
SuccinctEdge: A Succinct RDF Store for Edge Computing

Weiqin Xu
UPEM LIGM - UMR CNRS
Marne-la-Vallée, France.
weiqin.xu@u-pem.fr

Olivier Curé
UPEM LIGM - UMR CNRS
Marne-la-Vallée, France.
olivier.cure@u-pem.fr

Philippe Calvez
CSAI ENGIE Lab
Stains - FRANCE

philippe.calvez1@engie.com

ABSTRACT
As edge computing is becoming a new platform for rich ap-
plications and services, it becomes more and more impor-
tant to design adapted data management systems for this
environment. In this paper, we present a prototype cor-
responding to a compact, in-memory RDF store that can
answer SPARQL queries requiring reasoning services with-
out necessitating any decompression. This demonstration
highlights a design based on succinct data structures, shows
some implementation details and provides encouraging per-
formance measures over a set of real-world and synthetic
data and query sets.

PVLDB Reference Format:
W. Xu, O. Curé, P. Calvez. SuccinctEdge: A Succinct RDF Store
for Edge Computing. PVLDB, 13(12): 2857-2860, 2020.
DOI: https://doi.org/10.14778/3415478.3415493

1. INTRODUCTION
Edge computing is a processing paradigm that brings com-

putation and data storage closer to the location where it is
needed. It is a growing trend that masks cloud computing
outages and enables the design of highly local context aware
and responsive services. A main challenge for this environ-
ment is data management in the context of mobile devices
and sensors as they generally have stringent requirements
on energy consumption as well as memory and CPU usages.

Our prototype system, SuccinctEdge1, has been designed
for edge computing from the get go and tackles the RDF
data model. It favors a compressed, self-indexed storage ap-
proach to a solution based on multiple indexes that could
potentially improve query execution but at the cost of a
higher memory footprint. The applications we are target-
ing with SuccinctEdge are executed on devices located at
the edge of a network, streaming in nature, i.e., an un-
bounded dataset of RDF graphs is queried by continuous
SPARQL queries, and generally do not have to be persisted

1https://github.com/xwq610728213/SuccinctEdge

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415493

in secondary storage. Moreover, our system makes an ex-
tensive use of succinct data structures (SDS)[5], a family
of data structures that uses a compression rate close to
theoretical optimum, but simultaneously allowing efficient
decompression-free query operations on the compressed data.
Together with our self-indexed approach, SDS guarantees a
low memory footprint that fits with an in-memory store ap-
proach. Moreover, the decompression-free aspects tends to
reduce the number of CPU cycles on standard queries and
inferences. Several recent data management systems have
been designed with a succinct perspective, e.g., Succinct[2]
and ZipG[4]. Nevertheless, to the best of our knowledge,
SuccinctEdge is the first one specifically designed for edge
computing. In the evaluation section, we emphasize that our
prototype provides interesting performance measures com-
pared to state of the art RDF stores designed for the edge.
These features will be highlighted during the demonstration.

2. SYSTEM OVERVIEW
This section presents an encoding scheme, i.e., LiteMat,

for the different entities of the RDF data model (including
its ontology layer), the architecture of the system and the
main characteristics of the query processing engine.

2.1 LiteMat
LiteMat[3] is a semantic-aware encoding scheme that com-

presses RDF data sets and supports reasoning services asso-
ciated to the RDFS ontology language, e.g., inferences asso-
ciated to the rdfs:domain, rdfs:range, rdfs:subClassOf

and rdfs:subPropertyOf constructors. To address infer-
ences drawn from these predicates, we assign specific nu-
merical identifiers to ontology terms which are organized as
hierarchies, i.e., concepts and predicates. This is performed
by prefixing the encoding of a term with the encoding of its
direct parent. This approach only works if an encoding is
computed using a binary representation and all binary en-
coding entries are all of the same length. The encoding is
performed using a top-down approach, e.g., starting from
the most specific concept of the hierarchy (e.g., owl:Thing
for the concept hierarchy), until all leaves are processed.
Then a normalization is performed to guarantee that all en-
coding entries have the same length, i.e., by setting right-
most bits to 0.

In Figure 1, we consider a small ontology extract contain-
ing the following axioms: A v Thing, B v Thing, C v B
and D v B. Figure 1a highlights the top-down encoding ap-
proach with (1) setting the local identifier of Thing, (2) its
direct subconcepts (A and B) and B’s subconcepts in (3).

2857



Figure 1: LiteMat encoding example

Then, in (4) the normalisation step is performed, i.e., added
right-most bits are written in red. Column (5) provides the
integer value attributed to each concept.

