
PiBench Online:
Interactive Benchmarking of Persistent Memory Indexes

Xiangpeng Hao
Simon Fraser University

xha62@sfu.ca

Lucas Lersch
TU Dresden & SAP SE
lucas.lersch@sap.com

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

Ismail Oukid
Snowflake Computing

ismail.oukid@snowflake.com

ABSTRACT
The emergence of persistent memory (PM), such as Intel Optane
DC Persistent Memory Modules (DCPMM), opened up many op-
portunities for building high-performance indexes directly on PM.
However, the many PM indexes proposed by prior work had their
evaluation based on PM emulation using DRAM and therefore it was
not clear how they would perform on real PM hardware. Moreover,
they typically used ad hoc, in-house benchmarks and did not collect
PM-specific hardware metrics that are key performance indicators
and are instrumental for users and developers to understand the per-
formance behavior of PM indexes. These issues call for a systematic,
fair and reproducible approach for evaluating PM indexes.

This demonstration highlights the principles and lessons learned
from our recent evaluation of PM indexes on real DCPMM and
showcases PiBench, a unified benchmarking framework that en-
ables fair and reproducible evaluation of PM indexes. In addition
to common metrics, PiBench uniquely integrates monitoring tools
to collect PM-specific hardware counters, allowing in-depth perfor-
mance analysis. Our demonstration is enabled by PiBench Online,
a new interactive system built on top of PiBench. Using PiBench
Online, users can upload their own index implementations, run pre-
set or customized workloads, and analyze results interactively, all
through an easy-to-use web interface. PiBench is open-source and
PiBench Online is deployed at https://pibench.org. We hope
PiBench Online can promote fair comparison and reproducibility in
database and systems communities.

PVLDB Reference Format:
Xiangpeng Hao, Lucas Lersch, Tianzheng Wang, Ismail Oukid. PiBench
Online: Interactive Benchmarking of Persistent Memory Indexes. PVLDB,
13(12): 2817-2820, 2020.
DOI: https://doi.org/10.14778/3415478.3415483

1. INTRODUCTION
Next-generation, scalable and high-performance persistent mem-

ory (PM) offers both byte-addressability and persistence on the mem-
ory bus. PM blurs the boundary between storage and memory and
creates opportunities for a new generation of fast index data struc-
tures that persist data and operate directly on PM, without extra, com-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415483

plex layers of persistence using HDDs or SSDs. These PM indexes
become very attractive in the context of high-performance database
systems. Many new designs were proposed [1, 2, 3, 7, 8, 9, 10], how-
ever, most of them were based on emulation using DRAM, since
PM hardware was unavailable. Real PM exhibits unique perfor-
mance characteristics such as asymmetric read/write speeds, limited
bandwidth and longer access latency [5]. Therefore, it was not clear
whether previously proposed algorithms and data structures would
work as expected on real PM devices.

With the recently released Intel Optane DC Persistent Memory
Modules (DCPMM), for the first time we explored how PM in-
dexes perform on real devices, and distilled insightful principles to
guide the design of future PM indexes [6]. Our results show that
surprisingly, certain “recommended” design principles (e.g., copy-
on-write) turned out to be harmful on real PM. Furthermore, we
noticed the absence of a benchmarking framework for PM indexes
that (1) allows fair and reproducible evaluation of PM indexes, and
(2) collects PM-specific hardware metrics such as bytes transferred
to PM, cache misses, and bandwidth consumption. PM indexes are
usually benchmarked using ad hoc in-house tools and workloads, on
different hardware platforms (emulated or real PM). Even the same
workload may be implemented in very different ways by different
researchers. Consequently, it becomes unreliable for researchers and
practitioners to compare and reason about results reported by differ-
ent papers. These issues call for a unified, easy-to-use benchmarking
framework for PM indexes that allows researchers to compare and
analyze different designs reliably and improve reproducibility.

