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ABSTRACT

Geospatial array DBMSs handle big georeferenced arrays.
Due to the geospatial data peculiarities, many queries have
tunable parameters with values not known in advance: users
gradually tune them until they get a satisfactory result. This
generates a series of queries with slightly different structures
and very similar outputs. Modern array DBMSs spend the
same efforts to answer each such query. BITFUN provides
novel bitmap indexing strategies to continuously re-index
arrays during queries with similar mathematical functions.
It can be up to 8x faster than computing the results from
scratch. We describe BITFUN and offer lessons on real-world
geospatial data, related to real practical tasks. A lesson in-
volves tuning a math function parameter while the rich web
GUI details the indexing process and query execution. Con-
ference attendees will appreciate BITFUN approaches, its
performance, and learn its internals via fascinating lessons.
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1. INTRODUCTION

Geospatial array DBMSs are experiencing the surge of
R&D due to the rapid growth of geospatial array volumes.
For example, DigitalGlobe, a commercial satellite imagery
vendor, collects about 80 TB/day and maintains an archive
of over 100 PB of satellite imagery in AWS [5]. Dozens of
parameterized math functions are used daily for vital tasks
including urban planning, agriculture monitoring, forestry
control, and rapid-response for disaster relief [2, 14], fig. 1.

As a typical example, consider Soil-Adjusted Vegetation
Index (savi, fig. 1) which aims to minimize soil brightness
influence. L is a soil fudge factor varying from 0 to 1 depend-
ing on the soil [14]. The user may tune L many times to find
appropriate SAVI values for a given area of interest. NIR and
R are 2-d arrays with intensities of reflected solar radiation
in the near-infrared and visible red spectra respectively.
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All state-of-the-art array DBMS techniques will treat two
subsequent queries of computing SAVI with slightly different
L values (e.g. 0.7 and 0.8) as two distinct queries. This will
trigger computing SAVI for the new L value from scratch
despite the fact that usually only a small fraction of the re-
sulting array will differ significantly from the previous result.
We waste I/O and compute resources by reading two arrays
completely from storage and recomputing each resulting cell.

Often SAVI and similar functions are used for classification.
For example, the range of possible SAVI values is split into
the intervals, e.g. [0,0.25), [0.25,0.5), [0.5,1), ... and each
interval is assigned a label. If a SAVI value fits into a prede-
fined interval, its label will be assigned to the resulting array
cell instead of the SAvI value, providing additional space for
optimizations: if the user slightly tunes L, the majority of
the resulting cells will remain the same.

BITFUN is a CHRONOSDB [12, 11] component which pro-
vides novel bitmap indexing techniques for queries with tun-
able math functions and novel, space-efficient hierarchical
bitmap index structure to support tunable indexing.

BITFUN tackles an important class of queries not explic-
itly considered before in the context of array DBMS: tunable
queries. BITFUN explicitly focuses on the fact of tunability.
Moreover, none of the modern array DBMS is equipped with
capabilities of indexing array cells: SCIDB [4], TILEDB (8],
RasDAMAN [10], PosTGIS [9], and ORACLE SPATIAL [7].
Emerging array indexing techniques do not take into ac-
count tunable scenarios [3, 13]. As indexing is a relatively
new topic for array DBMSs, existing array index structures
do not fit well to tunable array DBMS workloads [13].

We invite conference attendees to take interactive lessons
related to real-world practical tasks on multispectral satel-
lite imagery. To succeed, the user should tune a math func-
tion parameter to get an appropriate 2-d map. The user
will interactively receive hints during a lesson. The audi-
ence will use a rich Web GUI to live BITFUN/CHRONOSDB
deployment in the Cloud.

The web interface features (1) the editor with syntax high-
light to compose and submit queries, (2) 2-d and 3-d charts
displaying the indexing process, index properties, and query
answering details, (3) visual components to facilitate ex-
pression tuning, (4) visual components for lesson guidance,
(5) interactive map with input data and query results.

Attendees will (a) appreciate the speed of BITFUN query
answering due to novel indexing techniques, (b) investigate
the hierarchical index structure, contents, and learn index-
ing process insights, (c) extend their knowledge of array
DBMSs and real-world geospatial arrays.
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Figure 1: Examples of Typical Math Functions with (Tunable Parameters) in Earth Remote Sensing Domain [14]

2. BITFUN OVERVIEW

BITFUN is a CHRONOSDB [12, 11] component and is writ-
ten in Java. Java lacks symbolic computing libraries, so BIT-
FUN interacts with SYMPY to find derivatives, solve equa-
tions, simplify expressions, etc. Jython and similar tools
provide limited SYMPY functionality, so we developed a Web
server in Python to submit formulas, related parameters and
get the required SYMPY output via RESTful API. BirFuN
has to evaluate expressions hundreds of millions of times.
Hence, BITFUN ingests the SYMPY output into Java expres-
sions and runs a compiler to get Java bytecode, serving as
part of indexing routines. It is soon compiled into machine
code, running significantly faster compared to evaluating ex-
pressions in symbolic form. BITFUN is summarized in fig. 3.

