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ABSTRACT
We propose to demonstrate MuSe, a system for Database re-
pairs where constraints are expressed as Declarative Rules
and can be interpreted in different ways by using four differ-
ent semantics. Our framework may capture common, cross-
relation, repair semantics such as that of SQL deletion trig-
gers, causal rules, and denial constraints. Our demonstra-
tion will show the usefulness of the system in easing specifi-
cation of database repair policies, for different use cases.
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1. INTRODUCTION
Database repair through tuple deletion has been exten-

sively studied [2]. In particular, repairing the database us-
ing a minimum number of deletions is a desired feature [1,
4]. There are various approaches for database repair for dif-
ferent use cases and scenarios. These include repairing via
integrity constraints, such as Denial Constraints (DCs) [2],
and expressing dependencies between relations via causal
rules [10] or SQL triggers. All of these approaches have
specific semantics associated with them; namely, DCs point
to a set of tuples violating a constraint, but do not specify
which tuple in this set should be removed. On the other
hand, causal rules and SQL triggers also point to a specific
tuple that should be deleted and allow for cascade deletions.
However, even for the latter there is no single accepted se-
mantics for cases where several triggers are satisfied at the
same time: one approach may be to fire the triggers accord-
ing to lexicographic order [9], while another is to fire them
in the order in which they were created [8].

Example 1.1. Consider the database in Figure 1 based
on Microsoft Academic Search Database [7]. It includes the
tables Grants (grant foundations), Author (paper authors),
AuthGrant (a relationship of authors and grants given by a
foundation), Pub (a publication table), Writes (a connecting
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Grants
gid name

g1 1 NSF
g2 2 ERC

AuthGrant
aid gid

ag1 2 1
ag2 4 2
ag3 5 2

Author
aid name

a1 2 Maggie
a2 4 Marge
a3 5 Homer

Cite
citing cited

c 7 6

Writes
aid pid

w1 4 6
w2 5 7

Pub
pid title

p1 6 x
p2 7 y

Figure 1: Academic database instance D

(0 ) ∆Grants(g, n) :− Grants(g, n) , n = ’ERC’
(1 ) ∆Author(a, n) :− Author(a, n) , AuthGrant(a, g) ,

∆Grants(g, gn)
(2 ) ∆Pub(p, t) :− Pub(p, t), Writes(a, p),∆Author(a, n)
(3 ) ∆Writes(a, p) :− Pub(p, t), Writes(a, p),∆Author(a, n)
(4 ) ∆cite(c, p) :− Cite(c, p),∆Pub(p, t), Writes(a1, c),

Writes(a2, p)

Figure 2: Delta program

table between Author and Pub), and Cite (a citation table of
citing and cited relationships). For each tuple, we also have
an identifier on the leftmost column of each table (e.g., ag1
is the identifier of AuthGrant(2, 1)). Consider the following
three constraints specifying how to repair the tables (there
could be other rules capturing different repair scenarios):

1. If a Grants tuple is deleted and there is an author who
was awarded a grant by this foundation, denoted as an
AuthGrant tuple, then delete the winning author.

2. If an Author tuple is deleted and the corresponding
Writes and Pub tuples exist in the database, delete the
corresponding Writes tuple (as in cascade delete se-
mantics for foreign keys). Under the same condition
as above, delete the corresponding Pub tuple (not stan-
dard foreign keys, but suggesting that every author is
important for a publication to exist).

3. If a publication p from the Pub table is deleted, and
is cited by publication c, while some authors of these
papers still exist in the database, then delete the Cite

tuple.
Suppose we are analyzing a subset of this database containing
only authors affiliated with U.S. schools. ERC grants are
given only to European institutions and its Grants tuple was
incorrectly added to the U.S. database, so this tuple needs to
be deleted. However, this deletion causes violations in the
above constraints. To repair the database based on these
constraints, we could proceed in various ways: considering
the semantics of triggers and causal rules, we can delete
tuples a2, w1, p1, a3, w2, p2 and c, and regain the integrity

2921



of the database but at the cost of deleting seven tuples. A
different approach is to delete a2 and either w1 or p1, and
delete a3 and either w2 or p2, which would only delete four
tuples. However, if we consider the semantics of DCs, we
could delete any tuple out of the set of tuples that violates
the constraint. So, we can just delete the tuples ag2, ag3.
This would satisfy the first constraint and thus the second,
third and fourth constraints will also be satisfied.

