
Meet Me Halfway: Split Maintenance of Continuous Views

Christian Winter, Tobias Schmidt, Thomas Neumann, Alfons Kemper
Technische Universität München

{winterch, tobias.schmidt, neumann, kemper}@in.tum.de

ABSTRACT
From Industry 4.0-driven factories to real-time trading al-
gorithms, businesses depend on analytics on high-velocity
real-time data. Often these analytics are performed not in
dedicated stream processing engines but on views within a
general-purpose database to combine current with histori-
cal data. However, traditional view maintenance algorithms
are not designed with both the volume and velocity of data
streams in mind.

In this paper, we propose a new type of view specialized
for queries involving high-velocity inputs, called continuous
view. The key component of continuous views is a novel
maintenance strategy, splitting the work between inserts and
queries. By performing initial parts of the view’s query for
each insert and the remainder at query time, we achieve both
high input rates and low query latency. Further, we keep the
memory overhead of our views small, independent of input
velocity. To demonstrate the practicality of this strategy, we
integrate continuous views into our Umbra database system.
We show that split maintenance can outperform even dedi-
cated stream processing engines on analytical workloads, all
while still offering similar insert rates. Compared to mod-
ern materialized view maintenance approaches, such as de-
ferred and incremental view maintenance, that often need
to materialize expensive deltas, we achieve up to an order
of magnitude higher insert throughput.

PVLDB Reference Format:
Christian Winter, Tobias Schmidt, Thomas Neumann and Alfons
Kemper. Meet Me Halfway: Split Maintenance of Continuous
Views. PVLDB, 13(11): 2620-2633, 2020.
DOI: https://doi.org/10.14778/3407790.3407849

1. INTRODUCTION
The ever-growing volume and velocity of data, generated

from sensors, networks, and business processes, are accom-
panied by an increasing demand for analytics on this data.
Currently, analysts have to choose from a range of systems,
depending on the type of workload they face. Traditionally,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407849

tables

result

event streams

Query

Insert

In
iti

al
iz

at
io

n

Figure 1: Exemplary split of a continuous view
query plan for maintenance. Parts that are eval-
uated for each insert are marked with a grey ar-
row. Parts with a white arrow are evaluated for
each query to the view. The framed part is evalu-
ated once at view creation time.

such analyses have taken place in databases and data ware-
houses focusing on analytical query throughput. However,
data is increasingly created in a continuous fashion and it
is preferable to analyze it in real-time. Due to the sheer
volume of data, storing it for later analysis in a data ware-
house is often undesired or even infeasible. In addition, the
after-the-fact analysis in dedicated warehouses cannot fulfill
the demands for fast insights into the data, often referred to
as real-world awareness.

For this emerging workload of high-velocity data, we pro-
pose a new type of view, which we call continuous view.
These views are split for maintenance between inserts and
queries, as outlined in Figure 1. By splitting the main-
tenance, we achieve the insert rates required for real-time
stream processing, while simultaneously supporting fast an-
alytical queries. We integrate continuous views into our
newly developed Umbra database system [38]. Continu-
ous views exploit Umbra’s state machine-based approach
on query execution to split the query efficiently for mainte-
nance. Inserts perform the first logical steps for each arriv-
ing tuple, i.e., the necessary calculations for the first logical
query pipeline (red). Only at times when the result of the
view query is required are the remaining processing steps for
the changes performed (purple).

In contrast, specialized systems for high-velocity data, of-
ten called Stream Processing Engines (SPEs), do not of-
fer functionality to internally manage and modify historic
data. Besides, many state-of-the-art SPEs such as Flink [8],
Spark [50], and Storm [46] fail to properly utilize the under-
lying modern hardware, as shown by Zeuch et al. [51].

Modern view maintenance strategies such as higher-order
incremental view maintenance (IVM) [24], on the other hand,

2620

are optimized for query-heavy workloads. While they of-
fer high view refresh rates to better cope with high-velocity
data, they refresh views on each insert and thereby optimize
the query performance. By always having the current state
of the view available, they trade insert for query perfor-
mance. However, we argue that these constant full refreshes
are not required for many insert-heavy streaming use cases.
We will support this argument by using a small contrived
example of an Industry 4.0 manufacturing plant, which we
will also use as a running example throughout this paper:

Example: Consider a modern just-in-time car manufactur-
ing plant that aims at keeping parts stored for as little time
as possible. Parts are delivered to workstations just when
they are needed for production. To avoid costly produc-
tion halts, a car company might monitor the resupply needs
with a query such as shown in Figure 2. Usage and resupply
of parts at workstations are tracked automatically using the
stream relations part usage and part restock for which exem-
plary entries can be found in Figure 3. The query reports
those workstations where parts are running low, indicating
problems in the supply chain. It is sufficient to check the
current query result each second, or even only a few times
per minute, to detect problems in time. Inserts, on the other
hand, happen regularly, continuously, and with high velocity
and can easily reach the tens or even hundreds of thousands
per second.

Traditional view maintenance algorithms would update the
at times expensive deltas for each tuple and refresh the view
fully, even when the current result is not required. SPEs, on
the other hand, are able to monitor the difference in parts
for high insert rates. However, they lack the functionality to
automatically combine the result with the necessary infor-
mation held in databases without any additional overhead.
In our example, SPEs would miss details about the station
and the supplier in charge which are crucial for the query.

Our integration allows the user to access continuous views
in regular database queries, and the underlying continuous
queries have access to the database state just like regu-
lar views. Further, continuous views can be created using
standard SQL. Umbra uses data-centric processing and the
producer-consumer model [37] for compilation. Using the
same concept for our continuous views, we keep the overhead
of stream inserts low to compete with SPEs while simulta-
neously eliminating the need for a full stream or table scan
at query time. In the categories defined by Babu et al. [4],
continuous views are result-materializing queries with up-
dates and deletes. While some research has been conducted
on IVM maintained stream views in database systems [49],
and continuous views also exist in open-source projects [42],
we are not aware of other work proposing specialized view
maintenance strategies for high-velocity stream workloads.
Our contributions are as follows:

• We present a novel strategy for view maintenance, espe-
cially for views on stream inputs, that divides the work
between inserts and queries. Our approach can support
extensive analytical queries on streams without having
to materialize the full stream input.

• We integrate stream processing using continuous views
into our general-purpose database, using the query op-
timizer as well as specialized code generation to fully
utilize the underlying hardware.

with used as (
select part, station, count(*)
from part usage
group by part, station

),
restocked as (

select part, station, count(*)
from part restock
group by part, station

)
select r.part, s.location, s.supplier
from station s, used u, restocked r
where s.id = u.station and

u.station = r.station and
u.part = r.part and
r.count - u.count < 5

Figure 2: Continuous query monitoring part supply
on workstations within a manufacturing plant.

Figure 3: Exemplary part usage, part restock and
station relations. station is considered a static table,
part usage and part restock are streams.

• We describe how continuous views are created from reg-
ular SQL statements using only standard operators, thus
allowing easy integration into existing systems.
• We demonstrate the capabilities of our system using

the AIM benchmark [7], comparing it to state-of-the-
art SPEs. We evaluate the performance limits using
microbenchmarks and offer a comparison to the scale-
up SPE Trill [10] and a database engine implementing
higher-order IVM, DBToaster [24], on TPC-H.

The rest of this paper is structured as follows: In Section 2
we give a brief overview of the Umbra system developed by
our group, focusing on the aspects relevant for this work.
Afterward, we describe our novel split maintenance strategy
for continuous views in Section 3. Section 4 shows the ca-
pabilities of our approach against state-of-the-art baselines
and on a microbenchmark. In Section 5, we discuss relevant
related work before concluding our paper in Section 6.

2. BACKGROUND
As stated in the introduction, the continuous views are

integrated into our Umbra database system [38] and exploit
some of its concepts to achieve fast and split view mainte-
nance. While these concepts are outside the scope of this
paper, we briefly describe them in this section to help the
reader better understand our approach. Like its predecessor
HyPer [37], Umbra compiles query plans into machine code.
However, in contrast to HyPer, Umbra does not produce a
monolithic piece of code and instead relies on a state ma-
chine to represent the different states of query execution.

2621

part_usage

Γpart, station, count(*)

Pip
eli

ne
 2

Pip
eli

ne
 3 ⨝part=part station=station

part_restock

Pipeline 5

Γpart, station, count(*) Pipeline 4

setup global hash tables 1

cleanup thread-local hash tables 9

Pipeline 2

cleanup thread-local hash tables 13

Pipeline 3

cleanup global hash tables 20

Pipeline 5

cleanup thread-local hash tables 17

Pipeline 4

Pip
eli

ne
 1 ⨝id=station

stations

result

cleanup thread-local hash tables 5

Pipeline 1

setup thread-local hash tables 2

thread-local aggregation 3

merge thread-local hash tables 4

setup thread-local hash tables 6

thread-local aggregation 7

merge thread-local hash tables 8

setup thread-local hash tables 10

thread-local aggregation 11

merge thread-local hash tables 12

setup thread-local hash tables 14

thread-local aggregation 15

merge thread-local hash tables 16

setup thread-local scan and join 18

thread-local join 19

Figure 4: Pipelines and corresponding logical steps for the query of Figure 2, joining two grouped streams
and a durable table. Pipelines containing streams are dashed. Striped coloring indicates state shared between
multiple pipelines is used. Colors indicate involved pipelines.