2.1 Tunable Function Indexing Techniques

Definitions. Let 7 be a tunable parameter, f(7) be a
differentiable function (possibly non-linear). BITFUN cur-
rently supports 3 types of tunable queries that involve f(7):
(1) computing f(7) values, (2) classification of f(7), (3) in-
equality evaluation f(7) < const, fig. 3b. We focus on (1)
due to space constraints, but the BITFUN approach should
be clear in general. Let us take SAVI as a running example.

The reasoning in this section is often applicable to any
differentiable function, even outside the geospatial domain.

Parameter valid range [Timin, Tmaz] is often fixed and
known in advance, e.g. L €[0,1] for savi. We ask users to
specify valid ranges for all tunable parameters as --param
L:0:1:0.01 (0.01 is the tune step), fig. 4. This greatly
facilitates making assumptions about the function behavior.

Computing f(7) values. An important observation is
that, if we fix NIR and R values, SAVI becomes a function of
only one variable, L. This means that each resulting sAvI ar-
ray cell is a function of one variable. Three most important
questions, in the context of tuning L, arise: (1) What is the
form of each function (linear, quadratic, etc.)? (2) How sim-
ilar are the functions for all cells? (3) Among functions for
millions of (NIR, R) cell pairs, how many distinct functions
are there?

If we look closer at the SAvI function, we notice that, in
the vast majority of cases (for most combinations of NIR
and R values), it is a line, fig. 2a. Hence, SAVI can be quite
closely approximated by a much simpler expression: linear
fit aL + b. A notable fact is that the new expression does
not depend on the original NIR and R values and can be
computed only based on the L value.

If the number of all possible linear approximations is rel-
atively small, we may efficiently index the data: create an
index array with the shape fitting the output SAvI array,
where each cell is the ID of the respective linear fit. The
index array will take much less space compared to NIR and
R arrays, since the number of IDs will be small. Hence, once

*Input reflectances can be corrected for the molecular effects
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Figure 2: savi values for the whole range of L € [0, 1]

the index is ready, we will save I/O time during the next
query by reading a small index vs. two large arrays.

In general, SAVI is not an affine function. Indeed, there is
a tiny fraction of NIR and R values for which SAvI slightly
exhibits non-linear behavior: when NIR and R values are very
close to the range of L, and its contribution is noticeable in
the denominator, fig. 2b. However, even in this case, it is
possible to fit a rather good linear approximation.

We ask the user to specify a precision for calculating all
function values using the syntax --precision Y. For in-
stance, if T = 0.01 and |f(71) — f(72)| < 0.01, we assume
f(11) = f(m2). For all examples in fig. 1, 0.01 is a very high
precision, sufficient for many real-world applications.

A linear fit may not suit well for ARVI or similar functions.
We try polynomial regression of degree d as follows. We try
a linear fit first. If the largest vertical distance between the
line and the function, within the range, exceeds Y, we try
a quadratic fit and check the distance again. We try until
d = 3 or d/1.5 exceeds the number of input arrays (otherwise
it is unlikely to index this cell in a space-efficient way). We
mark cells as UN if we did not find a good fit, section 2.2.

To construct a linear fit, we need two pairs of values of
L and sAvI to compute a and b. We must already have
one of the pairs since we need to compute SAVI for each
array cell. The second pair could be obtained by picking
any L in its value range. To find the maximum distance
(error), we should solve [SAVI(L) — (aL + b)]'dL = 0. After
solving and simplifying the solution, we obtain several roots:
L1z = £(y/a(NIR — R)(NIR + R — 1) F a(NIR + R))/a.

Hence, for each cell, we need to compute L; and find
error=max- [SAVI(T) — (a7 + b)| for 7 € {Tmin, Tmaz} U LR,
where Lr = {Li : L € [Tmin, Tmaz)}, K € {1,2}, Trmin =
0, Tmaz = 1 for SAVI. Similarly, we find error for other
differentiable functions and higher order polynomials.

We assign a unique ID = (@, b) to Vf = aL + b by convert-
ing a and b from a floating point to integer representation
as @,b = ax,b x 10801 We index {(ID, Freq)} with our
bitmap structure (Freq is the frequency of ID occurrence).
We keep IDs in RAM waiting for the next query.