In this demonstration, we highlight the insights and important
guidelines obtained in our experimental study for building future
PM indexes and database systems, and showcase PiBench, our new
benchmarking framework used to obtain these results. The basis
of our demonstration is the online deployment, PiBench Online,1

which extends PiBench by introducing the following contributions:
• Intuitive GUI allowing interactive benchmarking and analysis.
• Generate and export plots to be directly included in papers.
• Facilitate the reproducibility of experiments across papers.
• Ready to be publicly deployed and made available for researchers

to have easier access newly release PM hardware in an effort to
democratize access to PM and obviate the need of emulation.

1.1 Introducing PiBench
PiBench is a unified framework uniquely designed for benchmark-

ing PM indexes, with the following features.
Flexible and Easy-to-Use. PiBench defines a set of common

interfaces (insert, lookup, delete, update, scan) supported by index
structures and implements representative workloads. As Figure 1

1Live system deployed at https://pibench.org. Code available at https://
github.com/sfu-dis/pibench-online.

2817

https://pibench.org
https://pibench.org
https://github.com/sfu-dis/pibench-online
https://github.com/sfu-dis/pibench-online


PiBench

...

libwrapper.so

Key Generator
Value Generator

Prefix

Operation Generator

Thread 
1

Stats 1

P
ro

ce
ss

or
 C

ou
nt

er
 M

on
ito

r

M
on

ito
r T

hr
ea

d
G

lo
ba

l S
ta

ts
...

libbztree.so
ip

m
w

at
ch

Key Generator
Value Generator

Prefix

Operation Generator

Thread 
n

Stats n libnvtree.so

libfptree.so

Figure 1: Overview of PiBench. User-provided indexes (shared
libraries) implement a common set of interfaces and are linked with
PiBench for benchmarking. Workload generation and metrics (in-
cluding PM-specific ones) are done by PiBench for reproducibility.

shows, the user only needs to implement these interfaces and com-
pile it as a shared library (e.g., libbztree.so for BzTree [1]) to
link with PiBench. These index structures are typically implemented
using C/C++, however, PiBench does not restrict it and a binding
(e.g., Cgo2 that allows Go code to call C code) can be used. PiBench
will then issue the specified workloads against the index under eval-
uation and report results.

Highly Customizable. PiBench allows the user to specify a mag-
nitude of parameters such as operations to perform, the number of
threads to use, the metrics to collect, etc. Workloads are also fully
customizable: the user can set different key/value sizes and distribu-
tions (e.g., zipfian/uniform), or use a preset YCSB [4] workload.

Tailored for PM. Behind the scenes, PiBench collects metrics
such as the amount of completed operations and latency of individual
operations. These metrics are collected at specified time intervals
and sampling rates, allowing for more meaningful statistics, such as
standard deviation and percentiles, in addition to common metrics
such as average throughput and total runtime. We also integrate
Processor Counter Monitor3 and IPMWatch4 in PiBench. This
makes it unique in enabling in-depth analysis using PM-specific
metrics like cache misses, PM/DRAM bandwidth consumption and
the traffic between PM media and memory controller.

Lightweight. It is imperative for a benchmark tool to not intro-
duce a significant overhead. We verified that PiBench exhibits only
2–5% of overhead when running a lookup-only workload (the fastest
operation) in a highly optimized index (FPTree, arguably one of the
fastest [7]), while collecting metrics such as throughput, tail latency
and various hardware performance counters.

It is worth noting that PiBench can also be used to evaluate
non-PM indexes (e.g., in-memory or disk based) as long as they
implement the common interfaces (natively or through a wrapper).

1.2 Insights for Indexes on PM
Using PiBench, we conduct a comprehensive evaluation of rep-

resentative PM index structures [1, 2, 7, 9] that cover a wide range
of techniques used for designing PM indexes, such as unsorted leaf
nodes, lock-free concurrency and copy-on-write designs. The results
revealed several important and useful design principles and lessons
learned, summarized below:
• PM indexes need to be designed to not exhaust the available PM

bandwidth. While bandwidth was rarely an issue for DRAM trees,
our results show for multiple tree structures, bandwidth indeed
can be a bottleneck, especially if the memory channels are not
fully populated with enough DCPMM.