To account for these different approaches and to provide
clear and reliable semantics for database repair with dele-
tions, we propose to demonstrate MuSe, a novel unified frame-
work for database repair through tuple deletions that includes
four different semantics of minimum repairs based on [5].
Constraints are expressed as delta rules that resemble dat-
alog rules. The rules can be used with different seman-
tics. For instance, independent semantics emulates DCs,
but also allows to account for violations that include tuples
deleted subsequently, and aims for a “global” minimum re-
pair. Step semantics only deletes tuples in the head of rules
(constraints) but aims for the minimum number of deletions
through one tuple deletion at a time, via the head of the
rules. Stage semantics is similar to step semantics in its
interpretation of the rules and only allows for deletions of
derived tuples, but instead, derives all tuples of satisfied
rules at each stage and deletes them at the end of the stage,
until no more tuples can be derived. End semantics is based
on standard Datalog evaluation and derives all possible tu-
ples first, and only deletes them at the end of the evaluation
process (see Section 2).

Through MuSe we make this framework accessible by al-
lowing users to formulate delta rules in different ways: users
may formulate Functional Dependencies or Foreign Key De-
pendencies and MuSe will automatically translate them into
delta rules and display them in real time, or they can grad-
ually build a rule assisted by the system that guides them
in every step. Additionally, before the actual repair occurs,
MuSe presents a summary of the number of tuples that will
be deleted under each of the four semantics. Finally, MuSe
also provides explanations for the repairs under the different
semantics, showing the process that resulted in a specific tu-
ple deletion. Then, users can choose whether they wish to
commit the repair to the database or try a different seman-
tics. In this paper, we give an overview of these semantics,
algorithms, and discuss the proposed system and demonstra-
tions. More details including theoretical and experimental
results, and related work with references can be found in [5].

2. RULE-BASE REPAIR FRAMEWORK
Delta rules: We consider a schema that includes (1) the

standard relations of the database schema R = {R1, . . . , Rk},
and (2) the corresponding delta relations maintaining records
of deleted tuples ∆ = {∆1, . . . ,∆k}. When a delta rule is
satisfied, its derivation deletes a tuple Ri(a) and it adds its
record of deletion to the corresponding delta relation ∆i(a).
The syntax of delta rules resembles a datalog rule with a
delta atom at the head of the rule. Intuitively, when satis-
fied, a delta rule is designed to delete the tuple at its head.
For instance, in Figure 2, rule (2) is meant to delete any
Pub tuple after its Author tuple has been deleted. We have
∆Pub(p, t) in the head of the rule and in the body we have
the atom Pub(p, t) to ensure the deleted tuple exists in the
database.

Database stabilization: Given a database that satisfies
some of the delta rules, our aim is to regain the integrity
of the database, or to delete tuples until no delta rule is
satisfied. When the database is in this state, we call it stable.
In Figures 1 and 2, if we remove the tuples g2, a2, a3, w1,
w2, p1, p2, c and add the corresponding delta tuples ∆(g2),
∆(a2), ∆(a3), ∆(w1), ∆(w2), ∆(p1), ∆(p2), ∆(c), we would
have a stable database, as none of the rules are satisfied.

We now discuss the definitions of the four semantics. Given
a delta program P and a database D, we denote the result
of a semantics σ by σ(P,D).

Independent semantics: The result of this seman-
tics is a globally optimal solution, i.e. a minimal-size set
of tuples that need to be deleted to make all the rules un-
satisfied. This semantics correspond to the standard DC
semantics where a set of tuples violates a constraints and
anyone of the violating tuples may be deleted. In Figures 1
and 2, the result of independent semantics is {g2, ag2, ag3}.
Note that after removing these tuples and adding their delta
counterparts, there are no satisfying assignments to any of
the rules.

Step semantics: This semantics resembles SQL trig-
gers as it allows for cascade deletion, yet it is a fine-grained
semantics that evaluates one rule at a time and updates
the database immediately by deleting the original tuple and
adding the derived delta tuple. If there is more than one
satisfied rule in some step, this semantics makes a non-
deterministic choice of which rule to fire. Reconsider the
database in Figure 1 and the rules in Figure 2.

In our running example, the following is a possible se-
quence of activations of rules under step semantics: At step
1, there is one satisfying assignments to rule (0) deriving
∆(g2). We update ∆1

Grants = {g2}, Grants1 = {g1} At
step 2, there are two satisfying assignments to rule (1). We
choose the assignment to rule (1) deriving ∆(a2), and up-
date D1 so it includes the change ∆2

Author = {a2}, Author2 =
{a1, a3} At step 3, we have three satisfying assignments: to
rules (1), (2), and (3). Suppose we choose the one satisfying
rule (1) and derive ∆(a3). D2 is now updated such that
∆3

Author = {a2, a3}, Author3 = {a1}, and so on. Continu-
ing this process we can get a stable database by removing
{g2, a2, a3, w1, w2}.

