
Stable Learned Bloom Filters for Data Streams

Qiyu Liu§, Libin Zheng§∗, Yanyan Shen†, and Lei Chen§
§The Hong Kong University of Science and Technology †Shanghai Jiao Tong University

{qliuau, lzhengab, leichen}@cse.ust.hk, yanyanshen14@gmail.com

ABSTRACT
Bloom filter and its variants are elegant space-efficient prob-
abilistic data structures for approximate set membership
queries. It has been recently shown that the space cost
of Bloom filters can be significantly reduced via a combi-
nation with pre-trained machine learning models, named
Learned Bloom filters (LBF). LBF eases the space require-
ment of a Bloom filter by undertaking part of the queries
using a classifier. However, current LBF structures gener-
ally target a static member set. Their performances would
inevitably decay when there is a member update on the set,
while this update requirement is not uncommon for real-
world data streaming applications such as duplicate item
detection, malicious URL checking, and web caching. To
adapt LBF to data streams, we propose the Stable Learned
Bloom Filters (SLBF) which addresses the performance de-
cay issue on intensive insertion workloads by combining clas-
sifier with updatable backup filters. Specifically, we propose
two SLBF structures, Single SLBF (s-SLBF) and Group-
ing SLBF (g-SLBF). The theoretical analysis on these two
structures shows that the expected false positive rate (FPR)
of SLBF is asymptotically a constant over the insertion of
new members. Extensive experiments on real-world datasets
show that SLBF introduces a similar level of false negative
rate (FNR) but yields a better FPR/storage trade-off com-
pared with the state-of-the-art (non-learned) Bloom filters
optimized on data streams.

PVLDB Reference Format:
Qiyu Liu, Libin Zheng, Yanyan Shen and Lei Chen. Stable
Learned Bloom Filters for Data Streams. PVLDB, 13(11): 2355-
2367, 2020.
DOI: https://doi.org/10.14778/3407790.3407830

1. INTRODUCTION
Bloom filters (BF) [7] are simple, space-efficient proba-

bilistic data structures designed for answering membership
queries, that is, testing whether a queried element x is in
a given set S. Due to its great importance, optimizations

∗Libin Zheng and Yanyan Shen are corresponding authors.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407830

learned oracle

0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0
16 bits

pos
neg

backup filter

element prediction
x pos
y neg
z neg
w neg

y z w?

input

Figure 1: Illustration of the learned Bloom filter built on
an element set S = {x, y, z} with a query element w.

and variants of Bloom filter as well as its applications, es-
pecially in database and networking, have attracted much
research efforts over the past decades [11, 16, 17, 19, 18, 23,
15, 13]. Although Bloom filters have been well explored and
evaluated in both academia and industry, a recent proposal,
“The Case for Learned Index Structures” [25], suggests that
machine learning models like neural networks can be com-
bined with traditional index structures, including B-tree,
hash tables and Bloom filters, to further improve the space
utilization and query efficiency.

In their seminal work, Kraska et al. [25] claim that the
membership queries can be regarded as an instance of clas-
sification problem on a dataset {(xi, yi = 1)|xi ∈ S} ∪
{(xi, yi = 0)|x ∈ N} where S and N are the sets of members
and non-members. They first use a classifier which classi-
fies elements into members/non-members. Then, to remove
possible false negatives, a small backup Bloom filter is built
on the set SN = {x|x ∈ S, x is predicted as non-member}
to distinguish the true members from the predicted non-
members. Such a data structure, called Learned Bloom Fil-
ter (LBF), is illustrated in Figure 1. For query processing, a
non-member decision is made i.f.f. both the classifier and the
backup filter determine a queried element as a non-member.

Example 1. As shown in Figure 1, let us consider a toy
element set S = {x, y, z} for constructing an LBF. x is cor-
rectly predicted by the classifier as a member of S, so it
needs no further treatment. In contrast, for y and z, which
are wrongly classified, we insert them into a standard Bloom
filter [7] with an array of 16 bits and 3 hash functions. When
the constructed LBF is queried with an element w, suppos-
ing that the classifier determines w as a non-member, w
would be further tested over the backup filter, which finally
yields a non-member decision, i.e., w /∈ S.

Similar to standard BF, LBF has one-sided error (i.e.,
only false positives). Compared with non-learned filters,
the advantage of LBF is that, on a static element set, it
requires much smaller storage but retains competitive query
efficiency and error rate. The reason is that the space cost of
LBF comes from storing both the classifier and the backup

2355

0 20000 40000 60000 80000 100000120000140000
#insertion

0.0

0.2

0.4

0.6

0.8

1.0

fa
ls

e
 p

o
si

ti
ve

 r
a
te

Fp=0.01, Fn=0.5
Fp=0.1, Fn=0.3
Fp=0.25, Fn=0.25
Fp=0.5, Fn=0.1

Figure 2: Simulation result of the FPR decay effect for
LBF. The backup filter is initialized with #expected ele-
ments=1,000, #bits per element=9.85, #hash functions=6,
and FPR is calculated by varying the number of insertions
and trying 4 different combinations of Fp (FP rate) and Fn
(FN rate) of the classifier.

filter. However, SN , the set used to build the backup filter, is
relatively small, and storing a well-trained classifier usually
requires much less space [25].

However, similar to the standard BF, LBF is designed for
static element set S whose total cardinality is known in ad-
vance. As a result, when there are new elements outside
S being inserted to the filter, the false positive rate (FPR)
would inevitably grow due to the limited space of backup fil-
ter, which is determined upon its construction. Compared
with standard BF, such performance decay effect caused by
insertions is more severe for LBFs, as the backup filter is usu-
ally small, and the insertion capacity can be easily reached.

Example 2. (FPR Decay) Figure 2 illustrates such an ef-
fect by reporting the FPR versus the number of insertions
according to the theoretical analysis for LBF in [30], under
the assumption that newly inserted elements are sampled
from the same distribution as S. It shows that FPR tends
to reach 100% after 80K new insertions under all the four
settings. More specifically, though a smaller Fn (false neg-
ative rate of the classifier) can slow down the increase of
FPR, it introduces a higher initial FPR. Intuitively, this is
because Fp and Fn usually contradict with each other, and
Fp is the lower bound of FPR (discussed in Section 2.2).

Though space-efficient, LBF is only applicable for a pre-
defined element set and query-only workloads, which limits
its real-world applications and motivates us to design new
learned filters usable on insertion-intensive workloads. How-
ever, building such an insertion-aware LBF is non-trivial.
Existing works addressing this dynamic insertion issue all
target standard BF [19, 6, 13, 18]. They cannot be directly
applied to the context of LBF due to the existence of an
extra classifier. The major challenges lie in four aspects.
• First, ML models are usually non-deterministic. There-

fore, we need to devise a new mathematical model for ana-
lyzing the performance of learned filters over data streams,
just like what is done for the LBF on static sets in [30].
• Second, different from standard BF, since we wish the

FPR to be controlled when the filter is applied to an un-
bounded element stream with limited storage, it would in-
evitably introduce false negatives. Consequently, we need
to carefully quantify the false negative rate and achieve a
proper trade-off among FPR, FNR, and storage.
• Third, when handling a static element set, overfitting of

the classifier is usually good since it improves both Fp and
Fn, which is contrary to the case of streaming data as we
hope that the classifier generalizes well to future elements.
• Fourth, parameter setting becomes harder under the con-

text of dynamic insertions. For the original learned Bloom

#insertions

FPR

100% original
LBF

our
SLBF

storage

FPR Decay?

original
LBF

our
SLBF

standard
BF

low high

no

yes

updatable
BF variants

Figure 3: Left: FPR v.s. #insertions under the same
storage cost. Right: sketch of performance feature under
the same expected FPR upper bound.

filter on a static element set, the parameters of the backup
filter, e.g., number of hash functions, are optimized based
on the size of element set, classifier performance and a
user-provided FPR threshold, which will change as new
elements inserted to the filter.
To handle the dynamic insertion of new elements, in this

paper, we design a new insertion-aware LBF structure called
Stable LBF (SLBF). SLBF is expected to have the following
features: 1) the performance decay effect is under control,
i.e., FPR has a non-trivial upper bound even for a large
number of insertions; 2) the total storage cost is limited and
less than that of using a standard filter at the same error
level; and 3) the membership query is as efficient as a stan-
dard filter, i.e., in O(1) time. Figure 3 outlines the major
performance merits of our SLBF. When applied to dynamic
insertions, SLBF has low storage cost and survives from the
performance decay issue. Many real-world applications, like
duplication detection [29], IP traffic monitoring [26], and
search engine refinement [22], can benefit from using our
SLBF. The applications of SLBF as well as a detailed dis-
cussion about the proper choice among using BF, LBF or
our SLBF on different scenarios are put in Appendix A and
Appendix B.