The mapping between URIs and their identifiers are stored
in dictionaries to enable the so-called locate and extract op-
erations. Moreover, in the URI to identifier dictionaries,
additional identifier metadata are stored. For instance, the
local length (binary length before the normalization phase)
of each dictionary entry is stored along the final identifier
entry. Figure 1b emphasizes some metadata of the LiteMat
encoding for the B concept: super concept identifier part,
start of local encoding and start of the normalization part.

The semantic encoding of concepts and predicates sup-
ports reasoning services usually required at query processing
time. For instance, consider a query asking for the pressure
value of sensors of type S1. This would be expressed as the
following two triple patterns: ?x pressureValue ?v. ?x

type S1. In the case sensor concept S1 has n sub-concepts,
then a naive query reformulation requires to run the union
of n+1 queries. With LiteMat’s semantic-aware encoding,
we are able, using two bit-shift operations and an addition,
to compute the identifier interval, i.e., [lowerBound, upper-
Bound), of all direct and indirect sub-concepts of S1. Thus,
the following reformulation is required (i) replacing the con-
cept S1 with a new variable : ?x type ?newVar and (ii)
introducing a filter clause constraining this new variable:
FILTER (?newVar>=lowerBound && ?newVar<upperBound).

2.2 Architecture
An overview of SuccinctEdge’s architecture is presented in

Figure 3. Like most RDF stores, all triples are encoded ac-
cording to some dictionaries, ours are computed with LiteMat
(see Section 2.1). The query engine uses these dictionaries
to transform queries and translate their answer sets. The
Triple store component adopts a single index based on the
predicate, subject, object (PSO) triple permutation. This
is motivated by the fact that the basic graph pattern of
queries submitted to SuccinctEdge have predicates filled in
with URIs (as opposed to variables). This component also
highlights that we make a distinction between object (except
rdf:type) and datatype properties. In the former, objects
are individuals and thus encoded with the respective dictio-
nary while in the later, objects are literals and stored as is.
In terms of data structures, wavelet trees[5] are used for the
property and subject layers as well as the object layer for
object properties. In order to relate a wavelet tree of one
layer to another, we are using bitmaps. Figure 2b represents
the triple set of Figure 2a where a wavelet tree corresponds
to balanced tree of bitmaps. For datatype properties, we
are using a flat data format to store literals. Finally, triples
containing a rdf:type property are stored in the RDFType

Figure 2: TripleStore example

store. These triples generally represent an important pro-
portion of the triple set in real-world RDF datasets, so we
proposed an efficient representation based on a vertical par-
titioning approach[1].

2.3 Query processing
The first step of our query processing approach is to de-

fine an order for the execution of the triple patterns (TP)
contained in a SPARQL query. The query optimization gen-
erates left-deep plans using a cost-based approach together
with a set of heuristics (inspired from [6]) which first consid-
ers TP with the smallest number of variables and define an
order for TP containing the same number of variables, e.g.,
(s, p, ?o) > (?s, p, o). Once an order is predefined, Succinct-
Edge translates the TPs into SDS’s standard operations:
access, rank and select. For a given SDS these three opera-
tions respectively return the value at a certain position, the
number of occurrences of a value until a certain position and
the index of n-th occurrence of a given value.

Due to space limitation, we only present two transla-
tion examples with Algorithms 1 and 2 for respectively TPs
(s, p, ?o) and (?s, p, o).

Algorithm 1: Search the triple pattern (s, p, ?o)

Input: Predicate s,p
Output: Results res

1 idp ← FindIdFromDictionary(p);
2 ids ← FindIdFromDictionary(s);
3 indexp ← wtp.select(1, idp);
4 indexsBegin ← bitmapps.select(indexp + 1, 1);
5 indexsEnd ← bitmapps.select(indexp + 2, 1);
6 for indexs in

wts.rangeSearch(indexsBegin, indexsEnd, ids) do
7 indexoBegin ← bitmapso.select(indexsBegin+1, 1);
8 indexoEnd ← bitmapso.select(indexsEnd + 2, 1);
9 for indexo ← indexoBegin to indexoEnd do

10 ido ← wto[indexo];
11 res← res ∪ (ids, idp, ido);

12 end

13 end
14 return res;

In cases where reasoning services are necessary to pro-
vide an exhaustive answer set, we can replace indexp with
a continuous interval corresponding to a LiteMat interval.

TPs containing rdf:type are processed differently using
the RDFType store component, where some simple struc-
ture look-ups permit to efficiently retrieve to subjects of a
given concept or the concepts of a given subject.

