
uTree: a Persistent B+-Tree with Low Tail Latency

Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, Jiwu Shu
Tsinghua University

Corresponding Author: Jiwu Shu (shujw@tsinghua.edu.cn)

ABSTRACT
Tail latency is a critical design issue in recent storage sys-
tems. B+-tree, as a fundamental building block in stor-
age systems, incurs high tail latency, especially when placed
in persistent memory (PM). Our empirical study specifies
two factors that lead to such latency spikes: (i) the inter-
nal structural refinement operations (i.e., split, merge, and
balance), and (ii) the interference between concurrent oper-
ations. The problem is even worse when high concurrency
meets with the low write bandwidth of persistent memory.

In this paper, we propose a B+-tree variant named µTree.
It incorporates a shadow list-based layer to the leaf nodes of
a B+-tree to gain benefits from both list and tree data struc-
tures. The list layer in PM is exempt from the structural
refinement operations since list nodes in the list layer own
separate PM spaces, which are organized in an element-based
way. Meanwhile, µTree still gains the locality benefit from
the tree-based nodes. To alleviate the interference over-
head, µTree coordinates the concurrency control between
the tree and list layer, which moves the slow PM accesses
out of the critical path. We compare µTree to state-of-the-
art designs of PM-aware B+-tree indices under both YCSB
workload and real-world applications. µTree achieves a 99th
percentile latency that is one order of magnitude lower and
2.8 - 4.7 times higher throughput.

PVLDB Reference Format:
Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, Jiwu
Shu. µTree: a Persistent B+-Tree with Low Tail Latency.
PVLDB, 13(11): 2634-2648, 2020.
DOI: https://doi.org/10.14778/3407790.3407850

1. INTRODUCTION
Web-scale online data-intensive applications such as so-

cial applications and e-commerce bring a new performance
focus, i.e., tail latency, to modern warehouse-scale data cen-
ters, such as the 99th percentile (99p) of request latencies [4].
Tail latency is particularly important since applications of-
ten exhibit high fan-out queries, whose overall latency is

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407850

determined by the response time of the slowest reply. To
this end, a number of recent works proposed different ways
to reduce tail latency, such as distributing all critical data
in the memory [18,19,52,54], scheduling CPU cores at finer
granularity [27, 44, 45, 47], and designing tail latency-aware
caching policies [9].

In this paper, we target at reducing the tail latency of
tree-based index structures (e.g., B+-tree), which are widely
adopted in storage systems with simple interfaces (e.g., Get,
Put, Del, and Scan, etc.). Emerging persistent memory
(PM), such as the Intel Optane DC persistent memory (ab-
breviated as Optane DCPMM or Optane in the rest of pa-
per) [41], provides high performance and durability features,
making it an attractive medium for building efficient index
structures. In the past decade, researchers have designed
many PM-based B+-tree indices, such as FAST&FAIR [23],
bzTree [6], DPTree [59], RNTree [39] FPTree [43], NV-Tree
[57], wB+-tree [12], CDDS-Tree [53], etc. All of them mainly
target at improving the throughput (e.g., Ops) and focus on
reducing the write cost when updating the tree structure.
This is based on the fact that PM typically has asymmet-
ric read/write performance. Our evaluation shows that Op-
tane DCPMM has a read bandwidth of 39 GB/s (six Optane
modules, 4KB sequential access), which is much higher than
the write bandwidth (13.2 GB/s).

Despite various optimizations on throughput, we demon-
strate that tail latencies in state-of-the-art PM-aware B+-
tree are quite poor, especially under write-intensive and
skewed workloads. Our evaluation shows that FAST&FAIR,
a well-optimized persistent B+-tree, exhibits almost 60µs of
99th percentile latency as its throughput peaks, which is
600 times higher than the PM write latency. The tail la-
tency can be further amplified when a B+-tree is accessed
multiple times to handle a single application request, which
is common in real-world applications [15].

We specify two reasons that account for such a wide spec-
trum of latency distribution. First, B+-tree introduces inter-
nal structural refinement operations (SROs). In a B+-tree,
each tree node contains multiple entries and is organized
in an array-based way (i.e., the entries occupy a contigu-
ous memory space). Therefore, to provide high search per-
formance, one must shift the entries inside each tree node
to keep them sorted. Besides, a tree structure also needs
to merge or split tree nodes to keep balanced, limiting the
search complexity into log(N) (i.e., structural modification
operation, SMO). Note that SROs are more heavy-weight
since they involve modifying more data in PM. As a re-
sult, the time consumed to process each Put or Del opera-

2634

tion is dynamically changed, exhibiting unpredictable per-
formance. Recent works have proposed different ways to
reduce the overhead caused by SROs: wB+-Tree [12] and
FPTree [43] enable unsorted entries inside each tree node;
FPTree and NV-Tree [57] place inner tree nodes directly in
DRAM. However, the SRO overhead in PM still cannot be
dismissed completely.

Second, concurrent threads are likely to interfere with
each other, even if they access independent data items in
a B+-tree. For example, in FAST&FAIR, the entries in the
same tree node share the same lock, and all accesses to this
node are serialized, even if they update different entries.
Things become even more serious when an SRO is holding
the lock, a situation where a simple Get may experience ad-
ditional latency. What’s more, our evaluation reveals that
when there are more concurrent threads, the latency of an
update to PM can be as high as more than 1µs, because PM
has limited write bandwidth. In such a case, the tail latency
is further exacerbated.

This paper proposes a B+-tree variant named µTree to re-
duce tail latency. We introduce the singly linked-list to leaf
nodes of a B+-tree as a shadow layer. The linked-list is or-
ganized in an element-based way: The list nodes of different
keys own separate memory spaces, and the data items can
be kept sorted by simply manipulating the sibling pointers.
Therefore, the list layer is exempt from the SRO overhead
as in the array-based management. Following a DRAM/PM
hybrid data placement, the list layer is placed in PM, and
other nodes, including tree-leaf nodes, are placed in DRAM.
With this design, µTree gains the respective advantages of
each layer: Clients search data items via the tree nodes, with
O(logN) of complexity and higher cache locality; A client up-
dates PM via the list layer, eliminating the SRO overhead.
Note that the tree layer in DRAM still causes SRO over-
head, however, it has less impact on the tail latency since
DRAM is more efficient. With the list layer, µTree can also
rebuild the volatile tree nodes once the system crashes.

To alleviate the interference overhead, µTree proposes the
coordinated concurrency control technique by exploiting the
element-grained concurrency of the shadow list layer. Specif-
ically, µTree inserts a list node in the list layer by using a
sequence of atomic operations leveraging its lock-free fea-
ture, and speculatively persists them without acquiring the
lock in the B+-tree. This is achievable since the newly in-
serted list node is not visible until a tree-leaf node pointing
to it is inserted in the tree-leaf node (i.e., array layer). Once
a conflict occurs and causes inconsistencies between the list
and array layer, µTree always retries from the array layer to
reload the newest state of the list layer. In this way, µTree
supports more fine-grained concurrency control and the slow
PM accesses are moved out of the critical path. We also en-
capsulate extra access control bits in each list node to isolate
incomplete modifications, so as to deal with the Put-Get and
Put-Del conflicts. We make the following contributions:
• We perform an in-depth analysis of the tail latency prob-

lem in persistent B+-trees and specify two root causes.
• We propose µTree by introducing a shadow list-based layer

to leaf nodes of a B+-tree. We then reduce the interference
overhead with coordinated concurrency control.

• We implement µTree and our evaluation shows that µTree
achieves one order of magnitude lower 99th percentile la-
tencies. It also achieves a peak throughput that is 2.8 -
4.7× higher.

2. BACKGROUND AND MOTIVATION
In this section, we first describe the PM programming

model. Several past systems that improve the throughput of
persistent B+-trees are then introduced. Finally, we empir-
ically analyze the tail latency issue in a persistent B+-tree.

2.1 Persistent Memory and The New Program-
ming Model

Persistent memories, such as PCM [29, 33, 34, 48, 51, 58],
STT-RAM [5,31] and ReRAM [3], have DRAM-comparable
access latency, byte addressability and data persistency. In-
tel’s Optane DCPMM, the first PM product, was released
in April 2019 [41]. It is attached to the memory bus and ac-
cessed via CPU load/store instructions. Optane DCPMM
has asymmetric read and write performance: With six Op-
tane DIMMs, the overall read bandwidth can reach 39 GB/s,
while the write bandwidth is merely 13.2 GB/s.

Programming in PM is quite different. CPU issues writes
to PM in 8-byte failure-atomic units, which is smaller than
that of HDDs or SSDs (which are 512-B sectors or 4-KB
pages). This requires extra techniques (e.g., redo/undo logs)
to achieve atomicity. In PMs, these writes are firstly cached
in the volatile CPU cache, and are then written back to
the PM in an arbitrary order. Guaranteeing the consistency
of data requires us to order the writes. Such ordering im-
plies two things: 1) a write should be visible before any
other writes (achieved by following a mfence), 2) the order
of writes to actually reach the PM controller (by explicitly
flushing the cache line via clflush, clwb or clflushopt).
The small-sized failure-atomic units and the ordering con-
straints make it more challenging to design consistent B+-
Tree in PMs.