To the best of knowledge, this is the first work that consid-
ers optimizing LBF over dynamic insertion workloads. We
summarize the major technical contributions as follows.
• We introduce two new learned Bloom filters, Simple Sta-

ble Learned Bloom Filter (s-SLBF) and Grouping Stable
Learned Bloom Filter (g-SLBF), to achieve the three ob-
jectives mentioned above.
• We perform detailed analysis on the performance of our

proposed data structures over dynamic insertion work-
loads, regarding which we explain its parameter setting
and classifier selection.
• We conduct extensive experimental studies on the real

data, which show that g-SLBF can effectively reduce up
to 97% storage cost.
The rest of this paper is organized as follows. Section 2

introduces some preliminaries and formulates the problem of
devising an insertion-aware Bloom filter with a performance
guarantee. We present our s-SLBF and g-SLBF and analyze
their performance over data streams in Section 3. Section 4
discusses the parameter settings for our SLBF. We report
the experimental results in Section 5. Finally, we review
previous works in Section 6 and conclude in Section 7.

2. PRELIMINARIES
This section overviews the structures and analytical re-

sults of standard Bloom filers and learned Bloom filters.
Then, we discuss the property of stability for Bloom filters
on unbounded data streams. For quick reference, all the
notations used hereafter are summarized in Table 1.

2356

Table 1: Notations and descriptions.

Notation Description

S the element set of n distinct members
h1, · · · , hk k independent hash functions
B[1 · · ·m] the array of m bits used in BF
f : x→ [0, 1] a trained classifier

τ the decision threshold of classifier f
SBF [1 · · ·m] the array of m counters used in stable BF

g the number of total groups
τ1 < · · · < τg−1 a partition to interval [0, 1]
SBF1, · · · , SBFg a collection of g stable BFs

Maxj the max value of each counter of SBFj
mj the number of counters of SBFj
Kj the number of hash functions of SBFj
Pj the number of decrements of SBFj
Fp the false positive prob. of classifier f
Fn the false negative prob. of classifier f

x1, · · · , xN a sequence of N elements to be inserted

2.1 Standard Bloom Filter
Given a set S of n member elements, a standard Bloom

filter [7] represents S using a bit array B of size m and
k independent hash functions h1, · · · , hk which uniformly
map the elements to the range 1 ∼ m (inclusive). The bit
array is initialized to all 0’s in the beginning. Then, for each
x ∈ S, the bits located at h0(x), · · · , hk(x) are set to 1. For
a membership testing of element y, a positive answer is given
if all k bits pointed by h0(y), · · · , hk(y) are 1, otherwise a
negative answer is returned. Such a construction and query
mechanism ensure there is no false negatives but possibly
false positives. After inserting all n elements of S into the
bit array B, the probability that an arbitrary bit of B is still
0 can be calculated as:

Pr (B[i] = 0) =

(
1− 1

m

)kn
≈ e−kn/m. (1)

We denote p0 = Pr (B[i] = 0). For any non-member element
y /∈ S, the false positive rate (FPR) is then given by,

FPRBF = Pr(B[h1(x)] = 1 ∧ · · · ∧B[hk(x)] = 1)

= (1− p0)k ≈
(

1− e−kn/m
)k
.

(2)

In practice, n is known in advance as the expected size of
element set, and m is the size of the bit array. Given n and
m, the optimal number of hash functions is kopt = m

n
ln 2

by setting the derivative of Eq. (2) to zero, and the corre-

sponding optimal FPR is 0.5
m
n

ln 2 ≈ 0.6185
m
n . To make it

more general, the FPR of standard Bloom filter as well as
its variants like Cuckoo filter [16] on a static element set can
be modeled as αt where α ∈ (0, 1) is a constant and t = m

n
stands for the number of bits used to encode each element.

2.2 Learned Bloom Filter
The formal definition to the learned Bloom filter (LBF),

which is first introduced by Kraska et al. [25] and further
refined by Mitzenmacher [30], is given as follows.

Definition 1. (Learned Bloom Filer) Given an element set
S, an LBF can be represented as a triple (f, τ, BF) where
f : x ∈ S → [0, 1] is a pre-trained classifier (learned oracle),
τ is the decision threshold of f where f(x) ≥ τ implies
x ∈ S, and BF is the backup standard Bloom filter built
on the set of all elements in S that are wrongly predicted as
non-members, i.e., {x|f(x) < τ, x ∈ S}.

As shown in Figure 1, to process a membership query of
element y, we trust the positive prediction but challenge the

negative outputs from the classifier, and a negative answer
is made i.f.f. both classifier and backup filter determine y
is a non-member. Such a construction of LBF ensures one-
sided error (i.e., no false negatives), and for any non-member
element y /∈ S, the FPR is given by:

FPRLBF = Pr(f(y) ≥ τ) + Pr(f(y) < τ) · αm/|SN |, (3)

where m is the number of bits allocated to the backup filter
BF , SN = {x|f(x) < τ, x ∈ S}, and α is a constant that
depends on the implementation of the backup filter.

In Eq. (3), Pr(f(y) ≥ τ) can be interpreted as the false
positive probability of the classifier, which is essentially a
random variable and depends on how y is picked, i.e., the
query distribution. In statistics literature, Pr(f(y) ≥ τ) can
be estimated by using a probe dataset which is assumed to
be sampled from the same distribution of the dataset used
to train classifier f . Given an LBF (f, τ, BF), supposing
the classifier f and the backup filter BF use ζ and m bits
respectively, combining Eq. (2) and Eq. (3), an LBF is better
than a standard BF consuming the same space (i.e., ζ + m
bits) if the following inequality holds,

Fp + (1− Fp) · αb/Fn < αζ/n+b, (4)

where Fp is the false positive probability of the classifier,
Fn = |SN |/n, b = m/n, and α is a constant (Section 2.1).
Note that, the left- and right-hand sides of Eq. (4) stand
for the FPR of LBF and BF with the same storage and the
optimal number of hash functions.

2.3 BF Stability on Data Streams
The construction of either standard BF or LBF relies on

knowing the whole picture of the element set S. To start our
discussion on BF stability over dynamically growing element
sets, we first define the membership testing on data streams.

Definition 2. (Membership Query on Data Stream) Con-
sider an unbounded stream of elements x1, · · · , xn where n
can be infinite, for a queried element y, the membership
query of y returns true i.f.f. y ∈ {x1, · · · , xn}, i.e., y has
been seen before timestamp n.

As we have stated earlier, any Bloom filter using limited
space cannot achieve bounded one-sided error on unbounded
data streams. Intuitively, this can be explained using the
model FPR = αm/n (Section 2.1), according to which we
have limn→∞ FPR = 1. To achieve a non-trivial FPR bound
using limited storage, Deng and Rafiei [13] first introduce
the concept of Stable Bloom Filter (SBF) with an idea of
clearing random bits when inserting an element, in order to
make rooms for future elements.

