
FASTS: A Satisfaction-Boosting Bus Scheduling Assistant

Songsong Mo1, Zhifeng Bao2, Baihua Zheng3, and Zhiyong Peng1∗

1Wuhan University, 2RMIT University, 3Singapore Management University
1{songsong945, peng}@whu.edu.cn, 2zhifeng.bao@rmit.edu.au, 3bhzheng@smu.edu.sg

ABSTRACT
In this paper, we demonstrate a satisfaction-boosting bus
scheduling assistant called FASTS, which assists users to
find an optimal bus schedule. FASTS performs bus schedul-
ing based on the constraints specified by the user in either
a coarse-grained or a fine-grained manner, supports differ-
ent explorations with a varying number of constraints, and
provides analysis to quantify the performance of bus sched-
ules and presents the results in a visually pleasing way. We
demonstrate FASTS using real-world bus routes (396 routes)
and one-week bus touch-on/touch-off records (28 million trip
records) in Singapore.

PVLDB Reference Format:
Songsong Mo, Zhifeng Bao, Baihua Zheng, Zhiyong Peng. FASTS:
A Satisfaction-Boosting Bus Scheduling Assistant. PVLDB, 13(12):
2873-2876, 2020.
DOI: https://doi.org/10.14778/3415478.3415497

1. INTRODUCTION
Public transport services such as buses are essential to our

daily life. However, the cost of buses and the operating fee
are not cheap. Taking New York City as an example, the
cost of each bus is around $550,000 and the operating cost
of transit agencies reaches $215 per hour1. Assume we are
able to re-organize the bus frequencies based on real travel
demands and thereby reduce 10% bus departures, we can
save $20 operating costs per hour and $55,000 per vehicle.

To this end, the primary goal of this work is to find
the nearly optimal bus departure timetable to meet the ac-
tual travel demands, under the assumption that the historic
travel demands (real world bus touch-on/touch-off records)
reflect the actual travel demands2. To the best of our knowl-
edge, there is no publicly accessible bus schedule planning

∗Zhiyong Peng is the corresponding author.
1https://www.liveabout.com/
bus-cost-to-purchase-and-operate-2798845
2How to predict the actual travel demands in the near future
is a different problem, which is not the focus of this work.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415497

assistant at present. Most existing studies on bus schedul-
ing problem share a common objective, which is to minimize
the average travel cost (in terms of waiting time) of passen-
gers [4, 5]. As compared to simply minimizing the average
waiting time, we argue that it makes more sense in reality if
a bus can serve a passenger within a waiting time threshold
that she could accept. Many studies have confirmed that the
user satisfaction drops faster as the waiting time increases [1,
3]. Motivated by this observation, we aim to schedule the
buses such that they could serve more passengers within a
given waiting time threshold that users could accept, rather
than simply minimizing the average waiting time.

In this paper, we demonstrate a satisFAction-BooSTing
bus Scheduling assistant (FASTS). FASTS can automati-
cally schedule bus departures within the constraints speci-
fied by the user via its Coarse-grained Scheduling and sup-
port different explorations with a varying number of con-
straints. The scheduling algorithms have been developed by
our recent work [6]. It also provides users with fine-tuning
capabilities via Fine-grained Scheduling with User Interac-
tion so that users could adjust the bus departures returned
by Coarse-grained Scheduling, e.g., changing the departure
time of certain buses and adding (or removing) some bus
departures. Users also can specify regions, lines and stops
for the task of bus scheduling in Fine-grained Scheduling
with User Interaction. FASTS also provides Impact Anal-
ysis, which can perform various analytics and provide a
pleasing and intuitive visualization to help users evaluate
and understand the performance of current bus scheduling.
Additionally, Impact Analysis supports users to compare
several saved bus schedules. Users then could further ad-
just the constraints via either Coarse-grained Scheduling or
Fine-grained Scheduling with User Interaction. The corre-
sponding changes brought by different constraints will also
be highlighted and given as feedbacks to users, leading to
in-depth user understanding and interaction. A prototype
of the demo is available online3.