Stage semantics: Stage semantics resembles semi-naive
evaluation of datalog, and fires all satisfied rules in each
stage based on the previous stage of the database (instead
of choosing one rule like step semantics and therefore is de-
terministic). After deriving all possible tuples at a specific
stage, this semantics updates the database.

Reconsider the database in Figure 1 and the rules in Fig-
ure 2. In our running example, stage semantics works as fol-
lows: At the first stage, there is one assignments to rule (0)
deriving ∆(g2), we update ∆Grants = {g2}, Grants = {g1}.
At the second stage, we use the two assignments to rule
(1) to derive ∆(a2) and ∆(a3). We update the database
so that Author = {a1}, ∆Author = {a2, a3}. In the next
stage, we use the two assignments to rule (2) and the two
assignments to rule (3) to derive ∆(p1), ∆(p2), ∆(w1) and
∆(w2), and update the database as Writes = ∅, Pub = ∅,
∆Writes = {w1, w2}, ∆Pub = {p1, p2}. For any stage > 3, the
state of the database does not change, and the evaluation
stops.

End semantics: This last semantics basically treats the
delta relations as derived (intensional) relations in standard
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datalog evaluation and executes the delta rules as a datalog
program. It first derives all possible delta tuples and up-
dates the database at the end of the process. In our running
examples, tuples {g2, a2, a3, w1, w2, p1, p2, c} will be derived
by datalog execution and will be deleted from the database.

Complexity: Given a delta program P and database D,
it can be shown that computing End(P,D) and Stage(P,D)
is poly-time solvable, while, given an integer k, it is NP-hard
to decide if |Ind(P,D)| ≤ k or |Step(P,D)| ≤ k (we refer
the reader to [5] for details).

3. ALGORITHMS & IMPLEMENTATION
We next give a brief overview of the main algorithms em-

ployed by MuSe.
For stage and end semantics, we use strategies similar

to datalog evaluation, evaluating all rules and updating the
database (either after each stage for stage semantics or at
the end of the evaluation process for end semantics).

For independent semantics, we reduce the problem to
min-ones SAT. We evaluate the program over the database
as if we have all tuples in the original database and also
the delta tuples. We store the provenance as a Boolean
formula [6], negate it and find the satisfying assignment that
assigns the minimum number of negated literals the value
True. The algorithm generates the provenance expression of
each derived delta tuple and includes it in a single formula,
connected by ∨ between different assignments. Each delta
tuple is represented as the negation of its counterpart in the
initial database. In the running example, the formula F is:

g2 ∨ (a2 ∧ ag2 ∧ ¬g2) ∨ (a3 ∧ ag3 ∧ ¬g2) ∨ (p1 ∧ w1 ∧ ¬a2)∨
(p2 ∧ w2 ∧ ¬a3) ∨ (c ∧ ¬p1 ∧ w1 ∧ w2)

The fourth and fifth clauses stand for two identical assign-
ments to both rules (2) and (3) as both rules have the same
body. Next, the algorithm finds the minimum satisfying as-
signment of ¬F (shown below), i.e., the assignment giving
the value True to the smallest number of negated literals.

¬g2 ∧ (¬a2 ∨ ¬ag2 ∨ g2) ∧ (¬a3 ∨ ¬ag3 ∨ g2) ∧ (¬p1 ∨ ¬w1 ∨ a2)∧
(¬p2 ∨ ¬w2 ∨ a3) ∧ (¬c ∨ p1 ∨ ¬w1 ∨ ¬w2)

The satisfying assignment giving the minimum number of
negated literals the value True is α such that α(g2) = α(ag2)
= α(ag3) = False and α gives every other variable the value
True. Finally, the algorithm returns the set of tuples that α
mapped to False, i.e., {g2, ag2, ag3}.

For step semantics, we use a greedy approach that uti-
lizes the provenance graph [3] as generated by the standard
datalog evaluation (like end semantics). For each non-delta
tuple in the graph, we store its benefit, which intuitively
quantifies the effect of deleting a certain tuple on the size of
the result. The higher the score, the more benefit gained.
We then traverse the graph by layer and for each layer, re-
move the tuple with the highest benefit until no delta tuples
exist in this layer. The removed tuples are returned by the
algorithm.