States of the state machine correspond to parts of the gen-
erated code. Transitions switch between code fragments,
and thus between different phases of query execution. In
the following, we will refer to the states and their associated
code fragments as steps. Steps are responsible for processing
parts of a query pipeline. A pipeline is a path in the logical
query plan wherein a tuple does not have to be materialized
in between operators, e.g., between the scan of part usage
and the grouping in pipeline 2 of Figure 4. The pipeline is
composed of the logical steps for evaluating the used CTE
of Figure 2, a simple aggregating group by. Umbra splits
these steps into even finer-grained steps and might execute
them in a slightly different order. However, this granularity
is sufficient to describe our approach to split view mainte-
nance. We will look at the categories of steps that can be
commonly found in compiled query plans in more detail after
briefly describing the memory regions we keep in Umbra.

Umbra differentiates between two kinds of memory that
steps have access to: local and global state. Local state
is used for intra-pipeline communication and state-keeping
within steps and is not shared between pipelines. It is, how-
ever, possible for multiple steps of the same pipeline to ac-
cess the same local state. Thus, steps within a pipeline have
to be executed in the pre-defined order. One thread at most
accesses a local state at any one time, meaning that there are
several local state instances per pipeline for parallel tasks.
Local state is designed to be inherently thread-local. Global
state is used to share information between pipelines, and all
threads working on a query have access to the same instance
of the global state. Therefore, modification on the global
state within parallel steps, e.g., when merging thread-local
hash tables, requires data-dependent synchronization.

Steps are the basic building blocks that we use to de-
fine the different parts of our maintenance strategy. Each
pipeline has four logical steps. In regular queries, ignoring
recursive ones, each of these steps is traversed once, one after
the other. However, not all of the steps are required for all
pipelines. Furthermore, some of the steps, like the thread-
local aggregation or the thread-local join in Figure 4, are
run multiple times for different parts of the input, but we
still consider them to be one logical step. To better illus-
trate the role of the steps in queries, we reference the steps
of the query in Figure 2, shown in Figure 4.
Initialization. In the first step of each pipeline, we ini-
tialize all data structures relevant for in-pipeline processing.

This includes temporary tuple buffers, simple data struc-
tures such as hash maps, as well as helpers for complex
operators. In our running example, this includes steps 6

and 14 to set up the hash tables used for grouping, as well
as 2 and 10 to set up the structures needed for a join.
Thread-Local Execution. During the execution phase,
the actual query processing is performed. This can include,
e.g., scanning tuples from disk or buffers, applying filters and
functions, aggregation, and joins. Umbra employs morsel-
driven parallelism [29] and, therefore, this step is run in
parallel, processing a single morsel for each invocation. The
results are then stored in thread-local buffers, or directly
reported for the top-most pipeline. Steps 3 , 7 , 11 , and
15 , e.g., store the corresponding inputs in a local hash table
and either aggregate them or keep them unmodified to be
later probed by the join. Step 19 probes the join hash ta-
bles in parallel and reports the resulting join tuples directly,
without using a local buffer.
Merge. After thread-local processing is completed, the re-
sults are combined and stored in the global state to be ac-
cessible for the next pipeline. Possible examples for this
step are merging the individual runs of the merge-sort for a
sorting operator, or combining local buffers and hash tables.
In our example, this happens in steps 4 , 8 , 12 , and 16 .
Since pipeline 5 directly reports the final result, it is not
necessary to merge local results.
Cleanup. Finally, the auxiliary data structures are cleaned
up, and the memory used is freed (5 , 9 , 13 , and 17).

3. APPROACH
Traditional approaches to materialized view maintenance

fully process tuples. In deferred maintenance, all tuples are
either buffered in memory or stored on disk. When the view
result is requested, the database will reevaluate the query
from scratch, requiring it to scan the materialized relation.
All tuples, therefore, need to be materialized and kept ac-
cessible at a moment’s notice. This is problematic for un-
bounded high-velocity data streams, which are often desired
to be processed in an exactly-once non-materializing fashion.

For our system, a full materialization of the stream would
either mean writing it to disk, or keeping it in memory. The
first option would increase the disk IO tremendously, af-
fecting other disk operations for other queries. Keeping the
tuples in memory, on the other hand, reduces the memory

2622

available for query processing. Both could dampen the over-
all system performance, which means that we therefore have
to rely on the inserter to handle the tuple.

Other approaches processing new tuples at insert time,
like eager and incremental view maintenance, also avoid the
high storage cost of stream data. However, they propagate
the full change immediately. This is not trivial at the high
frequency required for stream processing, and most systems
require hand-written queries to handle the updates. Even
modern high-velocity approaches tackling this problem with-
out manual user input, like DBToaster, require specialized
operators with support of deletes and updates at any part
of the query. This makes it hard to integrate this approach
into an existing database system efficiently. For example,
DBToaster only exists as a stand-alone solution or as an
external library, not fully integrated into a database.

3.1 Split Maintenance Strategy
Our approach can be seen as a combination of eager and de-

ferred view maintenance, providing the best of both worlds.
To keep the introduced overhead low, we propose processing
inserts only as far as needed. In general, this means we want
to process the input until the point where it has to be mate-
rialized for the first time, that is, the first pipeline breaker.
This allows us to perform initial processing steps at insert
time while reducing the memory consumption compared to
deferred maintenance. Using pipeline breakers as a natural
storage point also allows for easy integration. Tuples are
never invalidated at pipeline breakers, e.g., join build sides.
After materialization in pipeline breakers, the remainder of
the query is oblivious to the nature of the input. There-
fore, we do not require specialized operators that support
removing or updating tuples at any given time, as is needed
for incremental view maintenance. Further, in contrast to
deferred view maintenance, we never need to materialize the
full stream inputs. This greatly reduces the storage cost of
stream processing. In the used CTE of Figure 2 in pipeline
2 of Figure 4, e.g., we would insert the tuple into the hash
table of the grouping operator and update the aggregate
accordingly. While in this simple query the overhead of up-
dating the result tuple is negligible, this is not the case for
more complex queries. Consider, e.g., the query plan for the
full query displayed in Figure 4. The query still is rather
simple; however, fully processing new tuples in this query is
not. Inserts into pipeline 2 would trigger a recalculation of
the join in pipeline 5. Since we do not inherently support
updates in and deletes from join build sides in our system,
the other event stream would have to be fully reprocessed.
This basically requires us to run steps 7 to 19 for every
insert if we process all tuples fully. Once the tuple is ma-
terialized within the first pipeline breaker, finalizing query
processing when the query result is required is possible by
running the remaining steps for the other pipelines. We will
use the query in Figure 4 as a running example throughout
this paper, assuming stations to be a regular database table.

This approach benefits from Umbra’s novel state machine
approach to query processing wherein we can stop and delay
processing after any of the steps enumerated in Figure 4,
and even run multiple input pipelines independent from one
another. We use the remainder of this section to outline the
supported queries, the different phases of the maintenance,
and the integration into regular database query processing.

⨝

Ungrouped stream in output
R

⨝

All streams are grouped

Γ

S
⨝
Γ

Ungrouped stream-stream join
S S

⨝

Join of grouped streams

Γ Γ

Infeasible Supported

SR

S

S

Figure 5: Supported and infeasible queries for con-
tinuous views. Streams are marked S and regular re-
lations R. Pipelines containing streams are dashed.
Subtrees containing no streams are not restricted.

3.2 Supported Queries
Similar to SPEs, our system restricts the queries it sup-

ports to protect the user from undesired side effects, such
as state explosion and ambiguous query results. In the fol-
lowing section, we describe the rules for queries in Umbra.
Moreover, we offer an overview of the supported queries in
other systems.

3.2.1 Umbra
For Umbra, Figure 5 visualizes and summarizes the most

important rules that we motivate in the following section.
Input Pipelines. We require the first pipeline breaker of
every stream input to be a grouping operator, as shown in
the first row of Figure 5. This reduces the risk of state explo-
sion compared to allowing arbitrary pipeline breakers. Most
pipeline breakers, like sorting or join build-sides, would still
materialize at least parts of the stream leading to memory
shortages that would impact the performance of the system.
As the grouping itself is mostly oblivious about its input, it
is still possible to query the entire stream by grouping for a
key if this is desired by the user. This would, however, lead
to the entire stream being materialized.
Transactions. For us, streams are inherently not transac-
tional. Keeping streams in a transaction would mean that
once an analytical query is started within another trans-
action, newly arriving stream tuples would not qualify for
this query. The user, however, will always expect to see the
current state of the stream, independently of the current
transaction. We still want to isolate the continuous view
from changes to regular tables. This isolation is necessary
to guarantee that previously reported join results are not in-
validated by later arriving tuples. Consider, e.g., a join as in
the first row of Figure 5. Removing a row from the relation
on the left-hand side would mean that results reported for
that tuple as join partner are no longer valid. This would
lead to ambiguous and even inconclusive results for the user,
which we want to prevent. To achieve this isolation without
requiring transaction handling, a continuous view reads all
committed changes at creation time and uses exactly this
state of the database throughout its lifetime. This isolation
furthermore allows us to run pipelines not involving streams
only once and keeping the results cached. In essence, this
means views read the committed state of all relations once
at creation time [39].