An SBF represents a dynamically growing set using an ar-
ray of m counters SBF [1, · · · ,m], instead of bit array used
by standard BF, and each counter is allocated with d bits
(i.e., SBF [i] is between 0 and Max = 2d − 1). To insert an
element x, P counters are first randomly selected and decre-
mented by 1 if they are non-zero. Then, similar to a stan-
dard BF, K independent hash values h1(x), · · · , hK(x) are
calculated and counters SBF [h1(x)], · · · , SBF [hK(x)] are
set to Max. For a membership query of an element y, “yes”
would be returned if none of SBF [h1(y)], · · · , SBF [hK(y)]
is 0, otherwise “no” would be returned. The insertion al-
gorithm and membership query processing using SBF are
shown in Figure 4a and Figure 4b.

When applying SBF to a data stream x1, · · · , xn, a key
observation is that, with the counter decrement behavior,

2357

Function insert(SBF, x)
for p = 1, · · · , P do

idx← Rand(1,m)
if SBF [idx] > 0 then

SBF [idx]← SBF [idx]−1
end

end
for k = 1, · · · ,K do

SBF [hk(x)]←Max
end

end

(a) Insertion algorithm of SBF.

Function query(SBF, y)
for k = 1, · · · ,K do

if SBF [hk(y)] = 0 then
return false

end

end
return true

end

(b) Query processing using SBF.

Input: an s-SLBF (f, τ, SBF) and a
sequence of N elements to be
inserted x1, · · · , xN

for i = 1, · · ·N do
if f(xi) > τ then

continue
else

insert(SBF, xi)
end

end

(c) Insertion algorithm of s-SLBF.

Input: an s-SLBF (f, τ, SBF) and a
query element y

conf ← f(y)
if conf > τ then

return true
else

return SBF
end

(d) Query processing using s-SLBF.

Input: a classifier f , a filter array
SBF1, · · · , SBFg , and a
sequence of N elements
x1, · · · , xN

for i = 1, · · · , N do
j ← the interval [τj−1, τj] which
f(xi) belongs to
insert(SBFj , xi)

end

(e) Insertion algorithm of g-SLBF.

Input: a classifier f , a filter array
SBF1, · · · , SBFg , and a
query element y

j ← the interval [τj−1, τj] which
f(xi) belongs to

return query(SBFj , y)

(f) Query processing using g-SLBF.

Figure 4: Insertion and membership query processing algorithms of SBF, s-SLBF and g-SLBF.

the fraction of ‘0’ counters in the array tends to be a constant
as the insertion number n → ∞. According to Theorem 2

of [13], given an SBF with m counters, denoting p
(n)
0 as the

fraction of counters with value 0 after inserting n elements,

the limit of p
(n)
0 is,

lim
n→∞

p
(n)
0 =

(
1

1 + 1
P (1/K−1/m)

)Max

. (5)

In addition, p
(n)
0 −p

(n−1)
0 ≈ K

m

(
1− K

m

)n
, which indicates an

exponential convergence.

The zero fraction p
(n)
0 can be interpreted as the probabil-

ity that an arbitrary counter SBF [i] is 0 after inserting n
elements from a data stream. Thus, for any query element
y not in the data stream, the false positive rate1 generated
by SBF is given by,

lim
n→∞

FPRSBF = lim
n→∞

(
1− p(n)0

)K
(m�K)
≈

(
1−

(
1

1 +K/P

)Max
)K

.

(6)

This property of reaching a non-trivial FPR after a large
number of insertions, instead of decaying to 1, is called “sta-
ble” for Bloom filters on data streams.

However, with the counter decrement operations, SBF
achieves stable at the cost of a non-zero number of false
negatives, which means an already inserted element xi may
be wrongly determined as a non-member by SBF. Accord-
ing to [13], the false negative rate (FNR) for SBF relates
to not only the filter’s parameters but also how the query
elements distribute, i.e., the query distribution. Please refer
to Section 3.3 for a detailed discussion on FNR over data
streams.
1
When referred to the false positive rate over data streams, we simply

use FPR, instead of the limit of FPR when n→∞, unless discussing
the convergence rate of FPR.

2.4 Problem Statement
We have overviewed structures and analytical results of

standard BF, LBF, and SBF. On static element sets, com-
pared with standard BF, which has been used for decades,
LBF shows its advantage of reducing the memory cost [25].
This inspires us to devise a new learned Bloom filter struc-
ture for approximate membership queries over a dynamic
element set (as shown in Definition 2).

Specifically, we consider two operations for such a data
structure: insert which adds an element x to the filter,
and query which returns the membership testing result of
an element y using the filter. When applied to an element
stream, such a learned filter is expected to 1) achieve the
stable property (i.e., the FPR reaches a non-trivial value
as n → ∞); and 2) consume less storage at a competitive
FPR/FNR level compared with a non-learned filter opti-
mized on data streams (e.g., the SBF).

3. STABLE LEARNED BLOOM FILTER
In this section, we present two data structures (Sec-

tion 3.1 and Section 3.2) as well as theoretical analysis (Sec-
tion 3.3) to address the approximate membership testing
problem for streaming data under the context of learned
indexes.

3.1 Single SLBF
To make the original LBF framework stable after an un-

bounded number of insertions, an intuitive idea is to replace
the backup filter in LBF, which is a standard BF, with a
stable Bloom filter (Section 2.3). Such structure, as illus-
trated in Figure 5a, is referred to as single stable Learned
Bloom filter (s-SLBF) where single means there is a single
backup filter in such framework.

Definition 3. (s-SLBF) An s-SLBF can be represented as
a triple (f, τ, SBF) where f is a pre-trained learned oracle
(i.e., classifier), τ is the corresponding decision threshold
and SBF is a backup stable Bloom filter.

To insert a new element x (as shown in Figure 4c), the
membership confidence f(x) is first calculated and compared

2358

Learned Oracle

Input: 𝑥

𝑆𝐵𝐹

positive

positive

negative

negative

(a) Illustration of s-SLBF.

0.0 1.0
classification

score

Learned Oracle

𝑆𝐵𝐹1 𝑆𝐵𝐹2 𝑆𝐵𝐹𝑔

Input: 𝑥

…

…[0.0, 𝜏1) [𝜏1, 𝜏2) [𝜏𝑔−1, 1.0]

(𝑚1, 𝑘1, 𝑃1, 𝑀𝑎𝑥1) (𝑚𝑔, 𝑘𝑔, 𝑃𝑔, 𝑀𝑎𝑥𝑔)(𝑚2, 𝑘2, 𝑃2, 𝑀𝑎𝑥2)

positive distribution

negative distribution

(b) Illustration of g-SLBF.

Figure 5: Motivation and overview of our stable learned
Bloom filter structures.

with the threshold τ . If f(x) ≥ τ , which means the model
determines x is already predicted as a member, the insertion
process will directly terminate; otherwise, x is inserted to
SBF . To query an element y (as shown in Figure 4d), a
positive answer is returned if f(y) ≥ τ or f(y) < τ but
SBF determines y as positive.

Though very similar to the original LBF, the way how
the classifier in s-SLBF (i.e., f and τ) is obtained is intrinsi-
cally different. Recall that the classifier f used in the orig-
inal LBF is trained over a binary dataset {(xi, yi = 1)|xi ∈
S}∪{(xi, yi = 0)|xi ∈ N} where S is the element set used to
build the filter, which is static, and N is the set of synthetic
negative samples. In contrast, for s-SLBF, since it is built
before fed with the data stream, instead of the exact ele-
ment set (i.e., S), the prior knowledge would be accessible
to train the classifier. This yields the fundamental difference
of applicable scenarios between LBF and SLBF. Please refer
to Appendix A for a detailed discussion.

It is obvious that s-SLBF is stable after a substantial num-
ber of insertions, if we assume the streaming elements follow
the distribution used in training the classifier. Suppose the
parameters used in SBF are m,K,P,Max, based on Eq. (3)
and Eq. (6), the expected FPR of s-SLBF is given by,

E[FPR] = Fp + (1− Fp) ·
(

1−
(

1

1 +K/P

)Max
)K

(7)

where Fp = Pry∼DN (f(y) ≥ τ) and DN is the distribution
of non-members.