The provenance graph for our running example is shown in
Figure 3. After computing the benefit for all the leaf tuples,
we begin iterating over the layers of the graph. In layer 1 we
only have ∆(g2), with bg2 = −1, so we choose it. Since g2
is only connected to ∆(g2), we do not change G. We then
continue to layer 2 where we have ∆(a2) and ∆(a3). We
arbitrarily choose a2 as ba2 = ba3 = −1, and do not change
G. After that, we choose a3 and again not changeG. In layer
3, we have w1, w2, p1, p2 where bp2 = bp1 < bw1 = bw2 , so we

∆(g2)

∆(a2) ∆(a3)

∆(p1) ∆(p2)∆(w1) ∆(w2)
∆(c)

w1, 3 p1, 1 a2,−1 ag2, ∅ g2,−1 ag3, ∅ a3,−1 p2, 2 w2, 3 c, 1

Figure 3: Provenance graph for step semantics algorithm.
Red tuples are chosen for the output set

choose arbitrarily to include w1 in S. We then delete from G
the subgraph induced by ∆(w1). Since there are more delta
tuples in this layer we continue to choose w2 and delete from
G the subgraph induced by ∆(w2). Since there are no more
delta tuples in layers 3 and 4 except ∆(w1),∆(w2) where
w1, w2 ∈ S, we return S = {g2, a2, a3, w1, w2}.

4. USER INTERFACE AND DEMO
We will primarily use the academic MAS database [7] to

demonstrate the usability of MuSe (integrated with other real
databases). We next detail the demonstration scenario ac-
cording to each component of the system, and through the
screenshots in Figure 4 and our running example.

Formulating delta rules: We will begin the demon-
stration with the rules of our running example and allow
the participants to formulate additional rules. MuSe provides
three intuitive ways to formulate delta rules, demonstrated
in Figure 4a. First, participants will gradually ‘build’ their
desired delta rule using a pattern that guides them in choos-
ing the table from which they would like to delete tuples,
and then formalizing the conditions for which this deletion
would occur. The pattern is revealed in stages, allowing
participants to fill-in one step at a time and make sure
they formulate a correct and accurate rule. Participants
could then experiment with two more methods of formulat-
ing delta rules. MuSe provides a translation from Functional
Dependencies (FDs) to delta rules, so participants will be
able to formulate an FD and it will be automatically trans-
lated into a delta rule. Third, participants could formulate
delta rules by using the syntax of foreign-key dependency
[10] which will be automatically translated to a delta rule.

Choosing the repair semantics: In the input screen,
participants will further choose their desired repair seman-
tics from a drop-down menu. All four semantics will be
available and each semantics may imply a different repair.
To better gauge the effect of each semantics on the database,
clicking the ‘Preview’ button will open a pop-up screen that
shows the number of tuples from each table that are going to
be deleted under each of the semantics. After choosing the
semantics, participants will click on the ‘Repair’ button to
make the system compute the repair that will be depicted in
the output screen (shown for step semantics in Figure 4b).

Viewing repairs: Once the delta rules are formulated, a
repair semantics has been chosen, and the participants have
clicked the ‘Repair’ button, the output screen (shown for
step semantics in Figure 4b) will display the deleted tuples.
The tuples will be presented in a suitable manner according
to the chosen semantics as follows. Independent semantics
computes the repair “in one stroke”, meaning that there is
no process to present here. Thus, MuSe will portray the set
of deleted tuples, along with their relations. For end seman-
tics, in addition to displaying the deleted tuples, the system
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further shows the delta rule that has caused the deletion of
each tuple, when the mouse pointer hovers over this tuple.
Step (resp. stage) semantics use multiple steps (stages) of
repair, thus, MuSe will show for each step (stage), the tuples
that were deleted in that step (stage) and, for each deleted
tuple, the rule that is responsible for its deletion.

Under the hood: To investigate the repair according
to independent or step semantics, participants will click the
‘Under the Hood’ button in the output screen will show an
explanation describing the deletion process, based on the
repair algorithm for the chosen semantics. For independent
semantics, the Boolean formula describing the formula will
be depicted with the chosen tuples highlighted (Figure 4c).
For step semantics, MuSe will depict the provenance graph
with the chosen tuples highlighted.

Commit a repair to the database: If the participants
would want to use the generated repair according to their
chosen delta rules and semantics, they will click the ‘Com-
mit’ button that will commit the repair to the database and
delete the tuples shown in the output screen (Figure 4b).
Otherwise, they will click the ‘Back’ button and change the
rules or choose a different semantics.

Free exploration of MuSe: Participants will be encour-
aged to change the delta rules, delete some of them and add
new ones, and witness the effects of their changes on the
repairs under different semantics. They will further be able
to change the semantics, the database and view the results.
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(c) Explanation for independent semantics

Figure 4: MuSe User Interface
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