2623

Table 1: Comparison of stream processing approaches. Dashes indicate the system’s documentation either
directly states a feature is not supported, or it does not contain enough information to indicate support.

Stream Processing Engines In-Database Stream Processing

Aspect Flink
[8]

Spark
Structured

[50]

Storm
Trident

[46]

Trill
[10]

Saber
[25]

PipelineDB
[42]

DBToaster
[24]

Umbra

Version 1.10 3.0.0 2.2.0 2019.9.25.1 7be036c 1.0.0 2.3 -
Stream Deletes/Updates - - - - - - Yes -
Early Results Limited Limited Windowed Yes Windowed Yes Yes Yes

Historic Data External
External
read-only

External
read-only

External
read-only

-
Internal
w/ Postgres

External
read-only

Internal

Scale-Up Yes Yes - Yes Yes Limited - Yes
Scale-Out Yes Yes Yes - - - - -
Aggregates Extensive Basic Extensive Extensive Basic Extensive Basic Extensive

Windowing
Built-in
support

Built-in
support

Built-in
support

Built-in
support

Built-in
support

Built-in
support

Using
GROUP BY

Using
GROUP BY

Stream-
Joins

Equi Yes Yes∗ Batchwise Yes Windowed Yes‡ Yes Yes‡§

Theta - Yes∗ - - Windowed Yes‡ Yes Yes‡§

Outer Equi Windowed∗† Batchwise† Yes† - Yes†‡ - Yes†‡§

Semi Yes - - - - Yes†‡ Yes Yes†‡§

Anti Limited - - Yes† - Limited†‡ Yes Yes†‡§

∗Only unaggregated streams †Single direction ‡No stream-stream joins §Restricted only for ungrouped streams

Joins. Streams are often problematic for joins, and most
SPEs, therefore, restrict joins in some way. Joins of un-
bounded streams without windowing can lead to a state ex-
plosion as both sides would need to be fully materialized to
ensure join correctness. While there are viable solutions for
this problem in many SPEs, in the form of windowed joins,
we want to allow queries spanning entire streams. We plan
to enable windowed processing based on algorithms for per-
sisted data [30] in a future version. Since even non-blocking
joins like the XJoin [47] are not designed to handle un-
bounded inputs, we ensure that streams are on the probe
side if only one input depends on a stream. This way, we
never have to materialize the stream and can simply probe
the pre-calculated build side. For stream-stream joins we
utilize the restrictions mentioned above, forcing streams to
be grouped. We further extend this restriction and require
both inputs of a stream-stream join to be grouped as seen
on the bottom of Figure 5. When joining only previously
grouped streams, we can ensure that we do not report join
results that would later be invalidated by new tuples arriv-
ing on either side, again preventing inconclusive results in
the view. We do not restrict joins between regular tables.

3.2.2 Other Approaches
To better illustrate how the rules motivated above com-

pare to existing systems, Table 1 provides an overview of
natively supported features of similar stream processing ap-
proaches. We group the approaches into specialized SPEs
and stream processing in the context of databases. The ta-
ble is based on features described in the documentation of
the most recent release. While some of the described sys-
tems have additional restrictions and features, we believe
the table provides a good overview of those most important.

One can see that Umbra offers an extensive functional-
ity, especially for joins, second only to DBToaster. Further,
there is a notable difference in the focus of the systems.
While the SPEs focus on windowed queries with limited
join options, the in-database approaches offer only basic or
manual windowing. However, they support more complex
queries and even manage historic data internally. Umbra’s

restriction of joins only applies to ungrouped streams and
can be bypassed, e.g., by grouping for a key. On the down-
side, this will likely lead to a performance decrease. Informa-
tion in streams has to be condensed for analysis, and group-
ing is a common way to achieve that. Therefore, we argue
that requiring the grouping of streams does not gravely limit
the applicability of our approach. Queries without grouping
or aggregation, i.e., map-like or filtering queries popular for
SPEs, are also possible within Umbra. As these queries sel-
dom materialize their result, and early results in the form of
materialized views are therefore not of interest, we consider
them to be outside the scope of this paper.

3.3 Query Planning
Like all other tables and views, continuous views are cre-

ated using the regular SQL interface. This means we have
to enforce the aforementioned restrictions in the semantic
analysis of the statement and reshape the query plan ac-
cording to our needs. As a first step, we translate the query
representing our continuous view into an unoptimized log-
ical query plan. Performing a depth-first traversal of the
query plan, we remember for each operator whether its in-
put contains a stream, and if so, whether there is a grouping
in between. Given this mapping we modify the query plan
in a second traversal, taking steps for three operator types:
Group By. We again keep track of groupings, but this
time we remember if there is a grouping higher up in the
tree. Each time we encounter a stream input we ensure that
its parents contain a grouping, thus verifying we do not store
ungrouped streams.
Order By with Limit. Contrary to stream inputs, we en-
sure that the parents of sorting operators do not include a
grouping. As we require stream inputs to be grouped some-
where, we know that there is a grouping below. By doing
so, we avoid sorting ungrouped streams. Sorting operators
without a LIMIT clause are simply dropped per the SQL
standard. As Umbra, like many other systems, does not
guarantee tuples to be processed in scan order, scanning the
materialized result at query time will anyway lose the order.

2624

S

⨝
ΓR1

⨝
R2SORT

S

⨝
Γ R1

⨝
R2

1 2 3 4⨝
R2

R1
S

⨝
Γ R1

S

⨝
Γ

⨝
R2

Figure 6: Modifications performed on a query plan
prior to compilation. Streams are marked S and
regular relations R. Pipelines containing streams are
dashed. Red color marks the currently modified op-
erator. Removing unused sort (1), moving streams
to the probe side of joins (2 and 3) top down, and
finished plan (4).

Therefore, if a sorted result is desired, it has to be requested
when querying the materialized view.
Join. Joins require the most intrusive modification of the
query plan. These depend on the order and stream contain-
ment of the join inputs. We say an input pipeline contains a
stream if there is a stream input somewhere upstream of the
pipeline. If no input contains a stream, we leave the join un-
modified. When both inputs have a stream, we ensure that
both streams have a grouping operator between the join and
the stream input using the pre-calculated containment map.
In cases where only one input contains a stream, we try to
modify the query plan to have the stream on the probe side
of the join, independent of grouping. This allows us to later
pre-calculate the build side and rerun the join for changed
input with little overhead. While this is easy for simple un-
correlated joins independent of the join type, switching the
input is not always possible. For correlated joins, e.g., only
some cases can be unnested in a way that supports switch-
ing the inputs. When switching is not possible, we again
simply reject the view.

As the query of our running example is too simple to show
all these modifications, we show them in a more complex
plan in Figure 6. As a first step, the order by without a limit
is removed (1). Afterward, we modify both joins to have
the streams on the probe side (2 and 3). Note that in 3 ,
the join is modified even though there is no direct stream in-
put, only one upstream through the other join. After enforc-
ing the aforementioned restrictions, we optimize the query
plan using Umbra’s optimizer, ensuring the restrictions are
not violated by optimizations.

3.4 Code Generation
After adapting the logical query plan for a continuous

view, we look at the code generation for the identified phases
of maintenance. As outlined in Figure 1, we distinguish three
different tasks: The view initialization, handling stream in-
serts, and query evaluation. Each of these tasks consists
of individual steps of pipelines, like those described in Fig-
ure 4. In general, each pipeline of a query plan is mapped
to exactly one of these tasks. In the following sections, we
will refer to the pipelines as follows:
Static Pipeline: A pipeline that has no stream input, ei-
ther directly or through one of its child pipelines (pipeline 1
in our example). These pipelines’ steps are handled by the
view initialization.

In
it

ia
li

za
ti

on
In

se
rt

Q
ue

ry

cleanup thread-local hash tables 13

setup thread-local hash tables 10

thread-local aggregation 11

merge thread-local hash tables 12

setup global hash tables 1

cleanup thread-local hash tables 5

setup thread-local hash tables 2

thread-local aggregation 3

setup thread-local hash tables 6

setup thread-local hash tables 14

4merge thread-local hash tables

cleanup thread-local hash tables 9

setup thread-local hash tables 6

merge thread-local hash tables 8

cleanup thread-local hash tables 17

merge thread-local hash tables 16

setup thread-local hash tables 14

setup thread-local scan and join 18

thread-local join 19

P
ip

el
in

e
2

thread-local aggregation 7

thread-local aggregation 15

clear global hash table n

P
ip

el
in

e
4

Figure 7: Generated callbacks for initialization, in-
sert handling, and query evaluation for the running
example. Colors, steps and step numbers are con-
sistent with the query plan shown in Figure 4. n
denotes a new step required for rebind.