If the classifier performs well, at the same expected FPR
level (at stable), s-SLBF is supposed to save more space
compared with a pure SBF. We explain this advantage using
the following example.

According to Eq. (3), for SBF’s, the FPR at stable, is in-
sensitive to the number of counters m since m� K. With-
out loss of generality, we assume Fp = 0.01 and Fn = 0.5
for the classifier of s-SLBF. We further pick SBF parameters
P , K and Max such that (1− (1/(1 +K/P))Max)K ≈ 0.1.
Under such settings, according to Eq. (7), the FPR bound
at stable of s-SLBF is 0.01 + 0.99 ∗ 0.01 ≈ 0.1, which is
at the same level compared with a pure SBF using identi-
cal parameters. Since the total storage cost of an SBF is
m · blog2(Max) + 1c where Max is fixed, the only factor in-
fluencing total storage lies on the number of used counters
m. According to Eq. (5) and Eq. (6), for SBF’s, increas-
ing or decreasing m does not influence the FPR at stable
(converged); however, m influences how fast FPR converges
to its stable point. Thus, to make it fair, we compare the
difference in storage cost for s-SLBF and SBF under similar
stable FPR and convergence rate. Suppose the numbers of
counters used by SBF and s-SLBF are m and m′, respec-
tively. Let the two filters have the identical convergence

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
Fn

15000

20000

25000

30000

35000

40000

45000

50000

e
xp

e
ct

e
d
 m

'

N=50000
N=100000
N=200000
N=1000000
N=10000000

Figure 6: Numerical simulation result of Eq. (8) by varying
the number of insertionsN and the false negative probability
of the classifier (i.e., Fn).

rate, and then we have the following equation,

K

m

(
1− K

m

)N
=

K

m′

(
1− K

m′

)N·Fn
. (8)

By setting m = 106, K = 6, N = 108, and Fn = 0.5, we
can solve the numerical solution as m′ ≈ 4.7 × 104, which
implies a 53% reduction in terms of total storage. Note that
we ignore the space cost caused by the classifier in s-SLBF
since it is usually much smaller than the counter array.

To further understand the relationship between m′ and Fn
regarding Eq. (8), we vary Fn from 0.3 to 0.5 and N from
5× 104 to 107, and show the value of m′ as a function of Fn
in Figure 6. The gap between neighboring lines decreases as
N increases, which demonstrates that the filter approaches
the stable point when the number of insertions N becomes
substantially large. We can observe an approximately linear
relation between m′ and Fn, which is reasonable since Fn
determines how many elements in the insertion stream “es-
cape” from the classifier and are added to the backup SBF.
A higher Fn of the classifier implies more elements need to
be inserted to the backup SBF and thus more counters are
required to retain a similar convergence rate. Note that, the
above simulation fixes other parameters like Fp to simplify
the analysis and provide a general insight into the advantage
of learned Bloom filters.

3.2 Grouping SLBF
As a straight extension, the s-SLBF has been shown to

be stable using potentially lower storage than an SBF as we
expect. However, it also inherits a major drawback from
the original LBF framework, i.e., trusting all the positive
predictions made by the classifier. This over reliance makes
s-SLBF as well as the original LBF fragile when the classifier
is not trustworthy. Such effect can be explained using Eq. (7)
where Fp, the false positive probability of the classifier, is
the lower bound of the overall FPR.

Besides the over reliance issue of the learned oracle, the
single backup filter design also omits useful information pro-
vided by the learned oracle. Figure 5a illustrates how the
classifier works in s-SLBF, from which we can find that both
the false positives and the false negatives of the classifier
come from the setup of a hard decision boundary. That is,
negative (positive) elements falling on the left side are all
categorized as positive (negative). This hard decision rule
does not distinguish the confidence levels of elements falling
on the same side, which is illustrated as follows.

Example 3. Suppose the decision threshold is set to τ =
0.7, there is no difference for elements with prediction scores
0.69 and 0.01, respectively, both of which would be treated
in the same way, i.e., feeding to the same backup SBF. Sim-
ilarly, for elements with scores 0.71 and 0.99, both of which

2359

would be directly judged as members without any further
action on the backup filter.

From the analysis above, we realize the major flaw of s-
SLBF as well as the original LBF is the single backup filter
nature. To further improve s-SLBF, we introduce the second
data structure called grouping stable Learned Bloom filter
(g-SLBF) by breaking the classification score (in range [0, 1])
into several intervals and allocating independent sub-filters
for each interval.

Definition 4. (g-SLBF) A Grouping SLBF (g-SLBF) con-
sists of a classifier f , and g heterogeneous SBF’s (also known
as “sub-filters”) SBF1, · · · , SBFg where the j-th SBF SBFj
is described by a tuple of parameters (mj ,Kj , Pj ,Maxj). A
partition of the interval [0, 1] leads to g sub-intervals, i.e.,
[τ0 = 0, τ1], [τ1, τ2], · · · , [τg−1, τg = 1], which are used to
map an element x to the SBF’s regarding their prediction
values f(x). More specifically, a new element x is inserted
to SBFj if f(x) ∈ (τj−1, τj] (as shown in Figure 4e). To test
the membership of element y, we directly ask the sub-filter
SBFj mapped from f(y) (as shown in Figure 4f).

As illustrated in Figure 5b, the basic idea of g-SLBF is to
partition elements in the insertion stream into several sub-
groups based on the membership confidence given by the
classifier. Intuitively, for those elements to be inserted with
low membership confidence (i.e., locating at the left side of
the confidence distribution as shown in Figure 5b), since the
classifier has a relatively high Fp in this range, we can adjust
the corresponding sub-filter SBFj to compensate the loss of
FPR by setting K, P and Max appropriately. Besides, since
Fn is low in this range, which means there would not be too
many elements to be inserted to SBFj , fewer counters are
needed to be allocated to achieve the desired FPR at stable
in a satisfactory convergence speed. On the other hand,
for elements with high confidence (i.e., locating at the right
side in Figure 5b), the FPR requirement of the SBF can
be loosed since elements in this range already have a high
prior possibility of being a member, and similarly, since the
classifier might wrongly determine many member elements
as non-member (i.e., high value of Fn), more counters are
required to let SBFj converge to its stable point.

It is noteworthy that s-SLBF can be regarded as a special
case of the g-SLBF by setting g = 2, i.e., only one decision
threshold τ , and letting the sub-filter in range [τ, 1] always
give positive answers. Compared with s-SLBF, where the
positive predictions from classifier are fully trusted, g-SLBF
(g > 2) is more conservative towards the classifier output
since all the membership decisions are jointly made by the
classifiers and the backup filter. Such property makes the g-
SLBF more robust against the quality of the classifier (e.g.,
the incoming element stream does not strictly follow the
distribution as that of the training data). Note that, the su-
periority in robustness of g-SLBF will be demonstrated both
analytically and experimentally in the following sections.

3.3 Analytical Results
In this section, we analyze the FPR, FNR and convergence

behavior of our two SLBF structures. Note that, we focus
on g-SLBF since s-SLBF is a special case of g-SLBF, whose
theoretical results naturally apply to s-SLBF. We first give
some preliminary notations in the following.

For the j-th classification score interval [τj−1, τj] in g-
SLBF, we define two probabilities pj and qj as follows,

pj = Pr
x∈DN

(f(x) ∈ [τj−1, τj−1]),

qj = Pr
x∈DP

(f(x) ∈ [τj−1, τj−1]),
(9)

where DN and DP are distributions of non-members and
members. The pair (pj , qj) depicts the false positive and
false negative behaviors of the classifier in the range [τj−1, τj].
Note that, it is generally hard to know the exact values of
pj and qj as DN and DP are unknown. However, as what
would be shown in the parameter setting (Section 4), we use
the test datasets to estimate pj and qj .

In the analysis presented hereafter, we adopt the following
two assumptions about the classifier and data, which are
not hard to understand and have been adopted by existing
learned Bloom filter works [12, 25, 30].

