
UNMASQUE: A Hidden SQL Query Extractor

Kapil Khurana Jayant R. Haritsa
Database Systems Lab

Indian Institute of Science, Bangalore

{kapilkhurana, haritsa}@iisc.ac.in

ABSTRACT
Given a database instance and a populated result, query reverse-
engineering attempts to identify candidate SQL queries that pro-
duce this result on the instance. A variant of this problem arises
when a ground-truth is additionally available, but hidden within
an opaque database application. In this demo, we present UN-
MASQUE, an extraction algorithm that is capable of precisely
identifying a substantive class of such hidden queries. A hallmark
of its design is that the extraction is completely non-invasive to the
application. Specifically, it only examines the results obtained from
application executions on databases derived with a combination
of data mutation and data generation techniques, thereby achiev-
ing platform-independence. Further, potent optimizations, such as
database size reduction to a few rows, are incorporated to mini-
mize the extraction overheads. The demo showcases these features
on both declarative and imperative applications.

PVLDB Reference Format:
Kapil Khurana and Jayant R. Haritsa. UNMASQUE: A Hidden SQL Query
Extractor. PVLDB, 13(12): 2809-2812, 2020.
DOI: https://doi.org/10.14778/3415478.3415481

1. INTRODUCTION
Over the past decade, query reverse-engineering (QRE) has at-

tracted considerable research attention. The generic problem tack-
led here is the following: Given a database instance D and a
populated result R, identify a candidate SQL query Qc such that
Qc(D) = R. Impressive progress has been made on addressing
the QRE problem, with potent tools such as Talos[3] and Regal[2]
having come to the fore.

A variant of the QRE problem, recently introduced in [1], arises
when a ground-truth query is additionally available, but in a hidden
form that is not easily accessible. In this variant, termed hidden-
query extraction (HQE), the objective is defined as: Given a black-
box application A containing a hidden SQL query QH , and a
database instance D on which QH produces a populated result R,
unmask QH to reveal the original query. Such “hidden-executable”
situations can arise in a variety of real-world contexts, including:
(i) encrypted or obfuscated database applications; (ii) legacy code

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415481

whose source has been lost over time; (iii) presence of third-party
proprietary tools in the workflow; and (iv) poorly documented soft-
ware inherited from external developers.

The presence of the hidden ground-truth can be leveraged to
provide a variety of advantages relative to the earlier QRE work,
including: (i) Independence from the (D, R) instance; (ii) Pre-
cise identification of query constants (e.g. via binary search on at-
tribute domains); (iii) Extraction of advanced constructs (e.g. LIKE,
LIMIT), and (iv) Extraction efficiency on large databases. More-
over, using QRE techniques to provide a “seed query” for HQE is
not a viable approach since (a) their candidate queries may differ
from the original query in virtually all the constructs, and (b) they
do not support a modular extraction of component clauses. There-
fore, the HQE procedures have to be designed from scratch.

We took a first step towards addressing the HQE problem in
[1]. Specifically, we presented UNMASQUE1, an algorithm that
uses a judicious combination of database mutation and synthetic
database generation to precisely identify the hidden query. Cur-
rently, UNMASQUE is capable of extracting a restricted but sub-
stantive class of SPJGAOL (SELECT, PROJECT, JOIN, GROUPBY,
AGGREGATE, ORDERBY, LIMIT) queries. As an exemplar, con-
sider QH in Figure 1, which encrypts a TPCH Q3-based query in
a stored procedure, and features all these clauses. UNMASQUE
was able to successfully extract all semantic aspects of this query,
as shown in the UNMASQUE output screenshot of Figure 6.

Figure 1: Hidden Query Example (QH)

A hallmark of UNMASQUE’s design is that the extraction is
completely non-invasive with respect to the application code, ex-
amining only the results obtained from its executions on a variety
of carefully constructed databases. This makes the tool immedi-
ately usable, either in lieu of, or prior to, invoking stronger forensic
tools. Moreover, it makes the tool essentially platform-independent
with regard to the underlying database engine.

1Unified Non-invasive MAchine for Sql QUery Extraction

2809

Figure 2: UNMASQUE Architecture

Finally, to ensure extraction efficiency, UNMASQUE incorpo-
rates size-reduction optimizations which ensure that all extraction
procedures operate on minuscule databases containing only a hand-
ful of rows. For instance, the initial database D is whittled down
to the smallest subset Dmin on which QH continues to provide a
populated result before applying our mutation techniques. In fact,
for UNMASQUE’s current extraction query scope, Dmin provably
contains only a single row in each of the relevant database tables.

In analogous fashion, the synthetically created databases are also
carefully designed to be very thinly populated. For instance, the
GROUP BY columns are identified using a database with a maxi-
mum of just three rows in each query-related table.