Stream Pipeline: A pipeline that directly processes a
stream input (pipelines 2 and 4).
Upper Pipeline: A pipeline that has an indirect stream
input, used for query evaluation (pipelines 3 and 5).

To better illustrate the generated callbacks discussed with-
in this section, we summarize the steps involved in Figure 7.

3.4.1 Initialization
After having established the fundamental logical compo-

nents of each pipeline, we describe which steps have to be
run at view initialization, i.e., at view creation time. Based
on a query plan modified according to the rules described
in Section 3.3, we can prepare the view. The initialization
consists of 2 main tasks: (1) processing static pipelines, and
(2) preparing all stream pipelines for inserts. Below, we de-
scribe these steps in theory and using our running example.
(1) As discussed before, we do not want changes to the
view’s table inputs to be propagated to the view. There-
fore, we can calculate the results for all pipelines affected
only by non-stream inputs exactly once. By doing this at
view creation time, we immediately gain independence from
the underlying database tables as we cache the results in
memory. As a first step, we generate the code for the global
setup 1 . In the following step, we handle all steps of static
pipelines. One can easily see that static pipelines always
form subtrees in the views query plan, with the root be-
ing the operator where the pipeline intersects with a stream
or upper pipeline (pipeline 1). Each of these subtrees is
handled as it would be in regular query processing, in a left-
to-right bottom-up fashion. For our example, this means
generating code for steps 2 to 5 .
(2) In addition to executing static pipelines, we also initial-
ize all stream pipelines. Delaying pipeline initialization to
the insert callbacks would drastically increase the insert time
for a few tuples. For regular queries, Umbra ensures that
there is exactly one worker thread accessing a local state
instance. Currently, we cannot keep this strict worker-to-
state mapping for performance reasons, and therefore have
to be aware of possible race conditions. Consider, for ex-
ample, a second insert callback arriving at a pipeline that
is currently being initialized. At this point, an insert might
be performed for a not fully allocated hash table, resulting
in a lost tuple, or worse, a corrupt memory access. In our
example we have two stream pipelines, pipelines 2 and 4,
and therefore generate code for steps 6 and 14 .

2625

3.4.2 Insert Handling
Handling inserts is the most performance-critical part of

the view’s maintenance, as this part is performed for every
single tuple upon arrival. Therefore, we want this step to
execute as little code as possible by only running the thread-
local execution. We modify the local execution code slightly
to process single tuples instead of morsels. This way, we
can later call this step in a callback fashion for each inserted
tuple. However, as inserts in Umbra are processed morsel-
wise, this will still lead to morsel-wise processing of updates
for larger inserts. The callback will then be triggered for
each tuple within the morsel. These callbacks are generated
for each stream pipeline independently. As we have two
stream inputs for our example in Figure 4, we also generate
two callbacks consisting of steps 7 and 15 respectively.

3.4.3 Query Evaluation
Finally, we need to generate the code to combine the

cached static pipelines and the dynamic stream pipelines to
obtain the query result. This step is again composed of two
main parts: (1) processing all upper pipelines, and (2) reset-
ting the view’s internal state to be ready for the next query.
(1) As a first step, we want to execute the merge phase
of all stream pipelines. This makes all locally held results
available for the upper pipelines using the global state. Ad-
ditionally, we reset the stream pipelines by running the local
cleanup and initialization. This way we make the local state
available for new inserts as fast as possible. For our run-
ning example this translates to steps 8 , 9 , and 6 , as
well as 16 , 17 , and 14 , in that order. After these steps
have been completed, we can run all upper pipelines as if
they were a separate query. In our running example, this
includes pipelines 3 and 5, and therefore, steps 10 to 13 ,
as well as 18 and 19 . Finally, we generate code to store
the view’s query result, similar to a materialized view. For
one thing, this allows us to compare different versions of the
view with one another. Furthermore, slightly outdated ver-
sions of the view can then be read without having to run
the query evaluation if requested.
(2) After materializing the view’s current result, we have
to reset the internal state. We cannot, however, clean up
and reinitialize the global state as we did for the local state.
The global state still holds all cached results for static and
stream pipelines, which would be lost at a full reset. For our
example, we would want to avoid rebuilding the build side of
the join between pipelines 1 and 5. Most operators already
provide some functionality for such a reset in the form of an
operator rebind, normally used for recursive queries. We can
safely rebind all operators that exclusively belong to upper
pipelines, i.e., all except those that are top-level operators
of stream pipelines and static pipeline trees. Further, we
reset all join operators that have a stream pipeline on the
build side, e.g., the join between pipelines 3 and 5 (n in
Figure 7).

Resetting states is necessary to prevent tuples from being
processed multiple times for the same query: In between
queries, all tuples are held in local hash-tables, such as the
grouping of the used CTE of our example. If we do not
clear the local hash table after a query, the tuples would be
included in both the local and global state at the same time.
The next query would then again merge the local state into
the global state and, thereby, include the tuples twice.

Algorithm 1: Insert handling

input : ContinuousView v, Queue q, Mutex m, Tuple t
1 if m.lock() successful then
2 if t2 ← q.dequeue() successful then

/* execute matching insert callback of Figure 7 */
3 processTuple(t2)

4 end
5 processTuple(t)
6 v.hasNewInput ← true
7 m.unlock()

8 else
9 q.enqueue(t)

10 end

3.5 Runtime Integration & Optimizations
Now that we have the required code fragments to handle

continuous view maintenance, we have to integrate them
into our database runtime. The initialization is executed
once at view creation time. Next, the view is prepared to
handle inserts through the aforementioned callbacks. We
register the callbacks with each stream input. From there
on out, each insert into the stream triggers the callback and
handles the local processing of the tuple. Queries to the
view work in a similar fashion: Each query triggers the ma-
terialization callback and writes the results to a temporary
table. Materializing the results is necessary to have a con-
sistent state of the view within a query, e.g., for self-joins.
This materialized result is scanned for the actual query pro-
cessing of the database as if it were a regular table.

The described integration is limited in two ways: First,
local processing is not thread-safe as multithreaded opera-
tions on the same instance of the local state were not in-
tended for Umbra. Without controlled access to the local
processing, i.e., through a lock, we could experience race
conditions for some operators. Second, query processing re-
sets the local state of all stream pipelines. Hence, querying
requires an exclusive lock to prevent inserts during query
processing. This lock, however, can be released as soon as
the local states have been reset. Preliminary experiments
showed that acquiring the lock is often costlier than the in-
sert itself, and delays to inserts are mainly introduced by
queries. To reduce these delays, we introduce a lock-free
queue in front of the local state. Newly arriving tuples are
buffered in this queue when either a query or another insert
is blocking the local state.
Insert Handling. Algorithm 1 describes the modified in-
sert handling: We again first try to obtain the lock for the
view. If another thread holds the lock, we enqueue the tu-
ple in the buffer queue and retry for the next tuple to be
inserted. As there can be arbitrarily large gaps between
queries, the queue could grow indefinitely when we empty it
only at query-time. Therefore, we need to empty the queue
between queries. As we do not want to integrate a dedi-
cated background worker within our system, which would
introduce scheduling overhead, the queue is emptied by in-
serts. Once an insert has acquired the lock, it addition-
ally dequeues tuples from the queue and processes them.
While dequeuing a single tuple proved sufficient in our ex-
periments, dequeuing multiple tuples or the whole queue is
possible as well.
Query Evaluation. We consider all previously inserted
tuples for queries. Therefore, we empty the queue whenever
a query arrives. To prevent race conditions from inserts,

2626

we redirect all tuples to the queue until the local states of
stream pipelines have been reset. If no tuples have arrived
since the last materialization, the processing is skipped, and
the last materialized result is used instead.

3.6 SQL Interface
After having described the inner workings of our contin-

uous views, we briefly show how they are created using the
SQL interface of our database system. To minimize the nec-
essary changes in the SQL dialect all required operations
can be performed using regular statements.

Creating Streams. As a first step, the user needs to create
the streams that will be evaluated in a continuous view.
Streams can be created as foreign tables:

CREATE FOREIGN TABLE stream name (...)

SERVER stream

We require that no server named stream can be created.

Creating Continuous Views. After the required streams
have been created, users can create continuous views using
simple CREATE VIEW statements:

CREATE VIEW continuous view name AS query

During the semantic analysis of the query, we check whe-
ther any of the queried relations is a stream. If so, we auto-
matically create a continuous view, else we create a regular
view. All modifications and checks described in Sections 3.2
and 3.3 are only performed for continuous views.