Functions may take more than one tunable parameter.
Often the user tunes only one parameter at a time. In this
case we treat such functions as if it is a function of one
variable. We do not index functions in other scenarios.
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Figure 3: BITFUN architecture, code generation workflow, and hierarchical index examples

2.2 Hierarchical Bitmap Index

Motivation. Real-world geospatial arrays do not typi-
cally contain random data. sAvi, for a typical Landsat 8
satellite scene of 8000 x 8000 = 64 x 10° cells, with rather
diverse contents, including urban areas, forests, farmlands,
and water, can be indexed only by = 650 unique linear fits.
Moreover, only a half of the lines may approximate 99% of
cells and exhibit exponential distribution of usage frequency.
Given these facts, we designed a novel, space-efficient hier-
archical bitmap index which is fast to create and read.

Index Structure. Let E = {e1,e2,...,en} be the set
of objects (e.g. functions), A(l1,l2) : F is a 2-d array to be
indexed (the array notation is from [12]), and Freq(e;) is the
count of e; in A. The index is hierarchical with at most K
levels, fig. 3c. Level ¢ (L;) is a 1-d array where each cell is
a fixed-length code of m; bits. The length of level 1 array
(the number of m; bit cells) equals to the I X lz. We can
always perform N-d<+1-d coordinate conversion between A
and level 1 arrays since we know [/; and l2. Hence, we can
get the level 1 code that corresponds to A[z1,z2] in O(1).

L; may hold 2™ — 1 unique codes since the code 2™ — 1
(1 in each bit of m;-bit value) indicates the lookup a level
down. The length of L;+; is the number of cells in L; equal
to 2™ — 1. The index uses additional codes to support two
special values: NA for A cells with missing values and UN to
mark A cells which we did not index (we should refer to the
source data to compute the respective A cell).

For example, the structure in fig. 3c indexes A as follows.
The first 4 bits at level 1 map to er2 (10112 = 1119)
assuming that Freq(e;)>Freq(ej+1). Bits take us to
level 2 to find out the object index (11112 = 2™* —1). This
is the first such combination at level 1, so we should retrieve
the first mo bits {0011 from level 2 to continue. These bits
index possibly less frequent object ejs (2™ — 2+ 1 = 15).

We arrive at a lower level from level 1 which length equals
the size of A. Hence, we can calculate the position of e
in A in O(1). Object e is indexed by mi + ma = 8 bits
@111X0011 as it is associated with level 2. The obJect in-

dex on the third level is coded by 4 +4 + 2 = 10 bits:

AIIDAIIT?T: (the first my + m2 = 8 bits are 1).

BITFUN stores each index level as a set of GeoTIFF files.
This allows BITFUN to keep the georeference data inside the
index and enables interoperability: we can use software tools
and libraries supporting GeoTIFF to work with the index.

Index Advantages. The index uses less than I3 X l3 X
log, |E| bits to code all possible objects. In practice, it is
possible to build an index which takes 4 x less space than the
input arrays. This considerably saves 1/0, especially with
limited IOPS (e.g. in the Cloud). However, unlike exist-
ing variable-length encoding techniques, the index enables
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BITFUN to efficiently perform array operations directly on
the index, often without reading the source data (here we
discuss only random access due to space constraints).
Random access. We can get a code from level 1 in O(1)
for (x1,x2) as noted earlier since codes are fixed-sized. We
have to perform a single sequential scan to count the number
of “Next Level” markers (NL) at each level. Let S; be a 1-d
array such that |S;| = |L;|, Si[y] equals the position of NL in
L;_; for L;[y]. We expect |L;iy1| < |L;| due to exponential
distribution of Freq(e;). Hence, temporary S; arrays yield a
small storage footprint and accesses to lower S; are very rare.
Index random access time is O(1 + ZfiQ log, |Si|), which is
small in practice due to the described data properties.
Index Optimality. Suppose that Algorithm 1 builds the
index. Due to space constraints, we omit Algorithm 1 and
the proof of Theorem 1. In practice, it takes about 75 ms for
Algorithm 1 to complete for M = {2,4,8,16} and K = 4,
and 10 ms when the Java Virtual Machine is warmed up.

THEOREM 1  (SPACE OPTIMALITY). Algorithm 1 builds
an index structure with K levels and guarantees the minimal
average codeword length among all symbol-to-symbol codes
for alphabet E = {e1,ea,..., e}, probabilities Pr(e;), and
mi,ma,...,mg bits per symbol code at levels 1,2,... K.

2.3 BitFun Web Interface

Please, refer to the Introduction for the interface overview.