Assumption 1. The members and the non-members of
the filter follow the distributions DP and DN , respectively.
Thus, the FPR of an SLBF is the expected false negative
rate over the non-member distribution DN .

Assumption 2. For j = 1, · · · , g, it holds that p1 ≥ p2 ≥
· · · ≥ pg and q1 ≤ q2 ≤ · · · ≤ qg.

3.3.1 False Positive Rate and Stability
Suppose a sequence of n elements x1, · · · , xn, where xi ∼
DP , has been inserted to a g-SLBF. Then, for a new query
with an element drawn from the non-member distribution
DN , the expected FPR of this g-SLBF (at stable) is

E[FPR] =

g∑
j=1

pj ·
(

1−
(

1

1 +Kj/Pj

)Maxj
)Kj

︸ ︷︷ ︸
denoted by αj

. (10)

Suppose there are g SBF’s with αj ’s satisfying α1 ≤ α2 ≤
· · · ≤ αg. Then considering the intervals depicted in As-
sumption 2, Lemma 1 describes how to allocate the SBF’s
to these intervals to minimize E[FPR], which also validates
our discussion in Section 3.1.

Lemma 1. Allocating the filter with αj to the interval
[τj−1, τj] for j = 1, · · · , g minimizes E[FPR].

Proof. Following Assumption 2, p1 ≥ · · · ≥ pg and α1 ≥
· · · ≥ αg, then according to the Rearrangement inequality
[20], for any other permutation ασ(1), ασ(2) · · ·ασ(g),

g∑
j=1

pj · ασ(j) ≥
g∑
j=1

pj · αj = E[FPR], (11)

which proves this lemma.
Based on Lemma 1, we then prove an upper bound of the

expected FRP of g-SLBF (at stable), which is free of pj .

Theorem 1 (FPR Upper Bound). An upper-bound
of the expected FPR of g-SLBF at the stable state is the
arithmetic mean of FPR of the g sub-filters SBF1, · · · , SBFg,
i.e., E[FPR] ≤ 1

g

∑g
j=1 αj.

Proof. Since p1 ≥ p2 ≥ · · · ≥ pg and α1 ≥ α2 ≥ · · · ≥
αg, according to the Chebyshev’s sum inequality [20], it al-
ways holds that,

E[FPR] =

g∑
j=1

pj · αj ≤ g ·

(
1

g

g∑
j=1

pj

)
·

(
1

g

g∑
j=1

αj

)

= 1 · 1

g

g∑
j=1

αj =
1

g

g∑
j=1

αj .

(12)

Thus we complete the proof.

2360

Recall that in Section 3.2, we argue that g-SLBF is more
robust against the classifier quality than the s-SLBF. As we
discussed earlier, the s-SLBF (as well as the original LBF)
adopts a single backup filter structure, which makes the clas-
sifier’s FPR directly upper bounds the overall FPR as a
consequence. However, according to Theorem 1, the FPR
of g-SLBF is bounded by the arithmetic mean of sub-filters’
FPR, which is independent of the classifier quality and spe-
cific distribution assumption. Note that, this inequality
holds under the assumption that p1 ≥ p2 ≥ · · · ≥ pg, which
generally holds if the dataset is “learnable” (see our valida-
tion of this assumption in Section 5.3). We also conduct ex-
perimental study to validate the robustness claim by adding
distortions to the distribution of element streams. The re-
sults show that the speed of FPR getting deteriorated of
g-SLBF is much slower than that of s-SLBF w.r.t. distribu-
tion distortion. Please refer to Appendix E for more details.

3.3.2 Convergence Rate
The following theorem describes the convergence rate of

g-SLBF, i.e., how fast the filter approaches its stable FPR.

Theorem 2 (g-SLBF Convergence). g-SLBF con-
verges to its stable point, which is shown in Eq. (10), at
a speed of O(exp(−C · n)) where n is the number of total
insertions and C = minj

qjmj
Kj

for j = 1, · · · , g.

Proof. As introduced in Section 2.3, the rate of conver-
gence for sub-filter SBFj is,

Kj

mj

(
1− Kj

mj

)qj ·n
=
Kj

mj

(
1− Kj

mj

)Kj
mj
·
mjqjn

Kj

≈ O
(
exp

(
− qj
kj
n

))
.

(13)

Apparently, the g-SLBF approaches its stable point if and
only if SBF1, · · · , SBFg are all stable. Thus, the over-
all convergence rate is that of the slowest sub-filter, i.e.,
O(exp(−n ·minj

qjmj
Kj

)).

3.3.3 False Negative Rate
A false negative occurs when a negative answer is given

to a query of a member, i.e., an element which has been in-
serted before. Similar to SBF, our g-SLBF allows a number
of false negatives to achieve a bounded FPR (stable) using
limited storage on unbounded data streams. To quantify
the influence of false negatives for our data structure, we
first review the FNR results of SBF, which is adopted by
our g-SLBF as sub-filters.

Different from the FPR which is determined by only filter
parameters, the FNR of SBF also depends on the charac-
teristic of input data stream and query workloads. Given
an element xi in a data stream, let δi be the number of
timestamps between the most recent insertion and query of
the element xi, which is referred to as the “gap” of xi. Ac-
cording to [13], for an inserted element xi, the false negative
probability for element xi is,

Pr(FNi) = 1−
K∏
j=1

(1− Pr(SBF [hj(xi)] = 0|δi)), (14)

where Pr(SBF [hj(xi)] = 0|δi) is the probability that counter
SBF [hj(xi)] becomes 0 after δi times new insertions. Note

that, if δi < Max, then Pr(SBF [hj(xi)] = 0|δi) is always 0
since it is impossible to decrease the counter to 0.

For our g-SLBF, which adopts a sequences of independent
SBF’s as sub-filters, supposing an element xi which has been
inserted to j-th sub-filter SBFj , according to Eq. (14), its
false negative probability is

Pr(FNi|xi ∈ SBFj) = 1− (1− pN (δi, kij))
Kj , (15)

where pN (·) is the probability that one of the Kj counters
(xi is mapped to) has been decremented to 0 after δi inser-
tion operations to the filter (note that δi is the gap of xi).
pN (·) is a function of δi and kij which is the probability of a
mapped counter to be set to Maxj . Note that, kij is a ran-
dom variable which depends on the occurrence frequency of
each element in the insertion stream. That is to say, pN (·)
is different for each xi, which makes it rather difficult to
precisely compute FNR as we do not have prior knowledge
towards such insertion frequencies. On the other hand, the
simulation results shown in [13] reveal that such frequency
features make a little impact on the overall FNR result pro-
vided that the data stream is large enough (n→∞). Thus,
in our work, without loss of generality, we derive the ex-
pected FNR of the g-SLBF by assuming that an element
appears only once in the insertion data stream, i.e., there is
no duplicate insertion.

Under the above assumption, kij are in the same form for

each xi, which is kij = kj = 1
nj

(1+
∑nj−1

l=1 Il) where nj is the

number of elements already inserted to the filter SBFj and
Il is an Bernoulli distributed random variable with Pr(Il =
1) = Kj/mj . Consequently, the overall expected FNR of
g-SLBF can be deducted as

E[FNR] =

g∑
j=1

Pr(FN |x ∈ SBFj) · Pr(x ∈ SBFj)

=

g∑
j=1

(
1− (1− pN (δ̃, kj))

Kj
)
· qj ,

(16)

where δ̃ is the average gap of the data stream. The concrete
evaluation of pN (·) based on δ̃ and kj can be found in Ap-
pendix C. Once pN and the filter parameters are determined,
we can estimate FNR using the equation above.

In summary, as a side effect, false negatives are inevitable
for our g-SLBF to obtain stability over an unbounded num-
ber of insertions, which is similar to SBF [13]. Unlike FPR,
determining FNR of g-SLBF relies on the prior knowledge
of both insertion element stream as well as query element
stream (to calculate the gap value δi for each inserted el-
ement xi). To tackle the false negative issue, in the fol-
lowing section, we devise a parameter setting strategy with
the objective of minimizing FNR while bounding FPR by a
user-given threshold. Detailed evaluation results presented
in Section 5 demonstrate that our g-SLBF has a similar
FNR compared with SBF but achieves a better FPR/storage
trade-off, i.e., in the same FNR and FPR level, our proposed
learned filter is supposed to save more storage.