2. SYSTEM ARCHITECTURE
Figure 1 shows the system architecture of FASTS.

Front End. The UI of FASTS presents key information–
including a map view, current parameter values, bus timeta-
bles, and the analytics results output by the back end data
analysis module–to users in a visually pleasing and effective
way, as shown in Figure 2. In addition, it provides an inter-
face where the inputs from users can be captured and passed

3http://civilcomputing.co/busscheduling

2873

Figure 1: System Architecture

to the back end engines to reschedule the buses based on the
new inputs from the users. For example, by interacting with
the front end, users can adjust parameters, submit inquiries,
change bus schedules, etc.
Back End. The back end contains a bus scheduling engine,
a data analysis module, a forward index and an inverted in-
dex. The bus scheduling engine aims to find the optimal
bus schedule based on the constraints, if any, specified by
the user. The data analysis module analyzes the passenger
satisfaction, number of bus departures, travel demand, and
passenger waiting time. The two index structures main-
tained in the back end facilitate the bus scheduling. The
forward index uses buses as keys, where the value corre-
sponding to a key is a set of tuples in the form of (pi, wti),
where pi refers to a passenger who wants to take this bus
and wti refers to the waiting time of the passenger if she/he
takes this bus. The inverted index uses passengers as keys,
where the value is a set of tuples in the form of (bj , wtj),
where bj refers to one bus that could serve the passenger,
and wtj refers to the waiting time required for the bus bj .
Based on these two indexes, we can retrieve which bus can
serve a passenger in the given waiting time threshold and
vice versa.

3. BACK END TECHNIQUES
In this section, we first show the problem formulation,

and then introduce how to find the optimal bus schedule
effectively. Please refer to our work [6] for details.

3.1 Problem Formulation
In a bus route database R, a route r is a sequence of

bus stations (s1, s2, · · · , si, · · · , sm), where si is a bus
station represented by (latitude, longitude). In a passen-
ger database P, a passenger p ∈ P is in form of a tuple
{sb, se, t}, where sb denotes the boarding station, se denotes
the alighting station, and t denotes the time when p reaches
sb. A bus bij is in form of a tuple {ri, dtj}, where ri and dtj
denote the bus service route and the departure time from
ri.s1 respectively.

We define that a bus bij can serve a passenger p, if ri
contains p.sb and p.se in order, and 0 ≤ dtj +T (ri.s1, p.sb)−
t ≤ θ, where T (ri.s1, p.sb) denotes the travel time required
by bus bij from ri.s1 to p.sb via the bus route ri, and θ
is a given waiting time threshold. There are multiple ways
available to approximate T (ri.s1, p.sb). In this paper, we
utilize the historical average travel time from ri.s1 to p.sb
via the route ri to compute T (s1, sb). We formally introduce
S(bij , pk) to denote the service of bij to pk, as presented in
Equation (1).

S(bij , pk) =

{
1 if bij can serve pk
0 otherwise

(1)

Next, we introduce the concept of bus service frequency
and formulate our problem in Definition 3.1. A bus service
frequency (fi) for ri refers to a set of buses (bi1, bi2, · · · ,
bini) that serves the route ri, where ni (ni ≥ 1) denotes
the total number of bus departures corresponding to the
route ri within a day. Let the bus service frequency F for
R be a set, with each element fi ∈ F corresponding to a
bus route ri ∈ R, i.e., F = {∪∀ri∈Rfi}. Then, the service
of F to a passenger pk can be computed by S(F , pk) =
1 −

∏
bij∈F (1− S(bij , pk)). Note S(F , pk) = 1 as long as

any bij ∈ F can serve pk; otherwise, S(F , pk) = 0.

Definition 3.1. Given a bus route database R, a pas-
senger database P, a waiting time threshold θ, and a vec-
tor N〈n1, n2, · · · ,ni, · · · , n|R|〉 where ni (≥ 1) denotes
the total number of bus departures of bus route ri ∈ R,
we output a bus service frequency F which can maximize
G(F) =

∑
pk∈P

S(F , pk), where G(F) denotes the total num-
ber of passengers served by F .
3.2 Methodology

Based on the given parameters, FASTS will find the near-
optimal bus schedule that can maximize the satisfaction of
the passengers.

The basic greedy algorithm is applicable because the ob-
jective function of FASTS is submodular. To accelerate the
marginal gain computation, which is the main bottleneck
of the basic greedy algorithm, we propose two mapping in-
dexes, forward list (If) and inverted list (Ii).
1) If is for buses bi ∈ B. It maintains a list of passengers LP

that could be served by bus bi. In addition, to avoid counting
the same passenger multiple times when we calculate the
marginal gain, we maintain another parameter NToBeServed

to capture the number of passengers in LP that are still
waiting for services.
2) Ii is for passengers p ∈ P. It maintains a list of buses
that could serve the passenger p. The boolean Served is
used to indicate whether any of the optional buses has been
scheduled with an initial value being false.