Inserting Data. Inserts can be expressed as regular INSERT
statements, and streams can be copied from CSV using COPY:

INSERT INTO stream name {VALUES (...)| query}

COPY stream name FROM ’filename’ CSV

query can be an arbitrary SQL query that does not con-
tain the stream itself. It is possible to attach new continu-
ous views and queries to streams that are currently fed with
data, but those only see tuples arriving after their creation.

3.7 Updates
Up until this point, we only discussed inserts into streams,

not changes to the static tables involved. Both updates and
deletes to tables exclusively used in upper pipelines, like sta-
tions, can be realized at any time. To incorporate changes
to these tables, we simply reevaluate all static pipelines
affected. For our running example, this means rerunning
all steps in the initialization callback that correspond to
pipeline 1 (2 to 5) and replacing the build side of the
top-most join with the new stations. The next time the
view is queried, all stream tuples are then evaluated using
the changed tables, guaranteeing consistent results for every
materialized state.

Changes to static tables and subtrees joined directly with
stream pipelines (e.g., top right of Figure 5) are not sup-
ported. In order to support changes to such tables, we would
have to either (a) keep all stream tuples materialized to
reevaluate the join correctly, or (b) join stream tuples with
the state of tables at arrival time. Case (a) would lead to ex-
tensive memory consumption and high refresh times, which
is exactly what we aim to avoid with our continuous views.
While case (b) is used in some systems, like PipelineDB,
we refrain from using this approach. The results of the view
query would otherwise be dependent on the processing order

of stream events and table updates, leading to inconclusive
and inconsistent results. Like many other SPEs (c.f. Ta-
ble 1), we consider streams to be append-only. Therefore,
we do not support deletes or updates of stream tuples.

3.8 Fault Tolerance
While it is not the focus of our paper, we want to briefly

address fault tolerance. For continuous views, we can utilize
the integration into Umbra, and the fact that we use the SQL
interface to interact with the database. This way, we have
access to Umbra’s logging mechanism and can replay not
fully processed tuples in case of an error. However, replay-
ing the full stream in case of an error can lead to a consider-
able delay during recovery. To reduce the number of tuples
to be replayed, we can combine this with checkpoints which
are common in SPEs for recovery, e.g., in Flink. Here, we
can utilize our custom memory management and the separa-
tion of global and local state. Global state is only modified
during materialization and, therefore, captures a consistent
state of all operators between queries. We can take regular
snapshots of the global state as checkpoints and restore the
last snapshot in case of a failure. This way, only tuples that
arrived since the last materialization have to be replayed.

Another aspect we want to mention is how our strategy
can deal with a high load. Many SPEs utilize publish-
subscribe-like asynchronous interfaces to accept data, allow-
ing them to delay processing in case of a high load without
influencing the inserter. The interface of our continuous
views, on the other hand, is SQL-based and, therefore, syn-
chronous. We offer some load balancing in the form of the
lock-free queue described in Section 3.5. The queue can help
overcome short spikes, but, for a prolonged high load, it can
grow indefinitely. This can lead to a decrease in the overall
system performance. As we do not consider load shedding,
which would mean losing information, Umbra should not be
used in a completely standalone fashion when an extremely
high load is expected for a long time. Instead, we envision
it integrated into an ETL scenario with an external data
collection engine, as described by Meehan et al. [32].

3.9 Portability
While our described implementation of continuous views

is optimized for Umbra’s execution engine, our approach
is in no way limited to Umbra. Continuous views, as de-
scribed above, can be realized in many database systems
using stored procedures, auxiliary tables, and materialized
views, albeit less optimized than our fully integrated ap-
proach. To demonstrate the feasibility of such an integra-
tion, we implemented continuous views in PostgreSQL us-
ing its procedural languages.1 Our implementation parses
view queries and generates SQL statements for keeping con-
tinuous views up-to-date. When inserting new tuples, des-
ignated insert functions update the aggregates instead of
materializing the stream.

As in Umbra, we distinguish between static, stream, and
upper pipelines. Static pipelines are evaluated and cached
during initialization. For stream pipelines, we generate in-
sert functions that incrementally update the previous re-
sults in an auxiliary table. A single view combines all upper
pipelines and makes the query result available to users on
refresh. In contrast to eager maintenance, the update logic
for our continuous views can be generated automatically.

1Available at: https://github.com/tum-db/pg-cv

2627

https://github.com/tum-db/pg-cv

Table 2: Continuous view AIM queries, slightly sim-
plified for readability. α ∈ [0, 2], β ∈ [2, 5], γ ∈ [2,
10], δ ∈ [20, 150], t ∈ SubscriptionTypes, cat ∈ Cate-
gories, v ∈ CellValueTypes

In evaluation: α = 2, β = 2, γ = 4, δ = 25, t = 2, cat = 1, v = 2

Q1 SELECT avg(t duration) FROM (
SELECT sum(duration) AS t duration FROM events
WHERE week = current week() GROUP BY entity id
HAVING count(local calls) > α)

Q2 SELECT max(max cost) FROM (
SELECT max(cost) AS max cost FROM events
WHERE week = current week() GROUP BY entity id
HAVING count(*) > β)

Q3 SELECT sum(t cost) / sum(t duration) AS cost ratio
FROM (
SELECT sum(cost) AS t cost, sum(duration) AS t duration,
count(*) AS num calls FROM events

WHERE week = current week() GROUP BY entity id
) GROUP BY num calls LIMIT 100

Q4 SELECT city zip, avg(num calls), sum(duration calls)
FROM (
SELECT entity id, count(*) AS num calls,
sum(duration) AS duration calls FROM events

WHERE NOT long distance AND week = current week()
GROUP BY entity id
HAVING count(*) > γ AND sum(duration) > δ

) e, customers c WHERE e.entity id = c.id GROUP BY city zip

Q5 SELECT c.region id, sum(long distance cost)
AS cost long, sum(local cost) AS cost local

FROM events e, customers c
WHERE e.entity id = c.id AND week = current week() AND
c.type = t AND c.category = cat GROUP BY c.region id

Q7 SELECT sum(cost) / sum(duration)
FROM events e, customers c WHERE e.entity id = c.id AND
week = current week() AND c.value type = v

4. EVALUATION
First, we evaluate our approach for multiple parallel stream-

ing queries using the AIM benchmark, comparing it to an
SPE and to an in-database solution. To show real-world
performance, we use full query round-trip times on the AIM
benchmark. To highlight the raw analytical performance, we
further evaluate it against competitors on a TPC-H work-
load modified for streaming in Umbra and in PostgreSQL on
isolated queries. Subsequently, we evaluate the load balanc-
ing capabilities using a microbenchmark. We will refer to
continuous views within Umbra as Umbra throughout this
section. All systems, approaches, and experiments in this
section are run on a machine equipped with an Intel Xeon
E5-2660 v2 CPU (2.20 GHz) and 256 GB DDR3 RAM.

4.1 AIM Benchmark
The AIM telecommunication workload, as described in [7],

has been previously used to evaluate the performance of
modern database systems against SPEs and specialized so-
lutions [23]. We want to extend this evaluation with the
comparison of stream processing in databases, in the form
of our continuous views, with SPEs. As a second approach
to stream processing using continuous views, we choose the
open-source PostgreSQL extension PipelineDB [42].

In the AIM Benchmark, calls for a number of customers
are tracked as marketing information. On these calls, an-
alytical queries are run to make offers or suggest different
plans to certain customers. In contrast to [23], we do not
want to store all possible aggregates for ad-hoc queries and
instead only aggregate what is necessary for the AIM queries
specified in [7]. Table 2 shows the AIM queries modified

for use as a continuous view. As we cannot express the
original query 6 as a single view we omitted it from all
experiments. Furthermore, as neither PipelineDB nor our
continuous views support changing view queries at runtime,
we select one value by random for each query parameter
(α, β, . . .) from the range specified in Table 2.

4.1.1 Configuration
Both the client and the server run on the same machine

and, to recreate the setup of [23], the client generates events
using one thread and queries using another thread. For the
experiments, we vary the number of threads of the server.
When speaking of number of threads in the remainder of this
section, we always mean the number of server threads. The
number of client threads remains untouched. The database
is initialized with 10M customers unless stated otherwise.
We implement the approaches as follows:
Flink. To represent classical SPEs, we use Apache Flink [8].
As the internal state of Flink can only be accessed by point
lookups, and to recreate the setup of [23] as closely as possi-
ble, we implement a custom operator for the workload. Our
custom operator keeps track of the required aggregates per
customer (e.g., number of local calls this week), and queries
are run exclusively on these aggregates. While Flink can
handle all individual queries on its own, we use the cus-
tom operator to process all queries at once. The operator
further allows us to share aggregates between queries. All
experiments are performed on Flink 1.9.2.
PipelineDB. We use the latest available version of Pipe-
lineDB (short PDB), 1.0.0, and integrate it into PostgreSQL
11.1, both in default configuration. We slightly adapt the
queries in Table 2 to fit the syntax of PipelineDB. Pipeline-
DB requires at least 18 worker threads, thus we cannot limit
the total number of threads. Instead, we vary the number
of threads per query (max parallel workers per gather). In
our experiments PipelineDB inserts timed out occasionally,
but this did not limit the reported query throughput. How-
ever, because of this, we consider the numbers reported for
PipelineDB to be an upper bound.
Umbra. For Umbra we create the continuous views as spec-
ified in Table 2. The number of threads maps to Umbra’s
worker threads. In addition, we run a single thread that
handles all connections to the database and is not involved
in query processing.
Unless stated otherwise, all experiments for both Umbra and
PipelineDB are measured using the pqxx library to connect
to the systems. Events are generated inside the database.
Throughput averages are calculated over three minutes of
execution based on full query round-trip times.