Thanks to these optimizations, the extraction of the exam-
ple query in Figure 1 was completed within ten minutes on a
vanilla computing platform hosting a 100 GB version of the TPCH
database. Moreover, even when the initial database was scaled by
an order of magnitude to 1 TB, the extraction was completed in
less than twenty minutes. A detailed performance evaluation over
representative TPCH-based queries is described in [1].

Extraction Workflow. UNMASQUE operates according to the
pipeline shown in Figure 2, where it unmasks the hidden query el-
ements in a structured manner, starting with the FROM clause, con-
tinuing on to the JOIN and FILTER predicates, following up with
the PROJECTION, GROUP BY, AGGREGATION columns, and con-
cluding with the ORDER BY and LIMIT functions. The initial SPJ
elements are extracted using database mutation strategies, whereas
the subsequent GAOL elements are extracted leveraging database
generation techniques. The final component is the QUERY ASSEM-
BLER which puts together the different elements of QE and per-
forms canonification to ensure a standard output format.

Demo Highlights. Our objective in the demo is to visually
and interactively showcase the query extraction features of UN-
MASQUE, which is implemented in about 10K lines of Python
code. The user interfaces, detailed in Section 3, include: (a)
Database Instance Selection, where the user can choose the
database instance on which to evaluate query extraction; (b) Hid-
den Query Input, through which the user can submit an opaque
database logic, either via direct SQL input that is subsequently
encrypted, or via an imperative logic executable; (c) Extraction
Pipeline, where users can follow the step-by-step extraction pro-
cess, including viewing the tiny databases used in each of these
modules; and, finally (d) Extraction Output, which presents the
extracted query along with statistical profiles of the extraction time,
number of mutations and executable invocations, etc., as well as a
textual comparison of the extracted and hidden queries.

2. DESIGN OF UNMASQUE
Currently, UNMASQUE assumes that the application contains

either a single SQL query, or imperative logic that is expressible in
a single query. Further, the coverage is limited to a restricted but
substantive class of SPJGAOL queries. The primary assumptions
are that the query is nesting-free, disjunction-free and function-
free; further, all join predicates are inner equi-joins between key
columns, and all filter predicates are on non-key columns. Inter-
estingly, we support the LIKE operator, including wildcards, for
filtering textual columns. The complete details of UNMASQUE,
including formal proofs of its ability to extract complex queries,
are available in [1].

To set up UNMASQUE’s extraction process, we create a silo
in the database that has the same table schema as the original
user database. Subsequently, all referential integrity constraints are
dropped from the silo tables, since the extraction process requires
the ability to construct alternative database scenarios that may not
be compatible with the existing schema. We then create the follow-
ing template representation for the to-be-extracted query QE :

Select (PE , AE) From TE Where JE ∧ FE

Group By GE Order By OE Limit lE ;
and sequentially identify each of the constituent elements, as per
the pipeline of Figure 2, described below.

2.1 Mutation Pipeline
The first half of the pipeline, referred to as Mutation Pipeline

(MP), is based on mutations of the original database D to obtain
TE (tables in FROM clause), followed by reduction to Dmin, and
then mutations of this reduced database to obtain the SPJ elements
that deliver the raw query results. MP implements the mutations
by making targeted changes to a specific table or column while
keeping the rest of Dmin intact.

We illustrate this process through the identification of join pred-
icates, JE , between primary-keys (pk) and foreign-keys (fk) for
acyclic database schema graphs. First, we create a candidate join-
graph (CJG), whose vertices are the key columns in TE , and whose
edges are all schematically permissible pk-fk joins between these
columns. Then, we iteratively check each edge e in the CJG for its
presence in the hidden query. For this evaluation, Dmin is mutated
to Dmut such that only the join predicate corresponding to e is not
satisfied. This is achieved by identifying the two connected com-
ponents obtained after removing e from CJG, and mutating the key
column values in one of the components such that the new values
are different to all the key values in the other component. Finally,
we observe the result of QH on Dmut – an empty (resp. popu-
lated) result implies the presence (resp. absence) of e in the hidden
query’s join graph.

2810

For instance, to check the join edge <c custkey, o custkey>
in Figure 1, we construct Dmut by negating the c custkey values
in Dmin, thereby ensuring the join predicate is not satisfied. Af-
ter that, we run QH on this Dmut instance, and the empty output
implies the edge is present in QH ’s join graph.

2.2 Generation Pipeline
The second half of the pipeline, referred to as Generation

Pipeline (GP), is based on the generation of carefully-crafted syn-
thetic databases. It caters to the GAOL query clauses, which ma-
nipulate the raw SPJ results. The modules in this segment require
generation of new data for all the query-related tables under vari-
ous row-cardinality and column-value constraints. We deliberately
depart from the mutation approach here since these constraints may
not all be satisfied by the original database instance.