2
https://blog.golang.org/cgo

3
https://github.com/opcm/pcm

4Available as part of Intel VTune Amplifier 2019 since Update 5.

PiBench front-end API

PiBench instance A
(PM server)

PiBench back-end

PiBench instance B
(DRAM server) PiBench instance X

PiBench front-end (User browser)

Dockerized Dockerized Dockerized

pm-server 8-threads PiBench user interface

Figure 2: PiBench Online system architecture. The user interacts
with a browser-based GUI to send benchmarking requests, which
will be handled by a PM server backend based on PiBench.

• PM programming frameworks impose non-trivial overheads, lead-
ing to a significant slowdown on real PM compared to the origi-
nally reported numbers using emulations on DRAM. The interac-
tions between data structures and PM libraries (such as PMDK5)
must be carefully coordinated for both correctness and efficiency.

• There are several effective key building blocks and principles
that should be followed when designing indexing structures for
PM, such as fingerprinting for reducing unnecessary PM accesses,
indirections to speed range queries and judicious use of DRAM
for better performance. Though not proposed as individual de-
signs, they are largely orthogonal and can be applied individually
depending on the need.
More details can be found in our evaluation study [6] and will be

highlighted in our demonstration, described next.

2. DEMONSTRATION: PiBench Online
Through this demonstration, we (1) showcase PiBench’s capabil-

ity, (2) highlight the key findings and principles that were distilled
from our evaluation of representative PM indexes, and (3) promote
the use of a unified, fair benchmark framework for future work
in PM indexes. We achieve these goals with PiBench Online, an
interactive benchmark and analysis system built on top of PiBench.

2.1 Overview
PiBench Online is an online service allowing users to submit their

index implementation and run benchmarks via a web browser. It can
be deployed on premise or in a cloud environment. Particularly, if
deployed and shared publicly (in a commercial or academic cloud),
researchers are able to benchmark their work on a common platform
and make it easy to compare results across different publications.

As Figure 2 shows, using the frontend (web interface), the user
simply needs to (1) upload a shared library that implements the
index, and (2) set the desirable parameters (e.g., number of threads,
operation types, number of operations) and metrics (e.g., throughput,
tail latency) to start benchmarking. The backend running on a remote
server then links with the index, executes workloads and returns the
results. The user can interactively analyze, adjust the presentation
of results and export them via the web interface.

Our demonstration will exhibit that PiBench Online enables push-
button evaluation and analysis of index structures running on real
5
https://github.com/pmem/pmdk/

2818

https://blog.golang.org/cgo
https://github.com/opcm/pcm
https://github.com/pmem/pmdk/


Figure 3: Web-based user interface (A) and UI components (B–C) in PiBench Online frontend.

Intel Optane DC Persistent Memory Modules. We deployed the
backend on a dual-socket server with two 24-core Intel Xeon Gold
6252 CPUs clocked at 2.1 GHz (in total 48 cores, 96 hyperthreads).
The server is fully populated with 1.5 TB of Intel Optane DCPMM
(6×128 GB DCPMM DIMMs per socket) and 384 GB of DRAM
(6×32 GB DRAM DIMMs per socket). The client side is a highly
responsive in-browser GUI built using JavaScript. We provide re-
cent PM index implementations for the demonstration (FPTree [7],
BzTree [1], wbTree [2], NV-Tree [9]). Users can also upload other
implementations for benchmarking and analysis. In case of connec-
tivity problems, we plan to conduct the demonstration with local
DRAM with delays injected to emulate PM.

2.2 User Interface
The user interacts with PiBench Online via a frontend which

consists of three components, as we describe next.
Workload Management (Figure 3A). After selecting a backend

(detailed later) and the index to evaluate, the user can set the param-
eters before starting the benchmark. Once the benchmark finishes,
the backend returns the results which can be saved for later analysis.