4.1.2 Experiments
Concurrent Access. First, we look at the overall per-
formance of the systems under concurrent write and read
accesses with an increasing number of threads. Each query
in Table 2 is executed with equal probability, and inserts
are performed at 10K and 50K events per second respec-
tively. We report the results in Figure 8. Flink scales nicely
with an increasing number of threads but keeps behind both
PipelineDB and Umbra. For PipelineDB we expected to
see little scale-up as most of the maintenance is handled by
background workers, which we could not limit to the given
thread counts. However, the throughput is still very unsta-
ble, most likely attributable to the aforementioned problems

2628

10K events/sec 50K events/sec

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
101

102

103

number of threads

qu
er

ie
s/

se
c

[l
og

]

Flink
PipelineDB
Umbra

Figure 8: Concurrent throughput of queries and in-
serts with increasing number of threads.

104

105

106

1 2 3 4 5 6 7 8 9 10
number of threads

ev
en

ts
/s

ec
 [

lo
g]

Flink
PipelineDB
Umbra

Figure 9: Isolated insert
throughput with increas-
ing number of threads.

Table 3: Average query
throughput in queries
per second without con-
current writes

SF Umbra PDB Flink

Q1 1 10748 6725 40
Q2 1 10761 7274 46
Q3 1 10677 6123 19
Q4 1 10710 125 17
Q5 1 10501 6987 13
Q7 1 10709 7957 26
Q1 10 11161 208 4
Q2 10 11171 991 4
Q3 10 11061 100 2
Q4 10 11074 124 2
Q5 10 10835 10619 1
Q7 10 11169 9582 2

with inserts. For 50K inserts per second PipelineDB perfor-
mance degrades with increasing thread count. This is likely
caused by interference between insert and query threads.

Since Umbra can handle most of the queries’ workload
single-threaded, we do not notice a scale-up beyond three
threads. Despite not utilizing all threads, we are still able
to outperform the competitors consistently, in parts by over
an order of magnitude. For higher insert rates, initial scaling
is better, since the inserts take more time, and thus parallel
execution of queries has a larger impact.
Insert Throughput. As the goal of our continuous views
is to handle insert-heavy workloads, we further investigate
the isolated insert throughput without concurrent queries.
While we do not issue queries, we still create the correspond-
ing views for Umbra and PipelineDB and track all required
aggregates for Flink. For both Flink and Umbra, we report
the throughput under full load. For PipelineDB, we report
the highest measured throughput. The results are shown in
Figure 9, again for an increasing thread count. PipelineDB’s
throughput peaks at around 50K events per second consis-
tently, which seems to be the limit of the non-scaling back-
ground workers. Both Flink and Umbra scale well with an
increasing thread count for up to 5 threads. Flink does not
scale beyond 5 threads. This can be expected as Flink is
optimized for scale-out, not for multiple concurrent queries
on a single node. However, Flink still offers the highest in-
sert rates. Umbra scales better for higher thread counts and
achieves insert rates of more than 1.5M events per second.
Query Throughput. For the final AIM experiment, we
look at the isolated read throughput for individual queries.
To report actual query results, we initialize the aggregates
with random values for Flink and 10K random events for
both PipelineDB and Umbra. We report the average query
throughput for all individual queries, exemplary for two

threads, in Table 3. As the reported query throughput is
for full query round-trips for both PipelineDB and Um-
bra, we only see a slight difference for most queries. The
majority of the time is spent in parsing and sending the
query, not in execution. Still, Umbra is able to outper-
form PipelineDB consistently throughout all queries. As
Flink does not materialize full query results, it needs to
calculate parts of the query on the fly, thus staying be-
hind for all queries. When increasing the number of cus-
tomers to 100M (SF=10), we can see the advantages of re-
sult caching for Umbra and PipelineDB. While Flink de-
grades linearly, PipelineDB’s throughput stays constant for
queries not grouping by customer, and Umbra’s throughput
stays constant for all queries.

4.2 TPC-H Benchmark
After evaluating our strategy on a concurrent streaming

benchmark, we compare it to modern view maintenance us-
ing DBToaster [24], and the scale-up SPE Trill [10], on a more
analytical workload based on TPC-H. We configure all sys-
tems to treat lineitem as a stream and all other relations to
be static. For our experiments, we choose queries 1, 3, and 6,
where most of the work of our approach happens at insert
time. For these queries, all systems should act similarly.
Further, we choose query 15 as a grouped stream-stream
join and query 20 to represent queries where the majority
of analytical evaluation is performed on a grouped stream.
As neither Trill nor DBToaster support order by or limit
in their streaming API, we remove all order by and limit
clauses from the queries. We rewrite queries for our com-
petitors to fit their syntax and feature set where necessary.

4.2.1 Configuration
We configure and implement our competitors as follows:

DBToaster. We use DBToaster v2.32 and allow it to han-
dle streams as append-only using the IGNORE-DELETES flag.
Further, we distinguish two versions for our experiments:
The query-optimized DBTQ performing full refreshes, and
the insert-optimized DBTI. DBTI is allowed to perform only
partial refreshes at insert time (EXPRESSIVE-TLQS flag).
Trill. We use Trill v2019.9.25.13 and implement all queries
using the LINQ-style interface. We only operate on cached
inputs for both streams and tables and pre-calculate all
joins and subtrees not involving lineitem. Both tables and
streams are configured to have an infinite lifetime to keep
them in the same join-window. We optimized join order and
execution hints to the best of our knowledge.
Flink. We implement the queries in Flink 1.9.2 using the
BatchTables API and the SQL interface.
UmbraD. We implement deferred maintenance in Umbra
based on full query evaluation at refresh.

As the semantics of concurrent queries is quite different
for all approaches, we focus on insert throughput of streams
and view refresh times. For all experiments, we report the
average of 10 runs after performing 3 warm-up runs.

4.2.2 Experiments
Insert Throughput. We compare the insert throughput of
all systems when inserting the lineitem table once. As the
DBToaster release currently only offers a single-threaded ex-
ecution, we measure all systems using one thread. To obtain

2
https://dbtoaster.github.io/download.html

3
https://www.nuget.org/packages/Trill/

2629

https://dbtoaster.github.io/download.html
https://www.nuget.org/packages/Trill/

SF1 SF10

Q1 Q3 Q6 Q15 Q20 Q1 Q3 Q6 Q15 Q20

0

10

20

30

M
 t

up
le

s/
se

c

DBTI

DBTQ

UmbraD

Trill

Umbra

Figure 10: Insert throughput against TPC-H base-
lines for scale factors 1 and 10.

comparable results, we hold data in a cached stream buffer
for Trill. For both DBToaster and Umbra, we only measure
processing time without input parsing. We cannot easily
recreate this processing-time-only setup in Flink, therefore
we exclude it from this experiment. To even the scores, we
add the cost of a single view refresh to all systems that do
not provide the result immediately. As the runtime for query
15 in DBTQ exceeded reasonable limits for the full table, we
report throughput based on a 1000-element sample. The
throughput, displayed in Figure 10, is largely independent
of the scale factor with minor fluctuation, e.g., at Q6. Over-
all, Umbra and Trill offer the highest throughput, with a
slight advantage for Umbra. Both stay ahead of both DBT
variants independent of query and scale factor. UmbraD

stays ahead of DBToaster for most queries and can even
outperform Trill for Q1. For the simple queries Q1 to Q6,
both DBT approaches perform similarly. However, partial
refreshes pay off for DBTI for Q15 and Q20.
Scalability. To investigate the scalability of our approach,
we repeat the insert experiment above for scale factor 10
with multiple threads. Figure 12 reports the average scal-
ing relative to single-threaded performance for each system
based on full query execution times. Flink and both Umbra
variants scale nicely, Flink even shows near-perfect scaling
for Q6. However, we see little improvement for Trill. We
found that, while simple queries like Q6 scale in Trill, for
complex queries, the majority of work still happens single-
threadedly, and we see negative scale-up. We attribute this
to the complex nature of the queries and the introduced
scheduling overhead in multi-threaded execution.
Traditional View Maintenance. Finally, we want to look
at the trade-off space between traditional view maintenance
and continuous views on a common runtime. We imple-
ment continuous views in PostgreSQL, as described in Sec-
tion 3.9. Further, we manually implement eager and batch-
wise incremental views for the TPC-H queries and include
PostgreSQL’s deferred views. Incremental views buffer 10K
tuples before propagating changes. Neither eager nor con-
tinuous views store any input tuples. We again insert all
tuples of lineitem for scale factor 1. As we measure query
round-trip times, we insert chunks of 1K tuples to reduce
overhead. Figure 11 reports the insert and query through-
put of the approaches. For inserts, continuous views are
fastest overall, except for Q1, due to the high contention on
few groups. The lower throughput for deferred maintenance
for Q20 is caused by an index, which we need to maintain to
keep the refresh from timing out. For simple queries, like Q1
to Q3, continuous and eager views behave the same concep-
tually, as all processing occurs at insert time. The measured
difference in query throughput is only caused by the current

0

200

400

600

800

Q1 Q3 Q6 Q15 Q20

K
 t

up
le

s/
se

c

Batchwise

Continuous

Deferred

Eager

(a) Insert

1

100

10000

Q1 Q3 Q6 Q15 Q20

qu
er

ie
s/

se
c

[l
og

]

(b) Query

Figure 11: Comparison of continuous views with tra-
ditional views in PostgreSQL on TPC-H. Queries
consist of refreshing and fetching the result.