2.2 Existing Persistent B+-tree
B+-tree is a fundamental building block in databases, file

systems, and other storage systems. Several recent works
build B+-tree indices in PM and most of them are devoted
to improving the throughput by reducing write costs. We
highlight some of them here:
CDDS B-Tree (Consistent and Durable Data Structure
B-Tree) [53] is a multi-version B-Tree, and each tree node
stores an extra version field. When a tree node is updated, a
new copy is created and tagged with a new version, without
overwriting the old one. In this way, the recoverability and
consistency are achieved.
NV-Tree [57] reduces the number of flush operations with
two techniques. First, it only places critical data (i.e., leaf
nodes) in PM, and the internal nodes are reconstructable
and can be kept in an inconsistent state. Second, the leaf
nodes are managed with an append-only strategy. Newly
inserted entries are always appended at the end of a leaf
node, without keeping the entries sorted.
wB+-tree [12] proposes a slot array, which acts as an indi-
rect layer to keep leaf nodes sorted, while the shifting over-
head of sorting tree nodes is avoided.
FPTree [43] is similar to NV-Tree, which always appends
entries at the end of a tree node and only places leaf nodes in
PM. A one-byte key hash of fingerprint is used to reduce the
penalty of cache misses in searching. FPTree uses hardware
transactional memory (HTM) and mutex lock for concur-
rency control. Traversing from the tree root to a leaf node
is wrapped by HTM. Once the leaf node is found, FPTree
locks the whole leaf node before modifying it.

2635

CD
F

FAST&FAIR (DRAM)
FAST&FAIR (PM)

Latency (μs)
(b) Latency Distribution (1 Thread)

Latency (μs)
(c) Latency Distribution (36 Threads)

90p 99p (μs)Median
1.4 2.4 4
2.2 3.6 10.5

FAST&FAIR (DRAM)
FAST&FAIR (PM)

Median 90p 99p
2.3 9 34.2
5.9 22.9 63.1

CD
F

0

0.2

0.4

0.6

0.8

1.0

(μs)

0

0.2

0.4

0.6

0.8

1.0

0

20

40

60
FAST&FAIR (DRAM)
FAST&FAIR (PM)

Throughput (Mops/s)
(a)

99
p

La
te

nc
y

(μ
s)

DRAM
PM

DRAM
PM

0 2 4 6 0 5 10 15 0 20 40 60 80

Figure 1: Tail latency analysis by evaluating FAST&FAIR. (FAST&FAIR (DRAM) indicates a volatile version
of FAST&FAIR whose data are stored completely in DRAM and flush operations are removed.)

FAST&FAIR [23]. Merge or balance operations involve
modifying multiple tree nodes. Hence, the aforementioned
index schemes need extra logging mechanisms to guaran-
tee the failure atomicity. FAST&FAIR avoids such logging
overhead by updating a B+-tree with relaxed consistency.
Any inconsistency states (e.g., duplicated elements) caused
by power failure can be specified and fixed. It also supports
lock-free reads.

2.3 Tail Latency Analysis
Existing persistent indices mainly target at improving the

throughput, either by reducing the persistence overhead (i.e.,
reducing the number of flush operations), or by reducing
the consistency overhead (e.g., FAST&FAIR avoids logging).
Except for the throughput goal, this paper is further moti-
vated with another performance metric — tail latency.

To quantitatively understand the tail latency problem, we
investigate the latency behavior of FAST&FAIR, a state-
of-the-art high-performance persistent index structure. To
highlight the effects of PM, we also compare it with a volatile
version of FAST&FAIR, which places tree nodes directly in
DRAM. Our experiments are conducted on a server with two
Intel Xeon Gold 6240M CPUs (36 cores in total), 192 GB
of DRAM, and 1.5 TB of Optane DCPMMs (six modules).
Detailed platform configuration is shown in §5.

In this part, we evaluate the performance of Put oper-
ations by using the zipfian key distribution (parameter =
0.99). The size of both keys and values are set to 8 bytes.
We bind cores and set the CPU frequency to a fixed value
(3.3 GHz) to avoid the DVFS (dynamic voltage and fre-
quency scaling) from impacting the tail latency. We tar-
get at the efficiency of Put operation since many existing
applications are write-intensive and sensitive to the tail la-
tency. For example, the caching system with frequently-
changing objects [2], the popular e-commerce platform that
processes new transactions at an extremely fast rate [16],
and the emerging serverless analytics exchanging short-lived
data [30], etc. All of them generate data rapidly and im-
pose increasing demands on the storage system to deliver
predictable performance.

Figure 1a reports FAST&FAIR’s throughput and 99th
percentile latency as we increase the number of threads from
1 to 36. We can observe that its throughput peaks soon as
the number of threads increases. At this point, the 99th
percentile latency is as high as 60µs, which is 10× higher
than its median latency. By placing FAST&FAIR directly
in DRAM, we observe that its tail latency is significantly
lower: for a target load running at 3 Mops/s, FAST&FAIR
(DRAM) shows a 99p latency of only 4µs, 10× lower than

that of FAST&FAIR (PM). Besides, FAST&FAIR (DRAM)
achieves more than 2× higher peak throughput (around 7
Mops/s). By analyzing latency distributions running at dif-
ferent concurrency levels, we specify two factors that hurt
tail latency:
Structural Refinement Operations (SROs). In B+-
tree indexes, an insert or delete operation often causes struc-
tural refinement operations (e.g., sort and balance). How-
ever, SROs incur extra data modifications since they often
cause the data movement of multiple entries in one or mul-
tiple tree node(s). Considering that PM has lower write
bandwidth and updates made in SROs are required to be
persisted synchronously, SROs often cause much higher data
persistence overhead. Note that SROs happens occasionally
and thus only affect a few of Put/Delete operations, most
operations, instead, still can be finished immediately. Fig-
ure 1b reports the latency distribution of Put operations
under single-thread execution, which can be used to reveal
the effects of SROs. We can observe that FAST&FAIR’s
99th percentile latency is 10.5µs, 4.8× higher than the me-
dian latency. By comparing the execution path, we find that
the Put operations that contain SROs typically appear at
the tail of the latency distribution. By placing FAST&FAIR
in DRAM, the 99p latency is only 4µs.

To reduce the SRO overhead, NV-Tree [57], wB+-Tree [51]
and FPTree [43] allow unsorted keys in the leaf node, by
compromising the search/scan efficiency. Recent work also
adopts the hybrid DRAM/PM placement. For instance,
NV-Tree [57], and FPTree [43] eliminate the persistence
overhead of non-leaf nodes by introducing selective persis-
tence or simply placing them in DRAM. However, these vari-
ants still suffer from sort and balance overhead in leaf nodes,
which contributes to the main source of overhead.
Interference Overhead. The dependency between en-
tries makes it difficult to support concurrent accesses to
entries inside the same node. Previous work, such as Blink-
Tree [36], OLFIT [11], and Masstree [40], propose the per-
node exclusive lock to serialize updates to the same node,
and per-node version to protect readers from observing in-
termediate states while avoiding the heavy-weight locking
overhead. FAST&FAIR also adopts a similar concurrency
control strategy (i.e., per-node locking and lock-free reads).
From Figure 1c we observe that such concurrency control
technique works well in volatile memory. By placing data
in PM, however, the high write latency of PM is exposed
directly in the critical path, which prolongs the execution
time of each update. As a result, other threads accessing the
same tree node may experience an extra delay, exacerbating
the tail latency problem. To understand such issues micro-

2636

Leaf	node
S2

S2
T1
T2

S1
S1

T1
T2

S0

S0

Lock Unlock S0 Retry S1 Vola7le-Op S2 Write+Flush

i)	DRAM

ii)	PM

T1 T2

t1 t2
7me

Figure 2: Concurrent insertion to the same leaf node
(the right part compares the timing diagram of two
cases, in DRAM and PM, respectively).

scopically, we depict the write-write conflicts in DRAM- and
PM-based FAST&FAIR (see Figure 2).

As shown in the figure, two threads T1 and T2 are updat-
ing the same tree node. T1 updates key Ka at time t1, and
T2 updates key Kb at time t2 (t1 < t2). As we can see, T2

will retry repeatedly until T1 completes the update opera-
tion and release the lock. This is tolerable in DRAM, as its
write latency is low. In PM, however, the high write latency
of PM delays the execution of the later write operation, even
though the operation itself can complete quickly.

To summarize our discussion so far, existing tree-based
persistent indices exhibit high tail latency by nature. Among
the factors that impact tail latency, SROs cause the exe-
cution time of each operation to change dynamically, and
inter-thread interferences further aggravate this problem.

3. DESIGN
Before illustrating the design details, we put forward the

following design goals for the µTree.
• Reduced tail latency and improved peak throughput.
• Resilient to power/system failures and strict consistency.
• Fast recovery speed.

To fulfill the above goals, we present the design and imple-
mentation of µTree, with techniques including the shadow
list layer (§3.1), coordinated concurrency control (§3.2) and
fast recovery (§3.3).