2858



Figure 3: Architecture overview of SuccinctEdge

The next step corresponds to joining the results obtained
from the execution of TPs. This occurs when different TPs
share a common variable. One of our joining approach
amounts to propagate variable assignments from one TP
to another. Consider the triple set of Figure 2a and TPs
(?s, p1, o1) and (?s, p2, ?o). The first TP gets the following
assignments: ?s : {s1, s2} which will serve to dynamically
generate (s1, p2, ?o) and (s2, p2, ?o) for the second triple.

During the join operation, we can benefit from a merge
join in cases where the values assigned to a joining variable
to the TP are in order. In the case of a star-shaped basic
graph pattern (e.g., (?s, p1, o1) and (?s, p2, ?o)), thanks to
the facts that all the subjects connected to a certain predi-
cate are in order and that all the objects connected to one
certain subject are also in order, we can perform a merge
join on the subject variable.

Algorithm 2: Search the triple pattern (?s, p, o)

Input: Predicate p
Output: Results res

1 idp ← FindIdFromDictionary(p);
2 indexp ← wtp.select(1, idp);
3 indexsBegin ← bitmapps.select(indexp + 1, 1);
4 indexsEnd ← bitmapps.select(indexp + 2, 1);
5 indexoBegin ← bitmapso.select(indexsBegin + 1, 1);
6 indexoEnd ← bitmapso.select(indexsEnd + 2, 1);
7 for indexo in

wto.rangeSearch(indexoBegin, indexoEnd, ido) do
8 indexs ← bitmapso.rank(indexo + 1, 1)− 1;
9 ids ← wts[indexs];

10 res← res ∪ (ids, idp, ido);

11 end
12 return res;

Previous executions steps are repeated until all the TPs
have been processed. Then the answer set of the query is
translated using our dictionaries and presented to the end-
user or application.

3. EVALUATION
We have conducted an evaluation of SuccinctEdge over

the following dimensions that seem particularly important
in an IoT-oriented data management context: duration of
structures creation (i.e., generation of dictionaries and en-
coding the dataset), compression rate, query processing ef-
ficiency in both the presence and absence of reasoning ser-
vices. The evaluation has been conducted on a Raspberry
Pi 3B+ with 1GB of RAM and 16GB of microSSD HCI.
SuccinctEdge is implemented in C++ and uses the SDS-lite
library2. We are comparing SuccinctEdge against Apache
Jena3 TDB and RDF4Led[7] and results are presented in
Table 1. A comparison against ZipG[4] does not make sense
since it targets a distributed cloud setting and is not aim-
ing for the RDF data model nor adopts a declarative query
language. JenaTDB is an open-source compact and robust
RDF store and RDF4Led has been designed specifically for
edge computing. The experimentation uses one synthetic
dataset based on the Lehigh University Benchmark4 and a
real-world dataset pertaining to the energy domain. The
first one, denoted LUBM1, is composed of over 103.000
triples and is used to get significant measures on the du-
ration, size and query with inference dimensions. The small
dataset, denoted EnergySmall, is composed of 500 triples
and matches practical retrieval data access from IoT sen-
sors. It is used to evaluate non-inference queries.

Concerning the duration of data structures (i.e., both the
dictionaries and datasets), SuccinctEdge is 32% and 53.5%
faster than respectively RDF4Led and Jena TDB. In our ex-
perimentation, we found out that, for SuccinctEdge, around
25% of total duration amounts to the dictionary creation
which is only required when the ontology is updated. Suc-
cinctEdge’s dictionary requires a smaller memory footprint
than the two other systems but the main gain is obviously
witnessed on the data instance graph. Overall, Succinct-
Edge’s data structures is 6x and 28x more compact than
resp. RDF4Led and Jena TDB. Note that all systems are

2https://github.com/simongog/sdsl-lite
3https://jena.apache.org/
4http://swat.cse.lehigh.edu/projects/lubm/

2859



Table 1: Comparison of RDF Stores. Creation time and size evaluation performed over the LUBM1 dataset
which contains over 100.000 triples. Query times in msec and sizes in MB. Q1, Q2 and Q3 performed over a
graph of 500 triples. Q4 and Q5 are performed on LUBM1

Creation time(sec) Dict. size Data size Total size Comp. rate Q1 Q2 Q3 Q4 Q5
Jena TDB 18.5 2.6 12.5 15.1 86% 803 913 880 20351 7460
RDF4Led 12.8 1.9 5.2 7.1 41% 200 203 203