3.3.4 Time Complexity
Both the insertion operation and the membership query

processing using g-SLBF take O(1) time. Supposing the
model prediction takes time O(M), the time complexities of
insertion and query processing are O(M + maxj(Pj + Kj))
and O(M+maxj(Kj)), respectively. Since all M,Pj ,Kj are

2361

user-specified constants, we conclude that the insertion and
membership testing using g-SLBF take constant time.

4. PARAMETER SETTING
In this section, we discuss how to properly set the pa-

rameters of g-SLBF according to the analytical results in
Section 3.3. Again, without loss of generality, we focus on
g-SLBF, and the parameter setting strategies can be natu-
rally extended to s-SLBF.

Overview. The parameters include the number of groups
g, the partition values τ1, · · · , τg−1, and the specification
for each sub-filter, i.e., (mj , Pj ,Kj ,Maxj) for SBFj . The
users are enabled to provide their desired g, upper bound
of expected FPR ε, and storage budget B (i.e., number of
bits). Then, we set up the aforementioned parameters by
minimizing the expected FNR (Eq. (16)) while bounding
the expected FPR (Eq. (10)) within ε and the storage cost
within B, similar to the setting of SBF [13].

Setting of τ1, · · · , τg−1. Given the total number of groups
g, we uniformly partition the interval [0, 1], leading to [j−1

g
, j
g
]

as [τj−1, τj]. The intervals are equally important in terms
of our analysis in Section 3.3, so we simply adopt an uni-
form partition. For each specified decision interval, two test
datasets are used to estimate its pj and qj . Specifically,

given the member and non-member sample sets S̃P and S̃N ,
pj and qj can be estimated as

p̂j = |{x|x ∈ S̃N , f(x) ∈ [τj−1, τj]}| / |S̃N |,

q̂j = |{x|x ∈ S̃P , f(x) ∈ [τj−1, τj]}| / |S̃P |.
(17)

Recall that we need to bound the overall expected FPR
within ε. According to Lemma 1, by assuming pj · αj = C
where C is a constant, which implies an inverse proportional
relationship between pj and αj , an upper bound of FPR for

each sub-filter SBFj , denoted by αobjj , is then derived as

αobjj =

1
p̂j
· ε∑g

l=1
1
p̂l

. (18)

Setting of Kj and Maxj. We then determine the values
ofKj andMaxj by minimizing the expected FNR (Eq. (16)).
According to the the observation in [13], the optimal or
near optimal value of Kj is determined mainly by Maxj
and the FPR bound αobjj , and insensitive to mj and the in-
put data stream. The optimal Maxj relates to the average
gap value of the data stream. Besides, Maxj should not
be too large, as a large Maxj will lead to a significantly
large Pj (counter decrements) during query and thereby low
query efficiency. Thus, we search Kj and Maxj in the space
Kj = 1, · · · , 10 and Maxj ∈ {1, 3, 7} (corresponding to
#bits per counter∈ {1, 2, 3}). We enumerate all the pos-
sible combinations of (Kj ,Maxj) to pick the optimal pair
such that the estimated FNR of SBFj (using Eq. (15) with
a presumed average gap value) is minimized.

Setting of Pj. With Kj , Maxj and αobjj , Pj can be
solved w.r.t. Eq. (6) as follows,

Pj =
Kj

1−
(

1−
(
αobjj

)1/Kj)1/Maxj
. (19)

Setting of mj. Finally, to set the number of counters for
BSFj mj w.r.t. the total bit budget B, as we have discussed
in Section 5b, we require all the sub-filters are required to

2 4 6 8 10 12 14
K

0.015

0.020

0.025

0.030

0.035

0.040

0.045

E
st

im
a
te

d
 F

N
R

SBF 1
SBF 2
SBF 3

Figure 7: Simulated FNR for each sub-filter in Example 4
with δ = 100, m = 105 and Max = 1.

converge at a similar speed. Thus, according to Theorem 2,
we have

qjmj
Kj

= W where W is a constant. To bound the

total number of bits usage, mj can be determined by

mj =

Kj
q̂j
·B∑g

l=1
Kl
q̂l
· blog2(Maxl) + 1c

. (20)

Example 4. (Parameter Setting) Suppose that g = 3,
B = 16, 384, ε = 0.01, and we are given a classifier which
have p̂1 = 0.485, p̂2 = 0.390, p̂3 = 0.125 and q̂1 = 0.090, q̂2 =
0.347, q̂3 = 0.563. The FPR upper bound can then be calcu-
lated using Eq. (18) as αobj1 = 0.0016, αobj2 = 0.0020, αobj3 =
0.0063. To find the optimal Kj and Maxj , we presume the
gap value as 100 and compute the values of FNR over differ-
ent pairs of Kj & Maxj , which is shown in Figure 7. Note
that, we only show the case of Max = 1 to due to the limited
space. Figure 7 suggests the optimal setting of (Kj ,Maxj)
for j = 1, 2, 3 w.r.t. FNR is (6, 1), (6, 1) and (5, 1), respec-
tively. Then, according to Eq. (19), all Pj ’s are set to 12,
and according to Eq. (20), the number of bits allocated to
each sub-filter are 11,764, 3,054, and 1,566, respectively.

5. EXPERIMENTAL STUDY
In this section, we report the implementation details and

experimental results on datasets from real-world applica-
tions. All the experiments were conducted on a Ubuntu
laptop with Intel(R) Core(TM) i7-8550U CPU @ 1.99GHz
and 16GB memory, and all the methods are implemented in
C and compiled using GCC with -O3 optimization.

5.1 Baselines and Implementation Details
To show the effectiveness of our proposed data struc-

tures, we implement and compare five filters, including the
standard Bloom filter (BF), the stable Bloom filter (SBF),
the original learned Bloom filter (LBF), the simple SLBF
(s-SLBF) and the grouping SLBF (g-SLBF).

BF and LBF. BF and LBF are the baselines in this ex-
periment, to show how non-stable filters behave over stream-
ing data. The BF implementation follows the most standard
space-optimal Bloom filter scheme [9] where the number of
hash functions is always set to the optimum. For LBF, we
use relatively simple models like gradient boosting trees for
the efficiency concern in the scenario of streaming data, in-
stead of the deep learning models used in [25] (details would
be discussed later).

SBF, s-SLBF and g-SLBF. These three filters achieve
stability in the scenario of streaming data. The parameters
of SBF and s-SLBF & g-SLBF are set according to [13] and
our discussion in Section 4, respectively.

Hash function Implementation. All filters require the
computation of K hash values. We adopt xxHash [1], which

2362

is an extremely fast non-cryptographic hashing scheme with
high quality. In addition, instead of exactly computing K
independent hash values, we use the speedup suggested in
[23] where only two independent hash values ha, hb are cal-
culated and the j-th hash value is given by ha + j ∗ hb for
j = 1, · · · ,K.

Classifier Implementation. In the first paper on learned
indexes [25], deep learning models, i.e., neural networks, are
suggested to construct learned data structures. Specifically,
they suggest a Recurrent Neural Network (RNN) for learned
Bloom filters. Though deep models perform better on many
tasks, considering the real-time requirement for membership
query processing over data streams, commonly used deep
learning platforms, like Tensorflow and PyTorch, are too
heavy to be deployed. Tough the inference efficiency issue
can be alleviated by using GPU, a new bottleneck might be
migrating data between CPU and GPU. Since this is not a
paper introducing new machine learning schemes, in pursuit
of efficiency, we test and compare three lightweight mod-
els: logistic regression, support vector machine and gradient
boosting tree (GBT) based on Catboost [3]. We found that
GBT classifiers perform well enough on all our three real-
world tasks considering classification quality (e.g., AUC),
storage cost, and inference efficiency (details will be dis-
cussed later). Then, we adopt GBT as the classifier for
both LBF and SLBF in our experiments.