3.1 The µTree Structure
µTree is different from B+-tree in the leaf node design.

Specifically, the inner nodes of µTree are the same as that
of traditional B+-tree, which are placed directly in DRAM.
The leaf nodes, as shown in Figure 3, consist of two layers
— the array layer and the list layer. Among them, the array
layer (i.e., tree-leaf nodes) is stored in DRAM, and only the
list layer (i.e., list-leaf nodes) is stored in PM. Each tree-leaf
node contains multiple entries (i.e., key-pointer pairs), and
each of them points to a list-leaf node. These list-leaf nodes
are kept sorted and linked into a singly linked-list via 8-byte
next pointers. To support variable-sized values, existing
key-value stores often use a separate persistent allocator [1,
10] to manage the actual key-value pairs, and only store a
pointer in the persistent index structure. Similarly, in µTree,
the list-leaf nodes are organized into key-pointer pairs, where
the pointers point to the actual KV items. Note that µTree
also supports placing the variable-sized values directly in the
list layer by allocating the space of each list node through
the persistent allocator.

All tree nodes, including inner nodes and tree-leaf nodes,
are placed in DRAM, and can be reconstructed via the list
layer. So, we only need to guarantee the crash consistency
of the list layer. Inserting or deleting a node in the list

…

…

Root	node

Leaf
nodes

Inner
nodes
(DRAM)

Leaf	node
Array	Layer
(DRAM)

List	Layer
(PM)

key	1 key	2 key	3 key	4
ptr	1 ptr	2 ptr	3 ptr	4

kv kv kv kv

Figure 3: Overview of the µTree data structure.

layer involves modifying 8-byte next pointers, which are ex-
actly the failure-atomic units. As a result, we do not need
an extra logging mechanism to ensure the failure atomicity
when updating the list layer. Several basic operations are
described below (concurrency control is illustrated in §3.2):
• Put operation. Figure 4(a) shows the steps to insert a new

key-value pair. It first finds the predecessor of the target
node in the list layer by traversing through the B+-tree
(red dashed line in ¶). A new list-leaf node is then cre-
ated and inserted into the list layer (i.e., ·). In this step,
we need to first flush the newly created list node out of
the CPU cache, and then link it into the list layer by
modifying and flushing the next pointer in its predecessor
node, to ensure crash consistency. Finally, a new entry is
inserted into the array layer, with the pointer pointed to
the created list-leaf node (i.e., ¸). If this key has already
been inserted by other concurrent threads, then this in-
sertion is aborted and it restarts by updating the existing
key-value pair. We can observe that we only need to issue
two flushes to PM for each Put operation.

• Get operation. It first finds the entry in tree-leaf node
with the given key, and then fetch the target list-leaf node
with the pointer stored in the tree-leaf node. The Get

operation can always read valid data because it executes
in an opposite direction: In a Put operation, a created list
node is made visible by inserting a new entry in the array
layer on the final step; a Get, instead, reads the tree-leaf
node before the list-leaf node.

• Delete operation. It is processed similarly as that of Put

operations. Figure 4(b) shows the steps. The predecessor
node is located in ¶, and we then delete the target list-
leaf node by modifying the next pointer in its predecessor
(in ·). After this, the related entry in the array layer is
deleted (in ¸).

• Scan operation. µTree processes range queries by travers-
ing through the list layer directly. It first finds the starting
entry at or after k provided by the query through the tree
layer, and then probes via the next pointer in the list layer
until reads n key-value pairs. Similar to Masstree [40]’s
implementation, range scan operations in µTree are not
atomic with respect to concurrent inserts and updates.
For example, when a concurrent Delete operation has al-
ready deleted the list node but the corresponding entry
in the tree-leaf node has not been deleted yet, such an
inconsistent state is invisible to the current Scan opera-
tion and the range query will finally return n key-value
pairs without this unfinished deleted items. µTree only
supports forward range queries (backward range queries
can be supported by adding backlinks in the list layer).
Finally, we analyze how µTree is suitable to deal with the

tail latency problem. The key to improving the tail latency

2637

List	Layer
(PM)

Array	Layer
(DRAM)

1

2

3

List	Layer
(PM)

Array	Layer
(DRAM)

1

2

3

(a)	Put (b)	Delete

Figure 4: Process of Put/Delete operations.

is avoiding SROs in PM. By placing inner tree nodes and
the array layer in DRAM, such overhead is mitigated, since
DRAM has much higher write bandwidth and lower latency.
Besides, B+-tree delivers high cache locality by organizing
tree nodes in an array-based way, so the overhead of chas-
ing pointers to find a specific item is reduced. With such
a design, however, the volatile array layer loses its ability
to store data durably. Hence, we still need another index
layer in PM to ensure durability. We choose linked-list for
the following reasons: The index layer in PM should be
simple enough, without causing extra SRO or consistency
overhead. It does not need to provide fast query speed since
the volatile B+-tree is responsible for this. As a result, we
use the singly linked-list that owns the element-based orga-
nization. Moreover, by traversing through the linked-list,
the B+-tree layer can be reconstructed when it is lost in
power/system failures.

3.2 Coordinated Concurrency Control
The shadow list layer effectively tackles the problem of

SRO overhead in PMs. However, it’s still challenging to
scale µTree to multi-cores while keeping its tail latency low.
We cannot rely on existing locks inside a B+-tree to co-
ordinate concurrent accesses to µTree because 1) in a B+-
tree, the entries in the same leaf node typically share the
same lock, and 2) the SROs block the execution of normal
operations, which have been discussed in Section 2.3. To
this end, we redesign the concurrency control protocol in-
side µTree, and propose the coordinated concurrency control
mechanism. This is based on the following observations:
1) PM exhibits high write latency, especially with high-

concurrency workloads. The list layer in PM, however,
consists of independent list nodes, and are linked via 8-
byte next pointers. Hence, it inherently supports fine-
grained lock-free concurrency control using a sequence of
CAS instructions to perform atomic updates.

2) DRAM, instead, exhibits much higher throughput and
lower write latency, and the interference between con-
current threads is less severe. Hence, we can still reuse
the existing coarse-grained lock to coordinate the volatile
B+-tree part.

In the following parts, we depict how coordinated concur-
rency control is designed to cope with write-write conflicts
and read-write conflicts.

3.2.1 Write-Write Conflicts
A Put operation incurs two flush operations to the linked-

list, which are the most time-consuming parts: one is the
node persistence, which persists the newly created list node
itself (including the next pointer that links it to the next list
node). The other is persisting the next pointer of its prede-
cessor node, which makes the newly created node accessible
in the list. Coordinated concurrency control allows µTree

List	Layer
(PM)

Array	Layer
(DRAM)

2

3

(a)	Concurrent	Put (b)

11

2

3
S1 S2

S1 S2
T1
T2

S1 S2
S1 S2

T1
T2

S0

S0

Lock Unlock
S0 Retry S1 List-Op S2 Tree-Op

i)	Naive

ii)	μTree

Figure 5: Write-Write conflicts (The right part com-
pares the timing diagram of µTree and a naive ap-
proach.).

to flush data speculatively before acquiring locks. Thus,
the persistence overhead is excluded from the critical write
locking path, without interfering with other threads.

Figure 5(a) shows how two threads concurrently insert two
different key-value pairs that belong to the same tree-leaf
node. Among them, the first thread (denoted as T1) follows
the steps of À, Á and Â, and the second thread (denoted
as T2) follows the steps of ¶, · and ¸. We focus on the
details of concurrency control in this part, despite that the
steps are almost the same as that of Section 3.1.

In the first step (i.e., ¶/À), each thread optimistically
finds the predecessor without acquiring any locks in the B+-
tree. This is achievable since many existing B+-tree data
structures support lock-free reads [23,40]. In the second step
(i.e., ·/Á), they insert the newly created list-leaf nodes into
the linked-list. We use CAS instruction to modify the next

pointer in the predecessor nodes. In this way, the atomicity
of insertion in the list layer is guaranteed. If a CAS fails, in-
dicating that the predecessor node is obsolete (e.g., another
list node is inserted between them), we need extra steps to
deal with such anomaly (described later). In the final step
(i.e., ¸/Â), the two threads try to acquire the lock of the
corresponding tree-leaf node, and then insert a new entry to
point to the newly created list node.

Figure 5(b) shows the benefits of such design by compar-
ing it with a naive approach, which relies on existing locks
inside the B+-tree layer for concurrency control. Specifically,
the naive approach acquires the lock in the leaf node before
it inserts the new list node and new entry (as in · and ¸).
As shown in the upper part, we can observe that T2 expe-
riences extra delay (i.e., retry) to acquire the lock, and the
two Put operations are serialized despite that they update
different key-value pairs. As shown in the lower part, by co-
ordinating the concurrency control between the two layers,
insertion in the list layer (List-Op in the figure), which is
the most time-consuming part, can be processed in parallel.
As a result, two independent operations are less likely to in-
terfere with each other and the tail latency can be improved
accordingly.