Backend Management (Figures 3B-C). We allow the user to
benchmark on different platforms and compare the results with dif-
ferent indexes. The user can deploy multiple backends on different
machines, register them using the management panel and select the
preferred backend in the main “Benchmark” panel in Figure 3(A).

Performance Analysis (Figure 4). Once the results are returned
by the backend, the user can interactively analyze them. The analy-
sis panel allows the user to select multiple benchmark results and
visualize them in a single plot by selecting the desired metrics. All
the benchmark results can be exported and are automatically saved
in the browser, allowing the user to restore the session without
re-running benchmarks. We will also maintain a leaderboard in
PiBench Online to rank the performance of different indexes tested;
these results can serve as a repository for the user to quickly learn
about the performance of various indexes in the future.

2.3 PiBench Backend
PiBench backend consists of two components: (1) An HTTP

server (implemented in rust) that communicates with the frontend
and parses user input into PiBench parameters. (2) A PiBench binary

Figure 4: Interactive performance analysis panel.

which is invoked by the HTTP server to generate the workload,
spawn new threads, execute the benchmark and collect the results.

Upon initialization, the backend checks basic system parameters
(e.g., number of threads, PM capacity) and returns these to the client.
As Figure 3(B) shows, PiBench Online can also use DRAM emu-
lation or evaluate non-PM indexes if no PM is detected (Has PM).
It then (optionally) performs a sample benchmark with a simple
C++ std::map index for a test run. The results can be queried
by the client for the user to compare with other indexes to be up-
loaded. After an index (shared library) is uploaded, the backend
then links it with PiBench binary (using dlopen6)) and starts the

6
https://man7.org/linux/man-pages/man3/dlopen.3.html

2819

https://man7.org/linux/man-pages/man3/dlopen.3.html


actual benchmark. Indexes may have different dependencies; for
easy management, we expect the user to compile the dependencies
into a single shared library or upload them together with the index
to be evaluated.

3. DEMONSTRATION SCENARIOS
Our demonstration consists of three parts: (1) a brief introduction,

(2) two live scenarios that the audience can participate and (3) a
leaderboard/takeaway messages presentation.

3.1 Poster/Video: Background Introduction
To set the stage, we start by introducing the background of PM

devices, research in PM-based database systems and the challenges
of evaluating PM indexes. We also cover the basics about PiBench
and PiBench Online. A (virtual) poster will be put up to aid our ex-
planation, and a video/GIF animation will be displayed on a monitor
for the audience to get a first glance of how the system works at a
high level. The poster will also highlight the key findings described
in Section 1.2 and more details from our evaluation work [6].

3.2 Live: Benchmarking
In this scenario, we show the user how to use PiBench Online

to evaluate PM indexes under a particular workload. The user may
choose from one of our pre-built index libraries, or even upload their
own (via a USB stick or by downloading it through the internet). We
then allow the user to set hardware parameters (e.g., using actual or
emulated PM) and configure the workload. To get the user started,
we provide an example configuration, on top of which the user
can adjust the parameters using our web-based GUI. The modified
configuration can then be saved as a preset for future use. The user
can choose to start with a pre-set workload and (optionally) adjust
the operation/thread count, key/payload size, distribution and so on.
In addition, the user can optionally enable PCM and IPMWatch to
collect hardware counter values.

Once the configuration is set, the user can click the start button
in Figure 3(A), which will cause the frontend to send a request to
the server and start benchmarking. The user can now wait until
the server finishes the benchmark and sends back the results. To
compare the results among different configurations, the user can
save the current benchmark results by clicking the save button.

3.3 Live: Interactive Result Analysis
After the benchmark scenario, the frontend parses the results re-

ceived from the server and displays them with interactive data plots.
This allows the user to analyze the results and compare different
performance metrics. For example, one may choose to observe
throughput (Y axis) over thread count (X axis), or change to see
other metrics using the Plot figure button shown in Figure 4.
The user may begin with selecting previously saved results. The
system will then automatically highlight the differences in the con-
figurations and results. We then show that the user can selectively
focus on a subset of aspects and visualize the differences by plotting
the figures. The figures are fully interactive, allowing the user to
zoom in and focus on a particular area or dynamically add new data
series to the figure. Finally, we show that the results (figures and
raw data) can be exported for further analysis and publication.