5.2 Datasets, Parameters and Metrics
To demonstrate the effectiveness and efficiency of our sta-

ble learned Bloom filters, we test all five filters on three
real-world datasets: Amazon, Attack and Higgs. We briefly
introduce each dataset as follows, and the statistics of these
datasets are summarized in Table 2.

Task 1: Amazon [2]. This dataset consists of resource
access records from Amazon employees collected from 2010
to 2011 in which employees are allowed or denied access to
resources over time. Each record contains a unique ID and
10 features which are used to build the classifiers.

Task 2: Attack [5]. This is a dataset of web attack
traces. A total of 23 features are extracted including packet
source/destination and traffic statistics.

Task 3: Higgs [4]. The Higgs data is a scientific dataset
which asks for classifying whether a signal process produces
Higgs bosons or not. There are in total 28 kinematic features
obtained through particle detectors.

Table 2: Statistics of datasets.

Name #Samples #Positives #Negatives
Amazon 91,690 86,382 5,308
Attack 2,278,689 923,216 1,355,473
Higgs 11,000,000 5,829,597 5,170,403

For each dataset, a small portion, specifically 20%, is sam-
pled to obtain a pre-trained classifier and to estimate some
parameters like pj , qj (Eq. (9)), and the remaining 80% data
are used to generate the insertion and query streams. We
train the classifiers for each task using the gradient boosting
tree model, and the model information is shown in Table 3.

Insertion Workloads. All positive samples in dataset
are regarded as members, and negative samples are regarded
as non-members. For a dataset, the corresponding insertion
workload is the sequence of positive samples. Note that,
when inserted elements into non-learned filters like BF and
SBF, we only insert the unique identifier to the filter, and
the features associated with the element are discarded. Sim-

Table 3: Classifier information.

Dataset
Training
Time

AUC
Inference

Throughput
Storage

Amazon 0.27 s 0.87 9 Mops/s 173 KBits
Attack 3.49 s 0.91 11 Mops/s 328 KBits
Higgs 44.8 s 0.82 11 Mops/s 215 KBits

ilarly, for learned filters like LBF, s-SLBF and g-SLBF, fea-
tures are used to calculate the membership confidence score
using the classifier, and only identifiers are inserted to the
filter if necessary.

Query Workloads. We need the query workloads to
evaluate the performance of all filters. According to the
analysis in Section 3, FPR and FNR are measured for the
members and non-members, respectively. Besides, FNR is
also affected by the time gap between a member element be-
ing inserted to the filter and being queried. Thus, for each
dataset, given a gap value δ, for each element xi inserted
to the filter, we will query it after δ insertions of other el-
ements to measure the FNR. After all elements have been
inserted (from the positive sample set of each task), we will
query the filter using the negative sample set to measure the
FPR. The empirical FNR and FPR under the query work-
loads are then calculated as EFNR = #false negatives

#positive samples
and

EFPR = #false positives
#negative samples

. Note that, in the results reported
in this section, we fix δ as 2,000, which is a reasonable value
for real-world applications. However, we also report results
by varying δ, the results demonstrate a clear increasing ten-
dency of FNR as δ increases for both SBF and our SLBF.
This is reasonable since a higher δ increases the likelihood
of the a counter in the backup filter being decreased to 0,
which leads to false negatives. Please refer to Appendix D
for more information.

Control variables. Three parameters, the desired FPR
upper bound ε, the total storage budget (#bits) B, and the
number of groups g for g-SLBF, are varied to evaluate the
robustness of the filters. Table 4 summarizes the parameter
settings for each dataset where the underlined values are
regarded as default values.

Table 4: Parameter setting.

Parameter Values
ε 0.5%, 1%, 5%, 10%, 20%
g 2, 4, 6, 8, 10

B
Amazon&Attack: 214, 216, 218, 220, 224

Higgs: 220, 222, 224, 226, 228

5.3 Experimental Results
Validation of Assumptions. In Section 3.3, to analyze

the performance of our SLBF, we make the assumption that
p1 ≥ p2 ≥ · · · ≥ pg and q1 ≤ q2 ≤ · · · ≤ qg for a well
trained classifier. To validate such assumption, we use the
positive set and negative set for datasets Attack and Higgs
to calculate the corresponding classification scores and draw
the histograms as shown in Figure 10, from which we can
verify our assumption. Besides, the score histogram can
also be used to guide the setting of g since we can keep on
partitioning the interval until such monotonic relationship
does not hold.

Validation of Stability. To verify the stability of the
proposed filters, we test g-SLBF using the Amazon dataset
by setting g = 6, ε = 10% and varying B in the range
210 · · · 218. Specifically, we measure the empirical FPR using
the negative sample set after every 4,000 new insertions and
plot the results in Figure 11. We can find that EFPR grows

2363

2^14 2^16 2^18 2^20 2^24
B (#bits)

10 2

10 1

100

101

102
FP

R
 (

%
)

BF
LBF
SBF
s-LSBF
g-LSBF

(a) Amazon: FPR v.s. B.

2^14 2^16 2^18 2^20 2^24
B (#bits)

10 2

10 1

100

101

102

FP
R
 (

%
)

BF
LBF
SBF
s-LSBF
g-LSBF

(b) Attack: FPR v.s. B.

2^20 2^22 2^24 2^26 2^28
B (#bits)

10 5

10 4

10 3

10 2

10 1

100

101

102

FP
R
 (

%
)

BF
LBF
SBF
s-LSBF
g-LSBF

(c) Higgs: FPR v.s. B.

2^14 2^16 2^18 2^20 2^24 2^28
B (#bits)

10 1

100

101

FN
R
 (

%
)

SBF
s-LSBF
g-LSBF

(d) Amazon: FNR v.s. B.

2^14 2^16 2^18 2^20 2^24 2^28
B (#bits)

10 1

100

101

FN
R
 (

%
)

SBF
s-LSBF
g-LSBF

(e) Attack: FNR v.s. B.

2^20 2^22 2^24 2^26 2^28 2^32
B (#bits)

10 1

100

101

FN
R
 (

%
)

SBF
s-LSBF
g-LSBF

(f) Higgs: FNR v.s. B.
Figure 8: Overall evaluation results on FPR and FNR w.r.t. the number of allocated bits for BF, LBF, SBF, s-SLBF and
g-SLBF. Note that BF and LBF have no false negatives and all the ratios are in log-scale.

0.5% 1% 5% 10% 25%
espsilon

100

101

FN
R
 (

%
)

amazon
attack
higgs

(a) FNR v.s. ε.

2
4

6
8

10 2^28
2^24
2^20
2^16
2^12

0
10
20
30
40
50
60

(b) Amazon: FNR v.s. (g,B).

2
4

6
8

10 2^28
2^24
2^20
2^16
2^12

0

10

20

30

40

50

(c) Attack: FNR v.s. (g,B).

2
4

6
8

10 2^32
2^28
2^26
2^24
2^22

0
10
20
30
40
50
60

(d) Higgs: FNR v.s. (g,B).
Figure 9: Experimental results of g-SLBF under various parameter settings.

0.0 0.2 0.4 0.6 0.8 1.0
Classification Score

0.0

0.5

1.0

1.5

2.0

2.5

Pr
o
b
.
D

e
n
si

ty

pos
neg

(a) Dataset Attack.

0.0 0.2 0.4 0.6 0.8 1.0
Classification Score

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pr
o
b
.
D

e
n
si

ty

pos
neg

(b) Dataset Higgs.
Figure 10: Histograms of classification score where blue
bars and red bars refers to the positive (member) set and
negative (non-member) set.

as new elements are inserted to the filter but approaches a
stable value of 0.1. In addition, a smaller B leads to faster
convergence of the filter. The stability results for g-SLBF on
other datasets and those for s-SLBF are similar to Figure 11,
and are omitted due to the limited space.