However, the coordinated concurrency control mechanism
with speculative persistence causes inconsistency between
the two layers, and there’re two anomalies to be dealt with:
CAS failure. As described before, a CAS may fail when another
node is inserted in the list layer before the current node (as
shown in Figure 6(a)). Such a case happens since we get
an obsolete predecessor in ¶, during which another new list
node is inserted, but the tree-leaf node has not been inserted
yet. To address such an issue, this thread is required to retry
in the array layer to find the newest predecessor, and then
to finish to rest steps. This is different from a DRAM-based

2638

List	Layer
(PM)

Array	Layer
(DRAM)

(a)	CAS	failure (b)	Put-Delete	Conflicts

a b d

c

List	Layer
(PM)

Array	Layer
(DRAM)

Figure 6: Two inconsistency scenarios.

lock-free linked-list, which typically traverses through the
linked-list directly to locate the newest predecessor when a
CAS fails. We do not allow this in PM because CAS can-
not guarantee the ‘persistent’ atomicity, which is required
in PM. Dirty read mistakes occur when a concurrent reader
sees the result of an atomic modification before it is made
persistent, and makes a persistent write based on this read.
In µTree, only after a list node is inserted into the linked-
list and made persistent, can it be inserted into the B+-tree
layer. Hence, always retrying in the B+-tree layer ensures
that any visible nodes are persistent. When concurrently in-
serting the same key-value pair, speculative persistence may
incur extra tail latency due to the overhead of retrying, but
such a case is rare.
Put-Delete conflicts is another well-known anomaly. As
shown in Figure 6(b), one thread is trying to insert a list

node (i.e., c). However, its predecessor (i.e., b) has been
deleted by another thread. If we keep inserting this node,
it will not be visible in the list layer. Such a case is not a
big issue during the runtime, since other threads still have
access to it through the B+-tree layer. However, this node
is lost if we rebuild the B+-tree layer by scanning list nodes
after a system failure. To address this problem, we follow
a classical way [21] by adding a Deleted bit in the next

pointer of each list node, and a thread modifies this bit
before actually deleting it. Thus, other threads can identify
the status of its predecessor and retry if it’s deleted.

3.2.2 Read-Write Conflicts
Many existing B+-tree structures support optimistic read,

by encapsulating a Version field in each leaf node [23,40]. A
Put operation sets the Version as dirty when updating the
node, and cleans its state after the operation is completed.
In PM, however, the time of a Put is unfortunately increased
due to the high write latency of PM, which inevitably in-
creases the abort ratio of Get operations.

Moving Version fields from tree-leaf nodes to list nodes
supports more fine-grained optimistic reads. However, it
causes higher space consumption. Regarding this, µTree
proposes an embedded version mechanism leveraging the re-
served bits in the next pointer of each list node. The layout
of the next pointer is shown in Figure 7. Among them,
the Deleted bit has already been illustrated in §3.2.1. The
Version field contains 15 bits, which is increased both before
and after the list node is updated by a concurrent thread.

When processing a Get, a reader acquires the pointer from
the array layer and checks the embedded bits (i.e., Version
and Deleted) both before and after reading data from the
list node. The reader simply returns if the Deleted bit is
set. If the Version field is odd, it will wait until the con-
current update is finished. The above steps ensure that any
concurrent readers will see either the old or the new value,
instead of an intermediate state. We can also observe that

size ptr nextList	node

NextDeleted Version
0 1 16 64(bit)

key

Figure 7: Layout of the next pointer in the list node.

by embedding such concurrency bits in the next pointer,
concurrent reads and writes to different key-value pairs can
be processed in parallel, even if they belong to the same leaf
node in the B+-tree layer.

3.3 Multi-Threaded Recovery
In µTree, only the persistent list layer survives after sys-

tem crashes. To avoid the recovery overhead after normal
shutdowns, µTree persists all the volatile tree nodes to a
reserved position in PM. When the system restarts, the re-
covery thread directly copies it from PM to DRAM.

Recovery is unavoidable after unexpected system crashes.
In this case, µTree has to scan all list nodes to rebuild the
volatile nodes, similar to FPTree [43] and NV-Tree [57]. To
reduce the recovery time, µTree adopts a multi-thread re-
covery scheme. It uses a set of persistent trackers to record
the positions of some list nodes when processing Put opera-
tions. A list-leaf node is chosen to be a tracker after inserting
a fixed number of key-value pairs (e.g., 0.1 million).

During the system recovery phase, recovery threads work
in two phases. First, all valid trackers are sorted by the
tracked keys, and are then dispatched to different threads
for parallel recovery. Then, each thread iterates over the
assigned list nodes, and reconstructs those disjoint partitions
of the volatile B+-tree, so as to rebuild the full B+-tree.

4. IMPLEMENTATION
In this section, we describe how µTree is implemented.

We discuss the base operations of µTree in §4.1, and give
extra discussion in §4.2.

4.1 Base Operations
µTree can directly reuse the code of existing main memory

B+-tree as its volatile tree layer. Masstree, BwTree [38] and
FAST&FAIR support lock-free read, which are the optimal
choices. For a fair comparison, we directly place FAST&FAIR
in DRAM to act as the volatile layer in µTree. We slightly
modify it by adding a new interface of optimistic get()

(∼50 SLOC). It returns both the current list-leaf node and
its predecessor with the given key. We do not need to ensure
the strict consistency of this interface since we will recheck
their adjacency through the next pointer in the list layer
with check adjacency() interface. We use persist() in-
terface to flush data to PM by co-using clwb and mfence

instructions.
Put (Update/Insert). Algorithm 1 describes the Put oper-
ation, which includes updating an existing item (Lines 5 -
9) or inserting a new item (Lines 10 - 20). To update an
8-byte value, µTree still relies on the Version field to pre-
vent concurrent readers from reading data that hasn’t been
persisted yet, despite that an 8-byte pointer can be updated
in-place via atomic instructions. For values larger than 8-
byte, µTree cannot perform in-place updates since the up-
dated value cannot be persisted atomically. Instead, µTree
allocates a new list node to replace the original one, and this

2639

Algorithm 1: Put(Key K, Value *V)

1 retry = 0;
2 RETRY:
3 (pre node, cur node) = btree→optimistic get(K);
4 check adjacency(pre node, cur node);
5 if cur node != NULL then

/* update an existing item. */

6 Acquire(cur node→next→Version); // Atomic add

if Version is even, retry otherwise.

7 cur node→ptr = V; // 8-byte, in-place update.

8 persist(cur node);
9 Release(cur node→next→Version); // Atomic

add.

10 else
/* insert a new item. */

11 if retry == 0 then
12 new node = palloc(); // alloc a list node.

13 init(new node, K, V); // fill each field.

/* [a,b,c] means [Deleted, Version and Next]. */

14 new node→next = [0,0,pre node→next→Next];
15 persist(new node); // 1st flush.

/* ‘[’ means the original value. */

16 if !CAS(pre node→next, [0,[,[],
[0,[,new node]) then

17 retry += 1;
18 goto RETRY; // CAS failure, retry.

19 persist(pre node→next); // 2nd flush.

20 btree→insert(K, new node); // made visible.

is achieved by using similar steps as that of inserting a new
item (pseudo-code is not shown separately). For brevity,
some loose ends are not described in detail when inserting a
new item. For instance, when a CAS fails (Line 16), it retries
and finds that this item has already been inserted by others,
so it needs to free the allocated space in Line 11.
Get. Algorithm 2 depicts the Get operation. Just like the
existing optimistic read approach, it checks the statuses of
the embedded bits before and after reading an item.

Algorithm 2: Get(Key K, Value *V)

1 (, cur node) = btree→optimistic get(K);
2 if cur node != NULL && cur node→key == K

then
3 RETRY:
4 oldVersion = cur node→next→Version;
5 if (oldVersion % 2) != 0 then
6 goto RETRY; // updating, retry.

7 if cur node→next→Deleted then
8 return NULL; // deleted, return.

9 copy(V, cur node→ptr, cur node→size); // read.

10 if cur node→next→Version != oldVersion then
11 goto RETRY; // modified, retry.

12 if cur node→next→Deleted then
13 return NULL; // deleted, return.

14 return V;

Delete. Algorithm 3 shows how a Delete operation is pro-
cessed. When deleting an item, a CAS instruction (Line 5

or 7) may fail when other concurrent threads are updat-
ing/deleting the cur node or pre node. For brevity, we just
let the deleting thread to restart from the top. However, it’s
unnecessary to do so when a thread is updating this item.
Instead, polling on the Update bit is enough.

Algorithm 3: Delete(Key K)

1 RETRY:
2 (pre node, cur node) = btree→optimistic get(K);
3 check adjacency(pre node, cur node);
4 if cur node != NULL then
5 if !CAS(cur node→next, [0,[,[], [1,[,[) then
6 goto RETRY;

7 if !CAS(pre node→next, [0,[,[],
[0,[,cur node→next→Next]) then

8 cur node→next→Deleted = 0; // reset bit.

9 goto RETRY; // CAS fail, retry.