Motivated by the fact that a bus network is designed to
cover different parts of the city and it tries to avoid unnec-
essary overlapping among routes [2], we propose a partition-
based greedy method that achieves a (1−ρ)(1−1/e) approx-
imation ratio. Here ρ is a service overlap threshold that is
used to control the cardinality of partitioned clusters. The
main idea of this method contains three steps. First, it
partitions the bus routes (and buses) into a set of clusters
according to their service overlap. Second, the basic greedy
algorithm will find the local optimal bus schedule for each
of the clusters. Third, it aggregates these local optimal bus
schedules from clusters to obtain the global solution.

4. DEMONSTRATION SCENARIOS
In this section, we first introduce the user interface of

FASTS, we the present three main features of FASTS, with
each feature explained using one or two scenarios. We have
collected real-world bus routes (396 routes) and one-week
bus touch-on/touch-off records (28 million trip records in
total) in Singapore [6], to be uses in this demonstration.

4.1 User Interface Overview
The user interface is shown in Figure 2. The red dots on

the map represent the bus stops. To facilitate the presenta-
tion, we include five rectangular boxes in Figure 2, labelled

2874

Figure 2: An Overview of User Interface

(a) TimeTable (b) Bus Stop Satisfaction Ratio (c) Strategy List and Comparison

Figure 3: A Breakdown of the User Interface

by numbers from 1 to 5. Box 1 is a query panel where users
could provide inputs for FASTS. Box 2 lists all the bus ser-
vice routes, where users can select any route of interest to
view the route on map and the bus schedule of that route.
A user can zoom in or zoom out the map view to explore
different levels of details by the button “+” or “-” in Box 3.
The “?” button in Box 3 allows users to start a tutorial to
learn how to use FASTS. Box 4 is a control panel where the
four icons decide whether to show or hide bus lines, bus stop
icons, the statistics reported, and the strategy list. Box 5
refers to the place where the statistics are visualized. Next,
we will present the three main features of FASTS and five
different scenarios where a user named Erin uses FASTS to
schedule the buses.

4.2 Coarse-grained Scheduling
FASTS can automatically schedule bus departures within

the constraints specified by the user and support different
explorations with a varying number of constraints. The
constraints represent the different requirements from the
user. The constraints that are considered and supported

by FASTS include the planned bus departure number (Pn),
the time period, the waiting time threshold (λ), and the
travel demands (D). Users can select one or several days bus
touch-on/touch-off records from Monday to Sunday as D.
Scenario 1: Basic Scheduling. Erin works in the tran-
sit agency. She is in charge of bus schedules in Singapore.
Erin accesses our system on a browser. The first thing that
she notices is the map view. Via panning, zooming-in and
zooming-out, she can locate Singapore on the map. The de-
fault λ is 3 minutes and the default time period when bus
departures could happen is set to the time window from 5:30
to 23:30. Next, she needs to input Pn for each bus in the bus
line list by using the “Edit” button in Box 2. The default D
contains the whole one-week bus touch-on/touch-off records.
Then, all she needs to do is to click the “AutoSchedule” but-
ton. Based on the Pn and the default parameter setting,
FASTS will find an ideal bus schedule consisting of a set of
selected buses and update the actual bus departure number
(An) of each line in the bus line list. Note that Pn repre-
sents the number of departures expected by the user, while
An represents the number of departures actually planned by

2875

the system. Since the system will no longer plan a bus for
a certain line when the remaining buses in this line cannot
serve any more passengers, An is no larger than Pn.

If Erin wants to see the bus timetable, she can select sev-
eral lines by clicking the row in the bus line list and open
the bus timetable by clicking on the “view TimeTable” but-
ton (See Figure 3a). In addition, the bus line list and bus
timetable can be exported as CSV or EXCEL files.

4.3 Fine-grained Scheduling with User Inter-
action

To further enhance its usability, FASTS supports fine-
grained scheduling with user interaction. Users can specify
the departure time of some buses or adjust the bus timetable
according to users’ needs. In addition, users can select spe-
cific region for the task of bus scheduling.
Scenario 2: Incremental Adjustment on Scheduling.
There could be cases where the returned bus timetable in the
first scenario is not able to meet Erin’s needs. For example,
some buses originally scheduled to serve certain bus lines
need to be arranged for some specific departure time because
of the needs of urban development. If Erin is not happy
with the current bus timetable, she has two options. First,
by clicking the “+” button (Figure 3a), she can indicate a
specific departure time for some bus lines before scheduling.
She can schedule the remaining bus timetables by clicking
the “IncreSchedule” button in Box 1 (Figure 2). Second,
after the scheduling, she can remove or change the departure
time of some buses in the timetable. As a result, FASTS will
show changes in the number of passengers satisfied.
Scenario 3: Region-based Scheduling. Erin can also
focus on a specific region for the task of bus scheduling. Say
Erin is tasked to find out a proper number of autonomous
buses required to serve two planning areas that are currently
identified as pilot regions for autonomous buses. FASTS
supports two ways for users to retrieve bus scheduling results
for a specific region. The first is by specifying the regions
similar to a range query (see Box 1), and the second is to
specify a list of bus lines or stops. Then, similar to the
previous actions, by clicking the “AutoSchedule” button,
the optimal bus timetable for the region will be returned.