3.4 Leaderboard and Takeaway Messages
Benchmark results (with metrics such as throughput, tail latency

and memory consumption) can be saved and ranked in a leaderboard
to compare different indexes. The final part of the demonstration
exhibits this leaderboard and highlights key takeaway messages
distilled from our own experience, including the scarcity and impact

of limited PM bandwidth, impact of PM allocator and how copy-on-
write (which was thought to be desirable) can be a bad fit for PM
indexes. Finally, we present a “wish list” for future PM devices to
highlight the desirable features for building database systems, such
as DRAM-level performance and durable CPU caches.

4. SUMMARY
Persistent memory brings both opportunities and challenges to

the making of database systems, in particular building and evaluat-
ing index structures in a fair and reproducible manner. Prior work
was proposed based on (inaccurate) emulations using DRAM and
evaluation was done in ad hoc ways using in-house benchmark tools
and workloads, making it hard for researchers to reasonable about
the results reported by different papers. We demonstrate PiBench,
a unified benchmark framework specifically designed for evaluat-
ing PM indexes. With PiBench, researchers and practitioners only
need to implement the common interfaces of indexes and specify
the workload to conduct evaluations. All the remaining work (is-
sue index operations and collect metrics) is done systematically by
PiBench. Through a new interactive deployment, PiBench Online,
our demonstration focuses on (1) presenting PiBench’s capabilities
and PiBench Online’s interactive workflow for testing and analy-
sis, (2) highlighting the important lessons learned from evaluating
recent PM indexes and more importantly (3) distilling the critical
design principles that should be followed when designing future PM
indexes and data structures on real PM hardware. For questions and
comments, contact support@pibench.org.

5. REFERENCES
[1] J. Arulraj, J. J. Levandoski, U. F. Minhas, and P. Larson.

BzTree: A High-Performance Latch-free Range Index for
Non-Volatile Memory. PVLDB, 11(5):553–565, 2018.

[2] S. Chen and Q. Jin. Persistent B+-Trees in Non-Volatile Main
Memory. PVLDB, 8(7):786–797, 2015.

[3] P. Chi, W.-C. Lee, and Y. Xie. Making B+-Tree Efficient in
PCM-Based Main Memory. In ISLPED, pages 69–74, 2014.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In ACM SoCC, pages 143–154, 2010.

[5] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor,
J. Zhao, and S. Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module. CoRR,
abs/1903.05714, 2019.

[6] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm.
Evaluating Persistent Memory Range Indexes. PVLDB,
13(4):574–587, 2019.

[7] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner.
FPTree: A Hybrid SCM-DRAM Persistent and Concurrent
B-Tree for Storage Class Memory. In SIGMOD Conference,
pages 371–386, 2016.

[8] F. Xia, D. Jiang, J. Xiong, and N. Sun. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In
USENIX ATC, pages 349–362, 2017.

[9] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and B. He.
NV-Tree: A Consistent and Workload-Adaptive Tree
Structure for Non-Volatile Memory. IEEE Trans. Computers,
65(7):2169–2183, 2016.

[10] P. Zuo, Y. Hua, and J. Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In USENIX OSDI, pages 461–476, 2018.

2820

mailto:support@pibench.org

	1 Introduction
	1.1 Introducing PiBench
	1.2 Insights for Indexes on PM

	2 Demonstration: PiBench Online
	2.1 Overview
	2.2 User Interface
	2.3 PiBench Backend

	3 Demonstration Scenarios
	3.1 Poster/Video: Background Introduction
	3.2 Live: Benchmarking
	3.3 Live: Interactive Result Analysis
	3.4 Leaderboard and Takeaway Messages

	4 Summary
	5 References