10 persist(pre node→next);
11 btree→del(K); free(cur node);

4.2 Discussion
Memory allocation consistency. There are two incon-
sistency cases of the memory space in µTree, including the
memory leak and read after delete. Memory leak means that
the allocated memory space fails to be freed properly due to
system crashes. For example, an insertion may fail when a
new node has been made persistent but not been linked to
the list yet. The newly allocated node is lost after reboot-
ing. One naive way to solve this issue is to persist the allo-
cation metadata whenever a (de)allocation occurs, but with
expensive persistence cost. µTree proposes a chunk-based
allocation strategy, which acquires a large chunk of persis-
tent memory from the persistent allocator (e.g., PMDK [24])
when existing memory chunks use up. The metadata (ad-
dress and size) of such chunks is organized in a persistent
linked-list. These chunks are further cut into variable-sized
blocks, which are organized into a volatile free list to serve
allocation/free requests of the list layer. During the sys-
tem recovery, both the chunk metadata and the list layer in
µTree are scanned to distinguish the used and freed memory
blocks. The read after delete issue is the case that physically
deleted nodes are read by other concurrent threads. µTree
borrows the idea of an epoch-based space reclamation [20],
which reclaims the deleted nodes in different phases, thus
ensuring the safety of reclamation on garbage nodes.
The correctness of concurrency control. In µTree, the
volatile tree layer reuses the code of FAST&FAIR, which en-
sures the correctness of the concurrency control in DRAM.
The lock-free linked-list has also been implemented many
times in the past. Hence, we focus on the correctness of
the coordination between the two layers. For search oper-
ations, µTree guarantees that any visible list nodes from
the array layer are in their newest states and have been
persisted to PM. Reads are blocked if there are other con-
current writers, by using the embedded access control bits.
For concurrent writes, coordinated concurrency control with
speculative persistence may cause inconsistency between the
array and list layer. However, when an operation aborts in
the list layer (i.e., CAS failure or the embedded bit has been
set), we always retry from the array layer. Hence, the two

2640

layers will be consistent eventually. To sum up, the cor-
rectness of µTree is guaranteed so long as the concurrency
control in the tree and list layer is correct.
µTree’s semantics. A Put or Delete operation is consid-
ered as committed once the corresponding list nodes in PM
have been updated. If a system failure occurs before the
volatile tree nodes in DRAM are updated, the tree layer
still can be recovered to its newest state by scanning the list
layer, which contains all the committed nodes. With the de-
coupled design in µTree, however, the committed list nodes
are visible only after the tree layer has been updated. Note
that this does not violate the linearlizability property, which
requires that the competed updates should be visible by sub-
sequent readers (the complete point does not necessarily to
be the same as the commit point).
Extra space consumption. Similar to the past work [22,
43,55], µTree adopts a hybrid architecture that places index
nodes in both DRAM and PM. As a result, µTree consumes
extra DRAM space. Apart from the performance benefits
gained from µTree’s design, we argue that such space over-
head is still acceptable for the following reason: Production
workloads (e.g., Facebook ETC Pool [42]) typically have a
wide distribution of value sizes ranging from several bytes
to multiple megabytes. In these variable-sized values, large
values typically dominate in terms of space consumption.
As a result, the index itself only occupies a small portion of
the space compared to the actual key-value pairs. We will
evaluate the space overhead in §5.4.

The idea of using a shadow index layer has been adopted
many times in the past [22, 55]. They duplicate the index
either for improving the indexing efficiency [55], or for better
read performance [22]. µTree is novel in improving the tail
latency by coordinating the tree and list layer.

5. EVALUATION
In this section, we evaluate the overall performance of

µTree against the state-of-the-art persistent indices in Sec-
tion 5.2 and Section 5.3. We also evaluate the memory space
efficiency (§5.4), recovery overhead (§5.5) and µTree’s per-
formance in a real-world application (§5.6).

5.1 Experimental Setup
Testbed. We ran our experiments on a machine with the
actual persistent memory — Intel Optane DC Persistent
Memory [41] — and the second-generation Xeon Scalable
processors. Optane DCPMMs are configured in 100% App
Direct mode [26], so that software has direct byte-addressable
access to PM. Table 1 reports the relevant details of our
test machine. The six Optane DCPMM modules are evenly
attached to two CPU sockets (i.e., each CPU socket owns
three modules), and their spaces are managed into two re-
gions (i.e., pmem0 and pmem1). In our evaluation, applica-
tions access PM by first using a PM-aware file system (e.g.,
Ext4-DAX in this paper) to manage the pmem device and
then relying on PMDK [1] to allocate the PM space, which
provides basic interfaces (e.g., pmemobj alloc()) to appli-
cations. We only allow client threads to allocate PM space
from their local pmem device, since recent work reveals that
cross-NUMA accessing to Optanes impacts overall perfor-
mance dramatically [56].
Compared Systems. In our tests, we compare µTree with
state-of-the-art persistent indices, including wB+-Tree [51],
NV-Tree [57], FAST&FAIR [23], and FPTree [43]. Among

Table 1: Description of the evaluation platform.
Description

CPU

Type 2× Intel Xeon Gold 6240M
of physical cores 36 (hyper-threading disabled)

Frequency 3.3 GHz

Caches
L1: 32KB Icache, 32KB Dcache

L2: 1MB, L3:25MB (shared)

MEM

PM Capacity 1.5 TB (6 modules)
PM Read Latency 302 ns (Rnd/8-byte/1 thread)

PM Write Bw 13.2 GB/s (4KB sequential)
DRAM Capacity 192GB (32 GB/DIMM)

OS
Release Version Ubuntu 18.04.3 LTS

Kernel Linux 4.15.0

them, FAST&FAIR is open-sourced1 and we directly use
their code. Single-thread version of FPTree, wB+-Tree and
NV-Tree have been implemented by Liu et al. [39] and we
borrow their code2 directly. We also implement a concurrent
version of FPTree based on STX B+-Tree3 and incorporates
the key design decisions in their paper. The performance
of a persistent skip list [46] is also given in this part. By
default, we use 8-byte keys. The default number of keys in
each tree node is set to 64. We only store 8-byte pointers
as values in the evaluated persistent indices, which can be
used to point to actual key-value pairs.
Tail Latency Measurement. Measuring tail latency often
adds non-negligible overhead to the tested operations. If we
simply record start and end timestamps of each operation,
the measured throughput is typically lower than its actual
result, which again impacts the latency distribution, since
many designs trade latency for throughput. As a result, we
take a sampling approach that samples 10% of the requests
uniform randomly, as done in [37].

5.2 Tail Latency and Throughput Analysis
Overall Evaluation. We first evaluate the latency distri-
bution of each persistent index with a workload of zipfian
key distribution (parameter = 0.99). As we target at write-
intensive workloads, we only evaluate the Put operation in
this part. We increase the number of threads from 1, 4, 8,
12, ..., to 36 with a step of 4. The median, 90th, and 99th
percentile latencies, as well as the corresponding throughput
of the evaluated indices are collected. Figure 8 shows the
results and we make the following observations:
1) µTree exhibits much lower tail latency and significantly

higher throughput. When running at a target load of 2.2
Mops/s, µTree’s 99.9th percentile latency is only 5 µs,
which is one order of magnitude lower latency than that
of FPTree. Put differently, for an SLO on the 99th per-
centile latency of 30 µs, µTree can perform 7 Mops/s,
2.8× and 4.7× faster than FAST&FAIR and FPTree,
respectively. µTree achieves the best performance by
overcoming the limitations of existing designs when deal-
ing with the overhead of SROs and inter-thread interfer-
ences, which have been discussed in Section 2.3. What’s
more, µTree achieves a peak throughput of 7 Mops/s,
while the throughput of FAST&FAIR and FPTree peaks
only at 3.1 Mops/s and 2.2 Mops/s, respectively. µTree

1https://github.com/DICL/FAST_FAIR
2https://github.com/liumx10/ICPP-RNTree
3https://panthema.net/2007/stx-btree/

2641

La
te

nc
y

(μ
s)

FAST&FAIR
FPTree
μTree

Throughput (Mops/s)

FAST&FAIR
FPTree
μTree

FAST&FAIR
FPTree
μTree

La
te

nc
y

(μ
s)

La
te

nc
y

(μ
s)

(c) 99p Latency

(b) 90p Latency

(a) Median Latency

30

60

90

0

10

20

30
0

2

4

6

0 1 2 3 4 5 6 7

Figure 8: Throughput vs. median/ 90th/99th per-
centile latency of Put operations for different persis-
tent indices.

achieves higher peak throughput because it places tree
nodes completely in DRAM. The list layer in PM does
not incur SRO overhead and supports more fine-grained
concurrency control, and thus delivers higher scalability.
Note that FAST&FAIR exhibits higher peak through-
put than FPTree despite that it places all data in PM.
FAST&FAIR avoids logging and read locks completely,
FPTree, instead, needs to perform expensive logging when
leaf nodes split. The results here are also consistent with
that of the original FAST&FAIR paper.

2) All the evaluated persistent indices show a wide spec-
trum of latency distribution. For FAST&FAIR, the 90th
and 99th percentile latencies are averagely 4× and 10×
higher than its median latencies, respectively. µTree also
exhibits much higher tail latency, despite that the ab-
solute figures are much smaller than the other two in-
dices. This is because the SROs still incur higher execu-
tion time, even if they are performed in DRAM.

3) The tail latency problem is aggravated at load with higher
concurrency. With one thread, the 99th percentile la-
tencies of FAST&FAIR and FPTree are 7.5× and 2.4×
higher than their median latencies, respectively. How-
ever, such factors improve to 10.1× and 9.1× with 36
threads. This reflects that the inter-thread interferences
are the main culprit leading to the high tail latency. Such
a ratio only increases slightly for µTree, since it incorpo-
rates the coordinated concurrency control to reduces the
interference overhead.