2

4

6

2 4 6 8

number of threads

sc
al

e-
up

Flink

UmbraD

Trill

Umbra

All

Q6

Figure 12: Scale-up of
Trill, Flink, and Umbra
views relative to single-
threaded performance.

0

1000

2000

3000

0 250 500 750 1000

K tuples processed

tu
pl

es
 i

n
qu

eu
e

Threads

2

4

6

8

10

Figure 13: Queue length
of a single continuous
view with varying num-
ber of threads.

PostgreSQL implementation of continuous views, wherein
we needlessly copy the result from the stream pipeline view
to the result view for simple queries. As expected, the eager
and incremental approaches offer the highest query through-
put. Nevertheless, even on PostgreSQL, continuous views
can offer up to a hundred refreshes per second without the
need of hand optimizing views, as is the case for eager views,
while still offering higher insert throughput on average.

4.3 Microbenchmark
Finally, we want to focus on the feasibility of our load

balancing, which cannot be seen in query-level experiments.
Configuration. We create a workload of one stream. Its
tuples comprise 6 integer values between 1 and 10,000. Views
group by a single key and calculate the sum of one column.
Experiment. To help with load spikes, our queue should
not grow indefinitely, as high memory consumption for the
queue could decrease the overall performance. A single view
creates a maximal load for the queue, as all concurrent in-
serts then focus on it. Hence, this is the worst case for
potential unlimited queue growth. We display the results of
this experiment in Figure 13. Queue length is reported after
every 100 inserts. The average queue length for 10 threads
seems to grow slightly after the initial spike. However, one
can see that it drops to near zero consistently throughout the
experiment. This could indicate the need for active mainte-
nance for even higher thread counts. However, please keep
in mind that this experiment represents the worst case. For
fewer threads, we only see a small initial spike at around 10K
to 50K tuples, with queue length scaling with thread count.
Overall the queue works as intended, accepting tuples in the
beginning when the load is high due to hash table groups be-
ing created. Once all groups have been created, the buffered
tuples are processed, and the queue empties again.

2630

5. RELATED WORK
To the best of our knowledge, we are the first system to

implement analytical views for high-velocity data with a spe-
cialized maintenance strategy. There is, however, extensive
previous work on materialized view maintenance, stream
processing, and continuous query evaluation. We will use
this section to summarize those most relevant to our work.

5.1 View Maintenance
Managing materialized query results in the form of mate-

rialized views is a well-studied problem [18,44]. Our continu-
ous views can be thought of as materialized views specialized
for streaming data, where full refreshes are only performed
at query time. Materializing parts of queries has been previ-
ously suggested by Mistry et al. [34] in the context of multi-
view optimizations. They share common parts of queries
between multiple views for more efficient maintenance. The
concept of reusing partial results has been extended to reg-
ular query processing [26,53].

Delaying the maintenance task has been previously de-
scribed in the form of both deferred maintenance [12] and
lazy evaluation [52]. In contrast to our approach, these sys-
tems need to have access to the changes to the base table, ei-
ther in the form of deltas or of auxiliary tables. Storing only
changes required for maintenance is known as incremental
view maintenance [6,16,49]. We apply similar techniques for
stream pipelines where incremental deltas are held in local
states and materialization in the global state. Incremental
view maintenance has been further optimized using hierar-
chical deltas by Koch et al. [24]. In contrast to our insert-
optimized approach, they optimize for query throughput,
mostly triggering full refreshes for every insert.

5.2 Stream Processing
Stream processing is a broad area of data processing,

spanning both dedicated systems and traditional databases.
We will focus on recent work and analytical systems.
Modern Stream Processing. There is a wide range of re-
cent work in dedicated stream processing engines, recently
surveyed by Zeuch et al. [51], but most systems are opti-
mized for stateless or simple stateful queries. To increase
performance, Grulich et al. [17] also utilize query compilation
for stream processing. Incremental updates, which we use
for data streams, are utilized by SPEs as well [1, 10, 35, 50].
To support aggregating queries in stream processing more
efficiently, some work proposes sharing state between long-
running queries [15, 28]. As many SPEs do not support
complex analytical workloads, dedicated solutions for more
stateful queries on data streams have been developed [7,10,
13, 19, 43]. While we know of no other work implementing
stream views with specialized maintenance for database sys-
tems, using views to speed up simple analytical queries over
streams [14, 49], as well as materializing continuous query
results [3] has been previously suggested. For analytical
streaming systems, custom query languages are common, as
shown in recent surveys [20, 27]. With our integration into
Umbra, we allow for stream processing using regular SQL
statements. Finally, accessing historic stream data with new
queries, as is possible by querying our continuous views, has
been described by Chandrasekaran et al. [11].
Stream Processing in Databases. Apart from dedicated
and stand-alone solutions for stream processing, recent work

has focused on integrating data streams in relational data-
bases and data warehouses [36, 48]. Jain et al. propose a
streaming SQL standard [21], an idea that has been fur-
ther refined by Begoli et al. [5] to allow a single standard
and simplify the usage of both tables and streams in SQL
statements. Meehan et al. [33] describe how stream pro-
cessing and OLTP transactions with isolation guarantees
can be combined in a single system. Others have made a
case for a greater need for in-database processing of sig-
nal streams [40]. There have also been some open-source
extensions to databases that allow for stream processing
within the database [42]. Most work for high-velocity data
processing focuses on the previously described maintenance
of materialized views. Nikolic et al. [41] further extend
higher-order incremental view maintenance to batches and
distributed environments, which are common in streaming
systems, e.g., in Spark [50]. They further outline the advan-
tages of pre-filtering and aggregation in these batches for
incremental maintenance, which we extend to join process-
ing. We apply this to the whole stream instead of batches
in our stream pipelines. Our work continues all these efforts
by describing an insert-optimized stream view completely
expressible with regular SQL statements.
Continuous Query Evaluation. Finally, our work touches
upon continuous queries. While continuous views are not
full continuous queries, the underlying concept of updating
the query result for arriving tuples and reporting intermedi-
ate results is similar. Continuous query evaluation [4,31,45]
focuses on keeping track of changes to an underlying query
like we do within the views. In contrast to our approach,
the goal is to alert users whenever the query matches de-
fined triggers. There has been some work on whole systems
dedicated to such monitoring and change detection [2,9,22].
While we currently do not support triggers, those could be
realized by periodic queries to the continuous views.

6. CONCLUSION
In this paper, we introduced continuous views, material-

ized views optimized for high-velocity streaming data. To
maintain these views, we introduced a novel split mainte-
nance strategy, performing parts of the query at insert time
and finalizing query processing when results are required.
We demonstrated the feasibility of our approach by inte-
grating these views into our state-of-the-art database sys-
tem Umbra, using the compiling query execution engine as
well as the query optimizer for fast and low-overhead main-
tenance. We explained how this integration allows users to
access stream results in analytical workloads and durable
state for queries on streams efficiently.

To demonstrate the capability of our views’ split mainte-
nance strategy, we compared it to modern stream processing
engines, as well as view maintenance strategies in both Um-
bra and PostgreSQL. Our approach outperforms the former
on analytical workloads and the latter on insert throughput,
often by an order of magnitude, creating an ideal fusion of
analytical query processing and high-velocity data.

7. ACKNOWLEDGMENTS
This project has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement

No 725286).

2631

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska,

U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. B. Zdonik. The design of the Borealis stream
processing engine. In CIDR, pages 277–289.
www.cidrdb.org, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture
for data stream management. VLDB J.,
12(2):120–139, 2003.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom. STREAM:
the Stanford stream data manager. In SIGMOD
Conference, page 665. ACM, 2003.

[4] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109–120, 2001.