BitFun lessons are described on the BITFUN homepage
http://bitfun.gis.land. We designed scripts with the respec-
tive preparatory and tune commands for each lesson, fig. 4a.
Attendees can edit scripts using CHRONOSDB commands.
Users can open a lesson script from the BITFUN homepage.

Tune slider facilitates easy 7 tuning, fig. 4c. Let Q be
a query number. Each new value of 7 increases @ by 1,
triggers submitting the query with new 7 and updating the
map and other components that depend on 7 and Q.

Tune hints. BITFUN analyses query results and gives
tips on how to tune 7 to successfully solve the lesson task:
decrease/increase 7 relatively to the current 7 value. BIT-
FUN highlights the left /right arrow to reflect its hint, fig. 4c.

Plots. Let us denote a 2-d plot with abscissa x and or-
dinate y by (z — y). Plots are located under the tune
slider. To avoid clutter, the user can show/hide a plot with
a respective button. All plots are interactive: the user can
pan & zoom a plot, download it as PNG, rotate (3-d plots),
watch values under the mouse cursor during its move.

Plot (Q — 7a), where TA € [Tmin — Tmazs Tmasz
tracks the history of tuning 7. Positive/negative T7a values
indicate that the user increased/decreased T for query Q
compared to query @ — 1. This plot is useful for tracking

- Tmin]7
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Figure 4: BiTFun Web GUI and its Components

the pattern of gradually finding the appropriate value of 7:
7a will be large for the first queries and become tiny for the
last, fig. 4a. Similarly, plot (Q — 7) tracks the value of 7.
If f has 2 input arrays A and B, (A, B — f) plots f in
3-d for all possible (A, B) value pairs and current 7, fig. 4b.
This is useful for estimating tune results and (A, B) by f.
“Q Time Plot” shows (Q +— T), where T is the time
spent for answering query Ne Q. The plot illustrates signifi-
cant performance improvement, using the proposed indexing
techniques, compared to computing results from scratch.
Index info box shows the number of approximating mod-
els | E|, the number of levels K selected by Algorithm 1, bits
per level (m;), percent of models coded by level ¢, index
volume. The index is treated as an ordinary CHRONOSDB
array: the user can access any index portion via WMTS and
investigate it in any software that supports GEOTIFF files.
Interactive map is multilayer, with pan&zoom enabled.
CHRONOSDB delivers layer data via the standard WMTS
protocol. Attendees can view layers in the BITFuN Web GUI
and any other software supporting WMTS, e.g. QGIS. BIT-
FuN plots (7 + f) for the map point which the user clicked
on with the mouse. Fast plotting illustrates lightning-fast
random access for the novel index structure.

3. BITFUN LESSONS

We have described in the Introduction and section 2.3
how the audience will experience BITFUN. Here we briefly
outline the lessons detailed in the BITFuN Web GUI.

Illustrative Data. Landsat Program is the longest con-
tinuous space-based record of Earth’s land running from
1972 onwards. We will provide 2-d arrays (NIR, R, B, etc.)
ingested beforehand from the respective Landsat 8 scenes.

River flood mapping. Goal: illustrate fast
evaluation of f(7) < const due to novel indexing techniques.
Area: Arkansas river basin. Remote sensing data is widely
used in practice to forecast river floods, assess the damage
caused, identify flood prone areas, select places for protec-
tive dams [2]. NDVI values close to zero or negative rep-
resent zones with the presence of water. The task is to
quickly create an accurate water mask by tuning @ in f(7) =
NDVI—7 < 0. As a reference, the user will see the RGB map,
resulting mask, and the set of points of two colors (ground
truth) located in flooded and non-flooded areas [6].

(Agriculture Lesson] Crop yield prediction. Goal: illus-
trate fast computing of f(7) values due to novel indexing
techniques. We will feed f(7) values directly to a crop yield
model. Area: Saudi Arabia. SAVI is used for arid regions
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with sparse vegetation and exposed soil surfaces since NDVI is
very sensitive to soil brightness [14]. The task is to quickly
estimate crop yield by tuning (L) (by finding its appropriate
value), fig. 1. As a reference, the user will see the crop yield
map (tons per hectare), the RGB map, and the actual yield
for a land parcel/irrigation pivot (ground truth) [1].
Takeaway insights: (1) real-world geospatial data is not
random, so tunable math functions on the data can be effi-
ciently (and sometimes surprisingly) indexed by specialized
techniques and data structures, (2) BITFUN is optimized
for evaluating queries containing tunable math functions,
(3) BrTFUN significantly accelerates query evaluation com-
pared to computing results from scratch, (4) BITFUN utilizes
a novel bitmap indexing data structure which can often be
used alone to answer queries with tunable math functions.

4.
1]
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