Sensitivity to Update Ratio. We then analyze how these
persistent indices behave in terms of 99th percentile laten-
cies when the Put/Get ratio varies. Similarly, we use the
workload with the zipfian key distribution (parameter =
0.99). The results are shown in Figure 9 (Put:Get = 100:0
is shown in Figure 8(c)). We observe that all the evalu-
ated indices exhibit higher peak throughput and lower tail
latency as the percentage of Get increases. This is because
PM has much higher read bandwidth and Get operation does

99
p

La
te

nc
y

(μ
s)

FAST&FAIR
FPTree
μTree

Throughput (Mops/s)

FAST&FAIR
FPTree
μTree

99
p

La
te

nc
y

(μ
s)

(b) Put:Get = 5:95

(a) Put:Get = 50:50

0

10

20

30
0

20
40
60
80

0 2 4 6 8 10

Figure 9: Throughput vs. 99th percentile latency of
Put operations with varying Put/Get ratio.

not cause SRO overhead. In addition to the above intuitive
findings, we also notice that 1) Compared to FPTree, the
peak throughput of FAST&FAIR is more sensitive to the
Get ratio. Specifically, it outperforms FPTree by 40% with
0%-Get workload (Figure 8(c)), but achieves 1.75× higher
peak throughput with 95%-Get workload. FAST&FAIR in-
corporates the FAST mechanism, which enables lock-free
reads, so it’s more efficient in handling Get operations. FP-
Tree, instead, relies on mutex locks to coordinate concur-
rent Get operations. 2) With 95%-Get workload running
at 9 Mops/s, the 99th percentile latency of µTree is 2.7×
lower than FAST&FAIR. We observe that their tail laten-
cies are mainly decided by Put operations: FAST&FAIR
exhibits higher latency for Put operations since it places the
whole tree in PM. In terms of throughput, we notice that
FAST&FAIR even delivers higher peak throughput than
µTree, this is because µTree introduces an extra memory
access from the tree-leaf node to the list node for each Get
operation.
Sensitivity to Skewness. Third, we evaluate µTree by
changing the hotness of key distribution. Figure 10 reports
their performance with both zipfian key distribution (pa-
rameter = 0.9) and uniform workloads. Parameter = 0.99
is shown in Figure 8(c). We observe that:
1) FAST&FAIR exhibits almost unchanged peak through-

put despite the key distribution, since its throughput is
mainly restricted by the PM write bandwidth (we will
analyze the sensitivity to PM bandwidth at the end of
this part).

2) The 99th percentile latencies of FAST&FAIR and FP-
Tree decrease as the key distribution shifts from zip-
fian to uniform. This is easy to understand: with the
skewed workload, the chance of conflicts between threads
is higher. Thus, a thread is more likely to be blocked by
other concurrent threads and causes higher tail latency.

3) µTree achieves higher peak throughput under the uni-
form workload, since it causes less PM writes, and the
PM bandwidth is still under-utilized. µTree also delivers
lower tail latency compared to the other two indices.

Sensitivity to PM Bandwidth. Finally, we analyze how
these indices behave with varying PM bandwidth. We change
the PM bandwidth by adding a different number of Optane
modules. Figure 11 shows the results with 1 and 2 Op-
tane modules, respectively (each module achieves a write

2642

99
p

La
te

nc
y

(μ
s)

FAST&FAIR
FPTree
μTree

Throughput (Mops/s)

FAST&FAIR
FPTree
μTree

99
p

La
te

nc
y

(μ
s)

(b) Uniform

(a) Zipfian (0.90)

0

30

60

90

120

0

50

100

0 2 4 6 8 10 12

Figure 10: Throughput vs. 99th percentile latency
of Put operations with varying key distribution.

bandwidth of 2.2 GB/s). By comparing with the results
in Figure 8(c) (six Optane modules), we observe that the
peak throughput of FAST&FAIR decreases by 67%, while
µTree drops only by 18% as the number of Optane DIMMs
reduces from 6 to 1. In terms of tail latency, both µTree
and FPTree exhibits almost unchanged 99p latencies, while
FAST&FAIR shows more than 300µs of tail latency when
we use only one Optane module. As a whole, with the op-
timizations in µTree, its performance is more robust as we
change the PM hardware bandwidth.

5.3 Single Thread Evaluation
Figure 12 reports the performance of each index using a

single thread when running individual operations (i.e., 100%
insert, update, delete, search or scan). A persistent skip
list [46] is also compared in this part. In the skip list, only
the lowest-level list nodes are placed in PM, and we only
ensure the consistency of the lowest list. The skip probabil-
ity is set to 50%. We first insert 10 million key-values, and
then perform 10 million individual operations. We also use
Intel’s PCM tool [25] to measure the number of accesses to
PM to help with understanding the performance behavior
(see the table in Figure 12, we only give the results of insert
and search operations, due to the limited space).
• Insert. Insert latency is directly affected by the number of
flushes to PM [37]. As expected, wB+Tree and FAST&FAIR
exhibit higher insert latency since they place all tree nodes
in PM and thus incurs much more PM writes (see the ta-
ble). FPTree and NV-Tree, instead, only place leaf nodes
in PM, and thus show lower latency. Specifically, NV-Tree
inserts an entry by first appending it at the end of the leaf
node, and then updating the size of the node, with a total
of two flushes. FPTree requires three flushes per insert in
normal cases (entry, bitmap, and fingerprint), so it shows
a higher latency than NV-Tree. µTree achieves the lowest
insert latency among the compared systems. First, µTree
only requires two flushes to insert an entry, which is similar
to that of NV-Tree. Second, µTree adopts the list format
in PM to eliminate sort and balance overhead. Skip list has
the highest latency since it uses linked-lists at different lev-
els, which incurs expensive pointer chasing overhead (26.5
PM reads per insertion).
• Update. Compared to inserts, an update only operates
on an existing key. wB+Tree’s update latency is lower than

FAST&FAIR
FPTree
μTree

Throughput (Mops/s)

99
p

La
te

nc
y

(μ
s)

99
p

La
te

nc
y

(μ
s)

FAST&FAIR
FPTree
μTree

(b) Two Optane DIMMs

(a) One Optane DIMM

0

100

200

300
0

100

200

300

0 1 2 3 4 5 6

Figure 11: Throughput vs. 99th percentile latency
by varying the number of Optane DC DIMMs (Put
operation and parameter = 0.99).

that of inserts since each update only requires 3 flushes (va-
lidity bit does not need to be flushed). NV-Tree performs
updates slower than inserts because it uses a combination of
deletion and insertion to handle updates. FAST&FAIR and
µTree assume values stored in an index are 8-byte point-
ers, so each update is handled via an atomic operation di-
rectly, which only requires one flush. As a result, µTree
achieves the lowest update latency among the compared in-
dices. FAST&FAIR does not implement this operation so
we do not report its result. Actually, all existing indices
can use atomic instructions as an alternative optimization
to handle updates with 8-byte values.
• Delete. Again, µTree achieves the lowest delete latency. A
deletion in µTree simply modifies and persists a predecessor
pointer atomically, while other index structures adopt more
complicated consistency-aware deletion strategies: NV-Tree
appends a tombstone at the end of the node to indicate a
deletion with two flushes; FAST&FAIR needs to shift the en-
tries to keep the nodes ordered. wB+Tree shows almost the
same latency as that of update operation, since it simply up-
dates the indirection slotted array and the bitmap to mark
the corresponding slot as deleted. We also notice that FP-
Tree achieves lower latency than other indexing structures,
since it only needs to reset the bitmap when performing dele-
tion operations. It also avoids merge operations to reduce
the persistence cost. However, this compromise may lead
to low space utilization of tree nodes under some deletion-
intensive workloads (in §5.4).
• Search. µTree shows lower search latency than wb+-Tree,
FAST&FAIR, NV-Tree and FPTree, and gains noticeable
performance improvement over the skip list. This is as
expected: Each search operation in a skip list causes 26
PM reads on average, while PM has much higher read la-
tency (Optane DCPMM’s read latency is more than 300 ns).
Other compared B+-tree indices also incur more PM reads
than µTree. For example, FAST&FAIR and wB+Tree place
all tree nodes in PM; FPTree and NV-Tree keep entries in
each leaf node unsorted, so they need to probe linearly to
find a specific entry, which needs to load more data from
PM and waste extra CPU cycles. Note that FAST&FAIR
incurs comparable PM reads as that of wB+Tree but shows
much lower search latency, because it uses lock-free reads.
• Scan. Range scans start at a random initial key and read

2643

Av
g.

 L
at

en
cy

 (μ
s)

wb+tree
FAST&FAIR

NV-Tree
FPTree

Skip list
μTree

0
2
4
6
8

Insert Update Delete Search Scan-a Scan-b

+ wb+tree F&F NV-Tree FPTree Skiplist µTree

I
PM Writes 5.9 8.5 3.4 5.2 3.4 2.1
PM Reads 21.2 15.6 4.9 10.9 26.5 3.2

S PM Reads 14.0 15.6 22.6 8.3 26.6 0.9
+ The number of PM cache line reads/writes for each search and

insert operation by using Intel PCM tool [25]. I: Insert, S: Search.

Figure 12: Single thread performance of In-
sert/Update/Search/Delete/Scan operations.

the following 20 records. We test two cases: In Scan-a,
key-value pairs are inserted randomly before testing scan
operations, In Scan-b, key-value pairs are inserted in se-
quential order. wB+Tree and FAST&FAIR return records
in sorted order directly by keeping entries in tree nodes or-
dered (wB+Tree uses indirection slotted arrays). As a re-
sult, they show lower scan latency than FPTree and NV-
Tree, which must perform an additional sorting step before
returning the results. Both skip list and µTree are sensitive
to the initial order of inserted key-value pairs. When the
items are inserted in sequential order (in Scan-b), both of
them show comparable latency to other indices, since adja-
cent list nodes are stored in contiguous memory space, still
benefiting from the spatial locality. However, if the items
are inserted randomly (in Scan-a), skip list and µTree need
to walk through the list layer to get all the records, which
causes a random PM read for each key-value pair, and thus
deliver the highest latency. Note that µTree still can over-
come such a problem by duplicating 8-byte values in the
volatile B+-tree layer to exploit the cache locality.

