4 depicts snapshots of the interface.

2947



(a) View Generation (b) View Groups (c) Code Generation (d) Rk-Means Application

Figure 4: Snapshots of LMFAO’s user interface. Users first select a database to load and an ML application. Then, users
can (a) inspect and modify the root assignment and the generated views; (b) review the grouping of views; (c) dive into the
generated code for each view group; and (d) compute the ML application and analyze its performance and output.

In the Input tab (not shown), the user chooses the databa-
se and one of three machine learning scenarios: (1) learning
linear regression models, (2) learning regression trees, and
(3) clustering using Rk-means. After selecting the dataset,
the tab depicts the join tree and database schema, so that
the user can inspect it. LMFAO then generates the batch of
aggregates for the respective application.

Next, LMFAO computes the root assignment for each ag-
gregate query and generates the corresponding views. The
top of the View Generation tab depicts the join tree an-
notated by intermediate views, which are shown as arrows
along the edges. The width of the arrow indicates the num-
ber of views computed in this direction. Below, the tab
lists the output queries and intermediate views, where the
output queries are grouped by their root node, and interme-
diate views are grouped by their directions. By default all
queries and views are shown. If the user selects a node in
the join tree, only the output queries and intermediate views
that are computed over this node are listed. Similarly, by
selecting one of the arrows, only the views computed in the
direction of the arrow are shown. Figure 4 (a) depicts the
selection of the arrow from Items to Inventory.

When selecting a query in the output query list, a drop-
down list for the root of this query is shown. This allows the
user to reassign the query to a different root and change the
views that are generated. The views for the new root as-
signment are then regenerated and the join tree is updated.

The View Groups tab depicts the dependency graph of
the view groups. The user can inspect the view groups by
selecting the corresponding node.

The Code Generation tab depicts the C++ code that is
generated for a given view group. Different types of code
fragments are highlighted, e.g., the computation of the join,
aggregates, or running sums. The user can choose to high-
light all code fragments, or only one of them.

The user can execute the code for the aggregate computa-
tion and inspect the application that is computed over the
aggregates. Since the execution takes a few seconds in LM-
FAO, we will run it on the fly during the demonstration.
Figure 4 (d) depicts the interface for Rk-means clustering,
the interface for the other two applications is similar. At
the top, we show the time it took to compute the aggre-
gates for clustering in each dimension. The user enters the

desired number of clusters and then runs Rk-means. Once
computed, the interface presents the cluster centroids. It
also allows the user to enter the values for a data point,
and find the centroid that is closest to this point. The data
point entered in Figure 4 (d) is closest to the highlighted
centroid for Cluster 2. We further present the time it took
to compute the clusters, the relative approximation of the
clusters, and the relative size of the grid coreset with respect
to the size of the dataset D. For the approximation, we
compute the intra-cluster distance, and take the difference
between the distances for Rk-means and the conventional
Lloyd’s algorithm relative to the distance for Lloyd’s. We
report the average relative difference over ten precomputed
runs of Lloyd’s algorithm.

Acknowledgements
Olteanu acknowledges a research gift from Infor. Schleich
is supported by a RelationalAI fellowship. The authors ac-
knowledge Haozhe Zhang for his help with the user inter-
face. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 682588.

5. REFERENCES
[1] M. Abo Khamis, H. Ngo, X. Nguyen, D. Olteanu, and

M. Schleich. AC/DC: In-database learning
thunderstruck. In DEEM, pages 8:1–8:10, 2018.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

[3] R. Curtin, B. Moseley, H. Ngo, X. Nguyen, D. Olteanu,
and M. Schleich. Rk-means: Fast clustering for
relational data. In AISTATS, pages 2742–2752, 2020.

[4] C. Favorita. Corp. Favorita Grocery Sales Forecasting:
Can you accurately predict sales for a large grocery
chain?, 2017. https://www.kaggle.com/c/
favorita-grocery-sales-forecasting/.

[5] M. Schleich, D. Olteanu, M. Abo Khamis, H. Ngo, and
X. Nguyen. A layered aggregate engine for analytics
workloads. In SIGMOD, pages 1642–1659, 2019.

[6] M. Schleich, D. Olteanu, and R. Ciucanu. Learning
linear regression models over factorized joins. In
SIGMOD, pages 3–18, 2016.

2948