SuccinctEdge 8.6 1.6 0.28 1.9 11% 5 5 7.5 5400 702

more compact than the original dataset represented in tur-
tle (instances) and RDF/XML (ontology) with Succinct-
Edge requiring only 11% of LUBM1. Considering query
processing, we have tested the three systems over of a set of
queries that do not require any inferences and which basic
graph pattern take the form of a chain, a snowflake and a
star, respectively Q1, Q2 and Q3; a set of queries requir-
ing some inferences on both the property and concept hi-
erarchies (Q4 and Q5). Queries Q1 to Q3, performed over
EnergySmall, highlight that SuccinctEdge is two orders of
magnitude faster that the other two systems. For queries
Q4 and Q5, Jena TDB and RDF4Led do not natively sup-
port any reasoning services. For Jena TDB, we implemented
a query rewriting approach to generate a SPARQL query
containing a union of basic graph patterns that cover all
inferences. This rewriting is then submitted to Jena TDB.
Again SuccinctEdge is more efficient (by one order of mag-
nitude). This rewriting can not be executed on RDF4Led
which currently does not support union SPARQL queries.

4. DEMONSTRATION SCENARIO
The demonstration setup consists of (i) a Raspberry Pi

3B+ (similar to the one used in the evaluation) on which all
three evaluated systems (Apache Jena, RDF4Led and Suc-
cinctEdge) have been installed and (ii) a laptop from which
an end-user can interact with SuccinctEdge. These interac-
tions correspond to selecting a dataset (including ontologies)
among a set of synthetic and real-world graphs and register-
ing a query, either selected from a set inference-based and
inference-free predefined ones or end-user defined.

The selected graphs range from sizes of a couple of hun-
dreds to one hundred thousands triples. The synthetic data
sets are based on the WatDiv5 and LUBM benchmarks while
the real-world is extracted from measures obtained from sen-
sors in the resource management domain (i.e., potable wa-
ter network with pressure, flow, pH, etc. measures). These
graphs are submitted to SuccinctEdge using a streaming ap-
proach where a stream corresponds to a complete graph.
Several metrics are displayed to the audience. They in-
clude the performance of each sub-tasks of query process-
ing as well as the graph construction in terms of space and
time. In order to grasp the mechanisms involved in query-
ing our SDS data structures, the query plan selected by the
query optimizer is displayed in a detailed manner thanks to
the EXPLAIN ANALYZE command. The rewriting of SPARQL
queries in terms of a sequence of the access, rank and select
SDS operations is also displayed to the audience. Moreover,
it highlights the inference-oriented query reformulation.

5https://dsg.uwaterloo.ca/watdiv/

Using this setting, we demonstrate the efficiency of Suc-
cinctEdge against typical RDF stores found in edge comput-
ing.

5. CONCLUSION
In this demonstration, we showcase a frugal in-memory

RDF data store designed for edge computing which privi-
leges a small memory footprint over multiple indexing struc-
tures. The compactness of the stored data is obtained by
using Succinct Data Structures such as bitmaps and wavelet
trees. We demonstrated a translation of SPARQL queries
into operations associated to these SDS, namely access, rank
and select, and thus support a decompression-free execu-
tion of these queries. Moreover, the usage of the LiteMat
encoding scheme enables to perform standard RDFS-based
reasoning services over these queries, i.e., it supports the
inference of implicit consequences from explicit knowledge.

6. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In Proceedings
of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, page 411–422. VLDB
Endowment, 2007.

[2] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct:
Enabling queries on compressed data. In Symposium on
Networked Systems Design and Implementation, NSDI
2015, pages 337–350, 2015.

[3] O. Curé, W. Xu, H. Naacke, and P. Calvez. Litemat, an
encoding scheme with RDFS++ and multiple
inheritance support. In The Semantic Web: ESWC
2019 Satellite Events - Revised Selected Papers, pages
269–284, 2019.

[4] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and
I. Stoica. ZipG: A memory-efficient graph store for
interactive queries. In ACM International Conference
on Management of Data, SIGMOD, pages 1149–1164,
2017.

[5] G. Navarro. Wavelet trees for all. J. of Discrete
Algorithms, 25:2–20, Mar. 2014.

[6] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki,
V. Christophides, and P. A. Boncz. Heuristics-based
query optimisation for SPARQL. In International
Conference on Extending Database Technology, EDBT ,
Proceedings, pages 324–335, 2012.

[7] A. L. Tuán, C. Hayes, M. Wylot, and D. L. Phuoc.
RDF4Led: an RDF engine for lightweight edge devices.
In International Conference on the Internet of Things,
pages 2:1–2:8, 2018.

2860