5.4 Space Efficiency
Memory Consumption of DRAM and PM. Figure 13
shows the DRAM and PM consumption of different index
structures. In this part, we measure the space consumption
by including actual key-value pairs as well, which reveals
the case of real-world deployments. Since over 90% of KVs
in production workloads are less than 500B in Facebook [7],
the value size is set from 64B to 1KB.

From Figure 13, we make two observations. (1) The list-
based management in PM is not worse than the tree-based
organization regarding space consumption. After perform-
ing one million inserts with 64-byte value, µTree uses 83.3
MB of PM space, while wB+-Tree, FAST&FAIR, NV-Tree,
FPTree and skip list consumes 90.7, 84.5, 94.5, 84.9, 83.3
MB of PM space, respectively. Due to the balance constraint
in B+-tree, there is a large portion of memory space wasted
in the tree nodes. (2) The space consumption of persistent
memory is the dominant part. The DRAM consumption
remains almost constant with varied value sizes, while the
PM consumption increases as the value size grows. This
is because values have larger sizes than keys and pointers.
Even for µTree, which keeps the whole tree layer in DRAM,
the DRAM consumption is relatively small compared to

M
em

or
y

Us
ed

 (M
B)

Value Size (Bytes)

wBTree.DRAM
NV-Tree.DRAM
FPTree.DRAM
FAST&FAIR.DRAM
Skip List.DRAM
μTree.DRAM

wBTree.PM
NV-Tree.PM
FPTree.PM
FAST&FAIR.PM
Skip List.PM
μTree.PM

0

500

1000

64B 128B 256B 512B 1024B

Figure 13: Space consumption of DRAM and PM.

M
em

or
y

Us
ed

 (M
B)

391 387 383

0

50

100

150

200

Insert Update Delete(40%)Delete(80%)
Figure 14: Memory utilization after deletions

PM. After performing one million inserts with 64/128/256/
512/1024-byte values, the DRAM consumption occupies 22.3
%/14.3%/8.2%/4.5%/2.3% of the total space.
Memory Utilization after Deletions. Figure 14 shows
the memory space utilization of different indices in four
stages: the Insert stage (after inserting 1 million entries), the
Update stage (after updating 1 million entries), the Delete
(40%) stage (after deleting 40% entries), and the Delete
(80%) stage (after deleting 80% entries).

From Figure 14, we observe that the list-based organi-
zation, such as in µTree and skip list, has higher memory
utilization than a tree-based organization, especially after
long runs with delete operations. This is because persistent
B+-Trees use consistency techniques to prevent space recla-
mation. Specifically, NV-Tree uses an append-only strategy
for crash consistency, which does not free the deleted entries
immediately. wB+-Tree and FPTree do not perform merge
operation when the number of keys in a node is below a
minimum threshold (e.g., 50% in standard B+-Tree), so as
to avoid the extra flush overhead. However, this compro-
mise leads to higher space consumption after 40% or 80%
deletions. FAST&FAIR aggressively merges operations to
achieve high space utilization, but it leads to poor deletion
performance (in Figure 12).

5.5 Recovery Overhead
Figure 15 shows the rebuild time of µTree with a differ-

ent number of KV pairs and recovery threads. Note that
the recovery process only needs to rebuild the volatile tree
layer, which does not incur any PM write. The recovery
process only needs 0.06/0.48/4.2 seconds to rebuild a tree
containing 1/10/100 million KV pairs with 24 threads, re-
spectively. Most of the recovery time is spent on chasing
the sibling pointers in each list node to scan the whole list
layer. The multiple-thread recovery scheme efficiently re-
duces the scan cost to speed up the recovery process. µTree
may deliver intolerable recovery time under extreme work-
load (e.g., all the KV items are extremely small). However,
production workload (e.g., Facebook etc pool [7]) typically

2644

0

0.5

1.0

1.5

0

5

10
Re

bu
ild

in
g

Ti
m

e
(s

)
1 million 10 million 100 million

(a) # of Threads (b) # of Threads (c) # of Threads
0

0.05

0.10

1 2 4 8 1624 1 2 4 8 1624 1 2 4 8 1624

Figure 15: Recovery overhead analysis.

have a wide distribution of value sizes (small items dominate
in terms of number, while large ones dominate in terms of
space consumption), and thus has less index to recover than
the aforementioned extreme case.

5.6 The Key-Value Store Evaluation
We use Redis [49], an in-memory key-value store to eval-

uate µTree in real-world environments. Redis is modified to
support multi-thread execution, and we replace its storage
engine with our index structures. We choose the Session-
Store workload (update-heavy, 50:50 read:update) of YCSB
benchmark [13] for evaluation. The YCSB clients and the
Redis server are deployed on the same server to eliminate
the network affects. Figure 16 shows the throughput and the
corresponding 99th percentile latency of Redis with differ-
ent persistent index structures. µTree achieves the highest
peak throughput (670 Kops/s) and the lowest tail latency.
Specifically, for a target load running at 500 Kops/s, µTree
restricts its 99th percentile latency within 50 µs, 50% and
22% lower than that of FAST&FAIR and FPTree. Put dif-
ferently, for an SLO on the 99th percentile latency of 60 µs,
µTree can perform 670 Kops/s, 1.86 times and 1.26 times
the throughput of FAST&FAIR and FPTree.

6. RELATED WORK
Tail Latency Optimizations. Many recent work pro-
posed different approaches in the operating system to op-
timize tail latency [27, 44, 45, 47]. In key-value stores, the
value sizes also affect tail latency. Minos [17] improves tail
latency by using dedicated cores to process large values.
Persistent Indexing Structures. CDDS-Tree [53] is the
first consistent and persistent B+-Tree in persistent memory
that associates each entry with a version number. However,
versioning incurs high write traffic. Thus, a number of re-
search efforts are proposed to reduce PM writes, including
NV-Tree [57], wB+-Tree [51], FPTree [43], FAST&FAIR [23],
bzTree [6], and RNTree [39]. DPTree [59] is a new persistent
index that adopts batching to reduce the number of expen-
sive PM writes required for crash consistency. The core
idea behind DPTree is a two-level persistent index: writes
are first batched in an in-DRAM buffer tree, and are later
merged into a base tree in PM. DPTree is well optimized for
throughput, however, the background merging process may
stall front-end operations and consumes extra PM band-
width, which instead impacts tail latencies of front-end op-
erations. RECIPE [35] presents an approach to convert con-
current DRAM indices into crash-consistent ones for PM.

Several recent systems duplicate indexing items in two
data structures to deliver high performance or improve func-
tionality. HiKV [55] consists of a B+-Tree index in DRAM
and a hash index in PM. It leverages the hash index to hide
high write overhead of persistent B+-Tree, and relies on the
B+-Tree to support scan operations. Before performing a

FAST&FAIR
FPTree
μTree

Throughput (Kops/s)

99
p

La
te

nc
y

(μ
s)

0

30

60

90

120

0 100 200 300 400 500 600 700

Figure 16: Throughput vs. 99th percentile latency
with Sessionstore workload.

scan, it needs to block all updates to the hash index un-
til all the updates made before have been synchronized to
the B+-Tree. Bullet [22] tries to improve the read perfor-
mance of a KV store by managing two hash tables simul-
taneously (one in PM and the other in DRAM), and using
cross-referencing logs (CRLs) to keep the two hash table con-
sistent. PmemKV [14] also shadows the keys of leaf nodes in
DRAM. Similar to these approaches, µTree also duplicates
indices, but with the design goal of improving tail latency.

Concurrency Control. In addition to the naive concur-
rency control in B+-Trees that locks the whole tree, recent
research, such as Blink-Tree [36], OLFIT [11] and Masstree
[40], propose version-based optimistic read and per-node
write locking. Besides, FPTree leverages HTM to handle
concurrent accesses to inner nodes, and per-node locks to
serialize concurrent updates to the leaf nodes.

A number of research efforts are proposed to design lock-
free B+-Tree, but they lead to either performance or load im-
balance problems. PALM [50] is a lock-free concurrent B+-
Tree based on the Bulk Synchronous Parallel model, which
leads to higher query latency than that of Masstree. Both
Cassandra [32] and Megastore [8] use keyhash-based ap-
proach to partition the B+-Tree index among multiple cores.
However, such a design cannot support scan operations ef-
fectively. SLIK [28] uses range partition on ordered multiple
B+-Tree indices, which will incur load imbalance problems.
List-based indexing structure, such as skip list [46], supports
lock-free concurrency control using atomic instructions.

7. CONCLUSION
We observe that persistent B+-tree suffers long tail la-

tency and we specify two root causes: 1) the internal struc-
tural refinement operations (SROs) and 2) the inter-thread
interferences. In this paper, we propose µTree to address
such problems. First, a shadow linked-list layer is introduced
to the leaf nodes of a B+-tree to minimize the SRO over-
head. Second, we propose a coordinated concurrency control
mechanism to reduce the interference between threads. Our
evaluation shows that µTree significantly lowers the 99p tail
latency, and achieves 2.8 - 4.7× higher throughput than the
state-of-the-art persistent indices. Source code is available
at https://github.com/thustorage/nvm-datastructure.