We illustrate this process through the identification of the group-
by columns, GE . For instance, to verify grouping on a generic
table column t.A, we create a Dgen such that the intermediate re-
sult produced by the SPJ part of QH has exactly 3 rows, which
satisfy the following condition: t.A has a common value in only
two rows, while all other columns have the same value in all three
rows. Now, if the final result of applying QH on Dgen contains 2
rows, it implies that the grouping is only due to the two different
values in t.A, making it part of GE .

Figure 3: Dgen for Checking Grouping on o orderdate (QH)

The key to the above test is the creation of a suitable Dgen such
that: (i) all the filter and join predicates are satisfied; (ii) all re-
maining attributes in TE other than t.A are assigned a single value
in all the rows; and (iii) t.A is assigned the same value in two rows
and a different value in the third row. A constructive procedure for
generating such Dgen is explained in [1] – as a concrete example,
the Dgen for checking the presence of o orderdate in GE of the
example query in Figure 1 is shown in Figure 3. Here, the ORDERS
table features 3 rows while the remaining tables, LINEITEM and
CUSTOMER, have one row apiece. The output, R, having two rows
indicates that o orderdate is part of GE .

3. UNMASQUE DEMONSTRATION
In the demo, the audience will actively engage with a variety of

visual scenarios that showcase the functionality and utility of UN-
MASQUE. As samples, the tool’s interfaces at various stages of
extraction are shown in Figures 4 through 6, and their contents are
explained below. An illustrative video of UNMASQUE in opera-
tion is available at the project website [4].

Database Instance Selection. The top pane in Figure 4 pro-
files the database connectivity inputs for selecting specific rela-
tional engines and database instances. In the demo, we will show-
case extraction on the TPC-H and TPC-DS benchmark databases
at various sizes, ranging from 1 GB to 1 TB, hosted on the Post-
greSQL and Microsoft SQL Server platforms.

Hidden Query Input. The bottom left and right panes in Fig-
ure 4 provide the alternative input methods to UNMASQUE. In the
first method, the user directly types an SQL query in the template
form, and then clicks the Hide Query button, resulting in an en-
crypted or obfuscated stored procedure. A sample encryption on
the SQL Server platform was shown in Figure 1.

The second user option is to invoke a (predefined) opaque stored
procedure, or an opaque executable with embedded imperative
database logic. The query extraction here will showcase how
UNMASQUE offers a light-weight and platform-independent ap-
proach to imperative-to-declarative translation. Further, it is usable
even when only the executable, and not the source, is available.

Extraction Pipeline Progress. Once the extraction process is
started, UNMASQUE displays the screen of Figure 5. The upper
pane presents the mutation and generation pipelines, and the lower
shows the extracted query template, which is step-by-step fleshed
out as the extraction process proceeds through these pipelines.

Initially, all modules in the pipeline are colored Orange. Once
the execution phase reaches a module, it is coloured Yellow, and
subsequently to Green after completion; further, its output is popu-
lated in the corresponding clause of the query template. The snap-
shot shown in Figure 5 marks the transition point where all the
modules in Mutation Pipeline have completed (resulting in identifi-
cation of the SPJ elements), and the Generation Pipeline execution
has just begun.

Internals of Extraction Modules. Post query extraction,
users can drill-down into each module and view the specific
databases used for extraction (similar to Figure 3). Further, the data
structures used in the module are also shown, with some having
visual interfaces for interactively testing the constructs (e.g. candi-
date join graphs). These features provide direct insights into the
mutation and generation algorithms used for the extraction.

Extraction Output Analysis. After completing all the
pipeline modules, UNMASQUE displays the final extracted query,
as shown in Figure 6. This is accompanied with a statistical perfor-
mance profile that includes the total and component-wise extraction
times, number of executable invocations, and related information.
For instance, the total time for extracting the example query was
44 seconds, and required 202 invocations of the application exe-
cutable. Users can also verify the correctness of the extraction by
running the CHECKER module via the Run Checker button which
supports the regression test suite of the original database.

Acknowledgements
This work was supported in part by a J. C. Bose Fellowship from
Dept. of Science and Technology, Govt. of India, and a GCP grant
from Google India.

4. REFERENCES
[1] K. Khurana and J. Haritsa. Hidden Query Extraction.

Tech. Rep. 2020-01, DSL, IISc. dsl.cds.iisc.ac.in/
publications/report/TR/TR-2020-01.pdf

[2] W. Tan, M. Zhang, H. Elmeleegy and D. Srivastava.
REGAL+: Reverse Engineering SPJA Queries. PVLDB,
11(12):1982–1985, Aug. 2018.

[3] Q. Tran, C. Chan and S. Parthasarathy. Query Reverse
Engineering. The VLDB Journal, 23(5):721-746, Oct. 2014.

[4] dsl.cds.iisc.ac.in/projects/HIDDEN

2811

Figure 4: UNMASQUE Input Screen

Figure 5: UNMASQUE Extraction Visualization (Green: executed; Yellow: executing; Orange: awaiting execution)

Figure 6: UNMASQUE Final Output Screen

2812