[5] E. Begoli, T. Akidau, F. Hueske, J. Hyde, K. Knight,
and K. Knowles. One SQL to rule them all - an
efficient and syntactically idiomatic approach to
management of streams and tables. In SIGMOD
Conference, pages 1757–1772. ACM, 2019.

[6] J. A. Blakeley, P. Larson, and F. W. Tompa.
Efficiently updating materialized views. In SIGMOD
Conference, pages 61–71. ACM Press, 1986.

[7] L. Braun, T. Etter, G. Gasparis, M. Kaufmann,
D. Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos,
E. Levy, and N. Liang. Analytics in motion: High
performance event-processing AND real-time analytics
in the same database. In SIGMOD Conference, pages
251–264. ACM, 2015.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache Flink™: Stream
and batch processing in a single engine. IEEE Data
Eng. Bull., 38(4):28–38, 2015.

[9] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - A new class of
data management applications. In VLDB, pages
215–226. Morgan Kaufmann, 2002.

[10] B. Chandramouli, J. Goldstein, M. Barnett,
R. DeLine, J. C. Platt, J. F. Terwilliger, and
J. Wernsing. Trill: A high-performance incremental
query processor for diverse analytics. PVLDB,
8(4):401–412, 2014.

[11] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In VLDB, pages 203–214.
Morgan Kaufmann, 2002.

[12] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance.
In SIGMOD Conference, pages 469–480. ACM Press,
1996.

[13] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. R. Pietzuch. Integrating scale out and fault
tolerance in stream processing using operator state
management. In SIGMOD Conference, pages 725–736.
ACM, 2013.

[14] T. M. Ghanem, A. K. Elmagarmid, P. Larson, and
W. G. Aref. Supporting views in data stream
management systems. ACM Trans. Database Syst.,
35(1):1:1–1:47, 2010.

[15] L. Golab, K. G. Bijay, and M. T. Özsu. Multi-query
optimization of sliding window aggregates by schedule
synchronization. In CIKM, pages 844–845. ACM,
2006.

[16] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In SIGMOD Conference, pages
328–339. ACM Press, 1995.

[17] P. M. Grulich, S. Breß, S. Zeuch, J. Traub, J. von
Bleichert, Z. Chen, T. Rabl, and V. Markl. Grizzly:
Efficient stream processing through adaptive query
compilation. In SIGMOD Conference, pages
2487–2503. ACM, 2020.

[18] H. Gupta. Selection of views to materialize in a data
warehouse. In ICDT, volume 1186 of Lecture Notes in
Computer Science, pages 98–112. Springer, 1997.

[19] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg,
and G. Anderson. SASE: complex event processing
over streams (demo). In CIDR, pages 407–411.
www.cidrdb.org, 2007.

[20] M. Hirzel, G. Baudart, A. Bonifati, E. D. Valle,
S. Sakr, and A. Vlachou. Stream processing languages
in the big data era. SIGMOD Rec., 47(2):29–40, 2018.

[21] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Çetintemel,
M. Cherniack, R. Tibbetts, and S. B. Zdonik. Towards
a streaming SQL standard. PVLDB, 1(2):1379–1390,
2008.

[22] D. Kifer, S. Ben-David, and J. Gehrke. Detecting
change in data streams. In VLDB, pages 180–191.
Morgan Kaufmann, 2004.

[23] A. Kipf, V. Pandey, J. Böttcher, L. Braun,
T. Neumann, and A. Kemper. Scalable analytics on
fast data. ACM Trans. Database Syst., 44(1):1:1–1:35,
2019.

[24] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic,
A. Nötzli, D. Lupei, and A. Shaikhha. DBToaster:
higher-order delta processing for dynamic, frequently
fresh views. VLDB J., 23(2):253–278, 2014.

[25] A. Koliousis, M. Weidlich, R. C. Fernandez, A. L.
Wolf, P. Costa, and P. R. Pietzuch. SABER:
window-based hybrid stream processing for
heterogeneous architectures. In SIGMOD Conference,
pages 555–569. ACM, 2016.

[26] Y. Kotidis and N. Roussopoulos. A case for dynamic
view management. ACM Trans. Database Syst.,
26(4):388–423, 2001.

[27] N. Koudas and D. Srivastava. Data stream query
processing. In ICDE, page 1145. IEEE Computer
Society, 2005.

[28] S. Krishnamurthy, C. Wu, and M. J. Franklin.
On-the-fly sharing for streamed aggregation. In
SIGMOD Conference, pages 623–634. ACM, 2006.

[29] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In
SIGMOD Conference, pages 743–754. ACM, 2014.

[30] V. Leis, K. Kundhikanjana, A. Kemper, and
T. Neumann. Efficient processing of window functions
in analytical SQL queries. PVLDB, 8(10):1058–1069,
2015.

2632

[31] L. Liu, C. Pu, R. S. Barga, and T. Zhou. Differential
evaluation of continual queries. In ICDCS, pages
458–465. IEEE Computer Society, 1996.

[32] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and
J. Du. Data ingestion for the connected world. In
CIDR. www.cidrdb.org, 2017.

[33] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas,
U. Çetintemel, J. Du, T. Kraska, S. Madden,
D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and
H. Wang. S-Store: Streaming meets transaction
processing. PVLDB, 8(13):2134–2145, 2015.

[34] H. Mistry, P. Roy, S. Sudarshan, and
K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In
SIGMOD Conference, pages 307–318. ACM, 2001.

[35] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. In SOSP, pages 439–455. ACM, 2013.

[36] K. Nakabasami, T. Amagasa, S. A. Shaikh, F. Gass,
and H. Kitagawa. An architecture for stream OLAP
exploiting SPE and OLAP engine. In BigData, pages
319–326. IEEE Computer Society, 2015.

[37] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9):539–550,
2011.

[38] T. Neumann and M. J. Freitag. Umbra: A disk-based
system with in-memory performance. In CIDR.
www.cidrdb.org, 2020.

[39] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In SIGMOD
Conference, pages 677–689. ACM, 2015.

[40] M. Nikolic, B. Chandramouli, and J. Goldstein.
Enabling signal processing over data streams. In
SIGMOD Conference, pages 95–108. ACM, 2017.

[41] M. Nikolic, M. Dashti, and C. Koch. How to win a hot
dog eating contest: Distributed incremental view
maintenance with batch updates. In SIGMOD
Conference, pages 511–526. ACM, 2016.

[42] PipelineDB - high-performance time-series
aggregation for postgresql.
https://github.com/pipelinedb/pipelinedb.

[43] S. A. Shaikh and H. Kitagawa. Streamingcube: A
unified framework for stream processing and OLAP
analysis. In CIKM, pages 2527–2530. ACM, 2017.

[44] O. Shmueli and A. Itai. Maintenance of views. In
SIGMOD Conference, pages 240–255. ACM Press,
1984.

[45] D. B. Terry, D. Goldberg, D. A. Nichols, and B. M.
Oki. Continuous queries over append-only databases.
In SIGMOD Conference, pages 321–330. ACM Press,
1992.

[46] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. V. Ryaboy.
Storm@twitter. In SIGMOD Conference, pages
147–156. ACM, 2014.

[47] T. Urhan and M. J. Franklin. XJoin: A
reactively-scheduled pipelined join operator. IEEE
Data Eng. Bull., 23(2):27–33, 2000.

[48] Y. Watanabe, S. Yamada, H. Kitagawa, and
T. Amagasa. Integrating a stream processing engine
and databases for persistent streaming data
management. In DEXA, volume 4653 of Lecture Notes
in Computer Science, pages 414–423. Springer, 2007.

[49] Y. Yang, L. Golab, and M. T. Özsu. ViewDF:
Declarative incremental view maintenance for
streaming data. Inf. Syst., 71:55–67, 2017.

[50] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark:
a unified engine for big data processing. Commun.
ACM, 59(11):56–65, 2016.

[51] S. Zeuch, S. Breß, T. Rabl, B. D. Monte, J. Karimov,
C. Lutz, M. Renz, J. Traub, and V. Markl. Analyzing
efficient stream processing on modern hardware.
PVLDB, 12(5):516–530, 2019.

[52] J. Zhou, P. Larson, and H. G. Elmongui. Lazy
maintenance of materialized views. In VLDB, pages
231–242. ACM, 2007.

[53] J. Zhou, P. Larson, J. C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for
query processing. In SIGMOD Conference, pages
533–544. ACM, 2007.

2633

https://github.com/pipelinedb/pipelinedb

	Introduction
	Background
	Approach
	Split Maintenance Strategy
	Supported Queries
	Umbra
	Other Approaches

	Query Planning
	Code Generation
	Initialization
	Insert Handling
	Query Evaluation

	Runtime Integration & Optimizations
	SQL Interface
	Updates
	Fault Tolerance
	Portability

	Evaluation
	AIM Benchmark
	Configuration
	Experiments

	TPC-H Benchmark
	Configuration
	Experiments

	Microbenchmark

	Related Work
	View Maintenance
	Stream Processing

	Conclusion
	Acknowledgments
	References