Acknowledgment
We sincerely thank the anonymous reviewers for their feed-
back and suggestions. This work is supported by National
Key Research and Development Program of China (Grant
No. 2018YFB1003301), the National Natural Science Foun-
dation of China (Grant No. 61772300, 61832011), Huawei,
and Special Topics of Major Scientific and Technological
Projects in Sichuan Province (Grant No. 2018GZDZX0049).

2645

8. REFERENCES
[1] The persistent memory development kit. "pmem.io".

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,
and A. J. Smola. Scalable inference in latent variable
models. In Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM
’12, pages 123–132, New York, NY, USA, 2012. ACM.

[3] H. Akinaga and H. Shima. Resistive random access
memory (ReRAM) based on metal oxides. Proc.
IEEE, 98(12), 2010.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center tcp (dctcp). pages 63–74,
2010.

[5] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin,
X. Tang, D. Lottis, K. Moon, X. Luo, E. Chen,
A. Ong, A. Driskill-Smith, and M. Krounbi.
Spin-transfer torque magnetic random access memory
(STT-MRAM). ACM J. Emerg. Technol. Comput.
Syst., 9(2):13:1–13:35, May 2013.

[6] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A.
Larson. Bztree: A high-performance latch-free range
index for non-volatile memory. PVLDB,
11(5):553–565, 2018.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
2012.

[8] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In Proc Conf
Innovative Data Syst Res (CIDR), volume 11, pages
223–234, 01 2011.

[9] D. S. Berger, B. Berg, T. Zhu, S. Sen, and
M. Harchol-Balter. Robinhood: Tail latency aware
caching – dynamic reallocation from cache-rich to
cache-poor. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
195–212, Carlsbad, CA, Oct. 2018. USENIX
Association.

[10] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm.
Makalu: Fast recoverable allocation of non-volatile
memory. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’16, pages 677–694, 2016.

[11] S. K. Cha, S. Hwang, K. Kim, and K. Kwon.
Cache-conscious concurrency control of main-memory
indexes on shared-memory multiprocessor systems.
VLDB ’01, pages 181–190, 2001.

[12] S. Chen and Q. Jin. Persistent b+-trees in non-volatile
main memory. PVLDB, 8(7):786–797, Feb. 2015.

[13] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, 2010.

[14] I. Corporation. Key/value datastore for persistent
memory. https://github.com/pmem/pmemkv, 2020.

[15] J. Dean and L. A. Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, Feb. 2013.

[16] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
ACM SIGOPS operating systems review, volume 41,
pages 205–220. ACM, 2007.

[17] D. Didona and W. Zwaenepoel. Size-aware sharding
for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
79–94, Boston, MA, Feb. 2019. USENIX Association.

[18] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In
Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation,
NSDI ’14, pages 401–414, 2014.

[19] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. Sap hana database: Data
management for modern business applications.
SIGMOD Rec., 40(4):45–51, Jan. 2012.

[20] K. Fraser. Practical lock-freedom. Technical Report
UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory, Feb. 2004.

[21] T. L. Harris. A pragmatic implementation of
non-blocking linked-lists. In International Symposium
on Distributed Computing, pages 300–314. Springer,
2001.

[22] Y. Huang, M. Pavlovic, V. Marathe, M. Seltzer,
T. Harris, and S. Byan. Closing the performance gap
between volatile and persistent key-value stores using
cross-referencing logs. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages
967–979, Boston, MA, July 2018. USENIX
Association.

[23] D. Hwang, W.-H. Kim, Y. Won, and B. Nam.
Endurable transient inconsistency in byte-addressable
persistent b+-tree. In 16th USENIX Conference on
File and Storage Technologies (FAST 18), pages
187–200, Oakland, CA, 2018. USENIX Association.

[24] Intel. The NVM Library. http://pmem.io/, 2016.

[25] Intel. Processor counter monitor (pcm).
https://github.com/opcm/pcm, 2020.

[26] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.
Dulloor, et al. Basic performance measurements of the
intel optane dc persistent memory module. arXiv
preprint arXiv:1903.05714, 2019.

[27] K. Kaffes, T. Chong, J. T. Humphries, A. Belay,
D. Mazières, and C. Kozyrakis. Shinjuku: Preemptive
scheduling for usecond-scale tail latency. In 16th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 345–360,
Boston, MA, Feb. 2019. USENIX Association.

[28] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang,
and J. Ousterhout. Slik: Scalable low-latency indexes
for a key-value store. In Proceedings of the 2016
USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’16, pages 57–70, Berkeley,
CA, USA, 2016. USENIX Association.

2646

[29] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu.
Evaluating phase change memory for enterprise
storage systems: A study of caching and tiering
approaches. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies,
FAST ’14, pages 33–45, 2014.

[30] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi,
J. Pfefferle, and C. Kozyrakis. Pocket: Elastic
ephemeral storage for serverless analytics. In
Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’18, pages 427–444, Berkeley, CA, USA, 2018.
USENIX Association.

[31] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu. Evaluating STT-RAM as an energy-efficient
main memory alternative. In Proceeding of the 2013
IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS ’13, pages
256–267, Apr. 2013.

[32] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[33] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger. Phase-change technology
and the future of main memory. IEEE Micro,
30:131–141, Jan. 2010.

[34] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 2–13, 2009.

[35] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and
V. Chidambaram. Recipe: Converting concurrent
dram indexes to persistent-memory indexes. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, pages 462–477, New
York, NY, USA, 2019. ACM.

[36] P. L. Lehman and s. B. Yao. Efficient locking for
concurrent operations on b-trees. ACM Trans.
Database Syst., 6(4):650–670, Dec. 1981.

[37] L. Lersch, X. Hao, I. Oukid, T. Wang, and
T. Willhalm. Evaluating persistent memory range
indexes. PVLDB, 13(4):574–587, Dec. 2019.

[38] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
bw-tree: A b-tree for new hardware platforms. In 2013
IEEE 29th International Conference on Data
Engineering, ICDE ’13, pages 302–313, 2013.

[39] M. Liu, J. Xing, K. Chen, and Y. Wu. Building
scalable nvm-based b+ tree with htm. In Proceedings
of the 48th International Conference on Parallel
Processing, pages 1–10, 2019.

[40] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of
the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 183–196, 2012.

[41] I. Newsroom. Intel@ optaneTM dc persistent memory.
https://www.intel.com/content/www/us/en/

products/memory-storage/

optane-dc-persistent-memory.html, Apr. 2019.

[42] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.

Scaling memcache at facebook. In Proceedings of the
10th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’13, pages 385–398,
2013.

[43] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. Fptree: A hybrid scm-dram persistent and
concurrent b-tree for storage class memory. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 371–386,
2016.

[44] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high cpu
efficiency for latency-sensitive datacenter workloads.
In NSDI, 2019.

[45] G. Prekas, M. Kogias, and E. Bugnion. Zygos:
Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP
’17, pages 325–341, New York, NY, USA, 2017. ACM.

[46] W. Pugh. Skip lists: A probabilistic alternative to
balanced trees. Commun. ACM, 33(6):668–676, June
1990.

[47] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. K.
Ousterhout. Arachne: Core-aware thread
management. In OSDI, 2018.

[48] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In Proceedings of
the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, pages 24–33, 2009.

[49] S. SANFILIPPO and P. NOORDHUIS. Redis.
http://redis.io, 2009.

[50] J. Sewall, J. Chhugani, C. Kim, N. Satish, and
P. Dubey. Palm: Parallel architecture-friendly
latch-free modifications to b+ trees on many-core
processors. 4:795–806, 08 2011.

[51] P. B. G. Shimin Chen and S. Nath. Rethinking
database algorithms for phase change memory. In
Fifth Biennial Conference on Innovative Data Systems
Research, CIDR ’11, pages 21–31, January 2011.

[52] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 18–32, New
York, NY, USA, 2013. ACM.

[53] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. H. Campbell. Consistent and durable data
structures for non-volatile byte-addressable memory.
In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST ’11, pages 61–75,
2011.

[54] V. Venkataramani, Z. Amsden, N. Bronson,
G. Cabrera III, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, J. Hoon, S. Kulkarni,
N. Lawrence, M. Marchukov, D. Petrov, and L. Puzar.
Tao: How facebook serves the social graph. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 791–792, New York, NY, USA, 2012. ACM.

[55] F. Xia, D. Jiang, J. Xiong, N. Sun, and
T. Moscibroda. Hikv: A hybrid index key-value store

2647

for dram-nvm memory systems. In Proceedings of the
USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC ’17, 2017.

[56] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and
S. Swanson. An empirical guide to the behavior and
use of scalable persistent memory. In 18th USENIX
Conference on File and Storage Technologies (FAST
20), pages 169–182, Santa Clara, CA, Feb. 2020.
USENIX Association.

[57] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He. NV-Tree: Reducing consistency cost for

NVM-based single level systems. In Proceedings of the
13th USENIX Conference on File and Storage
Technologies, FAST ’15, pages 167–181, 2015.

[58] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 14–23, 2009.

[59] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen.
Dptree: differential indexing for persistent memory.
PVLDB, 13(4):421–434, 2019.

2648