4.4 Impact Analysis
FASTS provides an impact analysis of the bus schedules

and easy-to-interpret visualizations to help users to under-
stand how a schedule impacts user’s satisfaction. For each
bus timetable, the impact analysis mainly includes satisfac-
tion ratio analysis and statistics sliced in time (Scenario 4).
Among different bus timetables, the impact analysis mainly
compares some statistics (Scenario 5).
Scenario 4: Impact Analysis of Current Scheduling.
After scheduling, Erin wants to see the performance of the
current scheduling, and metrics such as how many passen-
gers will be served in each stop and the distribution of the
passenger waiting time, travel demand, bus departure num-
ber and passenger satisfaction ratio could be very useful to
Erin. FASTS uses some line charts to show these statistics
intuitively. The third button in Box 4 shown in Figure 2 al-
lows Erin to task FASTS to perform the analysis and display
the results. The four line charts shown at the bottom of Fig-
ure 2 are just sample outputs, reporting the travel demand
at different time intervals, the total bus departure number
at different time intervals, passenger satisfaction ratio in dif-

ferent time intervals, and the distribution of the passenger
waiting time respectively. For each chart, Erin could fur-
ther enlarge it by clicking the magnifying glass symbol on
the right top of the chart. In addition, Erin can explore the
satisfaction ratio of the passengers waiting at this stop and
the number of passengers that will be served in this stop by
double-clicking the stop icon on the map (see Figure 3b).
Scenario 5: Schedule Comparison. Finally, Erin has
several bus schedules. To make the decision, she needs to
know the differences among different schedules. She has al-
ready saved schedules as strategies before. Erin can show
the strategy list by clicking the fourth button in Box 4.
As shown in the “Strategies” sub-part of Figure 3c, stored
records are saved in the schedule list. Erin can easily explore
the previous results by clicking the “Adjust” button of each
line. Moreover, she can choose a schedule as a benchmark by
checking the checkbox. By clicking the “Compare” button,
information such as the total passenger number, number of
satisfied passengers, satisfaction ratio, and total bus depar-
ture number will be shown (see the “Compare” sub-part of
Figure 3c). She can also explore the top-5 bus stops or lines
with highest passenger satisfaction by clicking the “Top-5
Stops” or “Top-5 Lines” button.

5. ACKNOWLEDGMENTS
Zhiyong Peng is supported in part by the National Key

Research and Development Program of China (Project Num-
ber: 2018YFB1003400), Key Project of the National Natu-
ral Science Foundation of China (Project Number: U1811263)
and the Research Fund from Alibaba Group. Zhifeng Bao
is supported in part by ARC DP200102611, DP180102050.
Baihua Zheng is supported in part by Prime Minister’s Of-
fice, Singapore under its International Research Centres in
Singapore Funding Initiative.

6. REFERENCES
[1] G. Antonides, P. C. Verhoef, and M. Van Aalst.

Consumer perception and evaluation of waiting time: A
field experiment. Journal of consumer psychology,
12(3):193–202, 2002.

[2] M. Fletterman et al. Designing multimodal public
transport networks using metaheuristics. PhD thesis,
University of Pretoria, 2009.

[3] M. C. Kong, F. T. Camacho, S. R. Feldman, R. T.
Anderson, and R. Balkrishnan. Correlates of patient
satisfaction with physician visit: differences between
elderly and non-elderly survey respondents. Health and
Quality of Life Outcomes, 5(1):62, 2007.

[4] N. Lin, W. Ma, and X. Chen. Bus frequency
optimisation considering user behaviour based on
mobile bus applications. IET Intelligent Transport
Systems, 13(4):596–604, 2019.

[5] H. Mart́ınez, A. Mauttone, and M. E. Urquhart.
Frequency optimization in public transportation
systems: Formulation and metaheuristic approach.
European Journal of Operational Research,
236(1):27–36, 2014.

[6] S. Mo, Z. Bao, B. Zheng, and Z. Peng. Bus frequency
optimization: When waiting time matters in user
satisfaction. In International Conference on Database
Systems for Advanced Applications, 2020. To appear.

2876