Overall Comparison. This experiment tests all five fil-
ters on three real datasets. By fixing g and ε to their de-
fault values, the empirical FPR and FNR (calculated using
the query workloads) versus the bit budget B are shown in
Figure 8. Note that, B refers to the bits allocated to the
(backup) filters, which is also the actual storage cost for BF
and SBF. For LBF, g-SLBF, and s-SLBF, their actual stor-
age cost is B plus the model (classifier) size. However, as
shown in Table 3, we can find that the model size is con-
stant and relatively small. More specifically, consider the
minimum B such that BF and LBF yields significant FPR
in Figure 8a–8c, e.g., B ≈ 220 for Amazon, B ≈ 222 for
Attack and B ≈ 225 for Higgs, which means that the FPR
of either BF or LBF is too high and unbearable when B is

0 20000 40000 60000 80000
#insertions

0.00

0.02

0.04

0.06

0.08

0.10

FP
R

B=1024
B=4096
B=16384
B=65536
B=262144

Figure 11: Experiment result of stability verification for
g-SLBF on Amazon dataset with g = 6 and ε = 10%.

then less than this value. Even in this case, the cost of the
classifier accounts for only 0.5% ∼ 16% of B. Thus, for all
of the five filters, we can simply treat the bit budget B as
their storage cost.

We first compare the FPR of the five filters regarding dif-
ferent B’s, which is shown in Figure 8a–8c. The FPR for
either BF or LBF is very high (near 100%) when B is very
limited but will decrease as B increases, which means they
need to be assigned a considerably large B to achieve a nice
FPR. In contrast, the FPR of SBF, s-SLBF, and g-SLBF
are all bounded within 5%, as required by our default set-
ting for learned filters, i.e., the default FPR upper bound.
We can observe that our g-SLBF always outperforms the
other filters regarding FPR with the same storage cost. Its
advantage is much more evident if we compare the stor-
age cost under the same FPR. For example, on the Attack
dataset, the FPR for g-SLBF when B = 218 and the FPR
for SBF when B = 224 are approximately 0.1%. However,

their storage cost ratio is 218Bit+173KBits
224Bit

× 100% ≈ 2.6%,
which means that the g-SLBF requires a memory which is

2364

only 2.6% of that for SBF. For the FNR behaviors, which
are shown in Figure 8d–8f, SBF, s-SLBF and g-SLBF per-
form similarly as B increases. The FNR performance of our
learned SBF seems not significantly better than SBF. The
reason is that, a good classifier can boost FPR by providing
a good prediction score; however, it cannot help too much
for avoiding false negatives since the negative (non-member)
decisions are made only by the backup filters.

In addition, we find that the FPR of g-SLBF can be con-
tinually decreased by allocating more bits, which does not
hold for s-SLBF because the classifier’s FPR is the lower
bound of the overall FPR for s-SLBF. This validates our
argument that g-SLBF is more conservative to the classifier
outputs and thus is more robust.

Varying ε. In this experiment, we study the effect of
the FPR upper bound, ε, on g-SLBF. We plot the FNR of
g-SLBF w.r.t. ε in Figure 9a, which clearly demonstrates an
inverse relationship between ε and FNR, i.e., a higher desired
FPR will decrease the number of false negatives. This is
reasonable since according to Eq. (6), a higher ε implies a
lower P and higher Max, which makes the counter harder
to be decremented to 0 and thus decreases the FNR.

Varying g and B. We also look into the joint effect of the
number of groups g and the total storage budget B on the
performance of g-SLBF. The results are shown in Figure 9b–
9d. We find that with a fixed storage budget B, increasing
g leads to a V-shape curve. The reason is that, at first a
more fine-grained partition can help the filter smartly insert
elements to its most suitable group. But since the total
storage is limited, a rather small space for each sub-filter will
make counters easier to be decremented to 0, which leads to
the increase of false negatives. We can see that compared
with g, B has a more direct effect since more counters mean
higher tolerance to the false negatives. Thus, as a suggestion
of using g-SLBF, before increasing g, one should make sure
the total storage is not too small, otherwise increasing B is
better to reduce false negatives.

Time Efficiency. According to Table 3, our BGT based
classifier can make around 10 million predictions per sec-
ond. In our experiments on all three datasets, both s-SLBF
and g-SLBF can perform 7 million insertions and 9 million
queries per second. Note that, considering only the time
efficiency, standard BF or SBF can outperform our SLBF
due to their simple structures, but they are under the same
order of magnitude, and SLBF is already efficient enough.

Summary of Results. In summary, we evaluate five
Bloom filters on three real-world data stream applications.
The results show that standard BF and LBF are not suitable
for data stream tasks since their performance decays as the
increasing insertions. Compared with SBF, the non-learned
Bloom filter optimized for data streams, our learned index
solution performs better. Specifically, under a similar error
rate level, our g-SLBF can save up to 97% total storage
compared to using SBF.

6. RELATED WORKS
Bloom Filters. Bloom filters are first introduced in

[7] to approximately answer set membership queries. Due
to the space efficiency and constant query processing time,
Bloom filters are widely applied in database and network-
ing applications, e.g., semi-join processing [8, 31], duplicate
item detection [13, 15], and web cache [17]. To meet real
world application requirements, different Bloom filter vari-

ants are developed, including the counting Bloom filter [17],
spectral Bloom filter [11], Cuckoo filter [16], Bloomier fil-
ter [10], stable Bloom filter [13] and dynamic Bloom filter
[18, 19]. Readers can find more BF variants as well as their
corresponding applications in a survey paper [9].

Specifically, both SBF and dynamic BF are developed to
handle the FPR decay issue over a large number of insertions
(i.e., dynamically growing sets). However, different from the
SBF, dynamic BF controls the FPR increase by dynamically
allocating a new standard BF (using an extendable bits ar-
ray as the physical storage) when the previous filter is “full”
(i.e., the insertion number has reached a bound derived by
the designated FPR). Compared with fixed storage of SBF
as well as our LSBF, the incremental manner of dynamic BF
makes its storage cost linear to the total insertions, which is
not suitable for streaming applications.

Learned Indexes. In the seminal paper of Kraska et
al. [25], the “learned index” was first introduced to refer
to the new paradigm of index design by using a combina-
tion of machine learning models (to give quick answers like
search key lookup and membership guess) and traditional
data structures (to handle the corner cases that ML models
cannot correctly process). Three types of learned indexes
were introduced in [25], including the learned B-tree (range
index), learned hash table (point index), and learned Bloom
filer (set representation). The major attribute of learned
indexes is their space efficiency, which comes from an obser-
vation that storing a trained model is usually less costly.

As a promising research direction, optimizations and ex-
tensions to the original learned indexes have been studied
recently. Nathan et al. [32] extended the learned B-tree (1-
D index) to the multi-dimensional case. Ding et al. [14]
designed an updatable learned B-tree, in contrast to the
fully static manner of the original version in [25]. As for
learned Bloom filter, Mitzenmacher [30] first modeled the
LBF mathematically and proposed a sandwiched learned
filter structure where an extra initial filter is added to fur-
ther optimize FPR. Rae et al. [33] proposed a meta-learning
approach to obtain a better model used in learned filters.
A recent preprint [12] suggested using varying numbers of
hash functions considering the membership confidence val-
ues, which can be regarded as a simplified version of our g-
SLBF as shown in Section 3.2. However, all existing works
on learned Bloom filters, including [12], require knowing the
(expected) size of element set, which can result in their poor
performance when such knowledge is unavailable (e.g., data
streams). To the best of our knowledge, this is the first
work that has considered the streaming data insertions for
learned Bloom filters.

ML in Data Management. Besides learned indexes,
the emergence of ML techniques provides a more in-depth in-
sight into the data we have and motivates a new paradigm to
traditional data management problems like query cardinal-
ity/cost estimation [36, 34, 28], query optimization [27, 35],
and self-tuning DBMS [24, 21]. Different from learned in-
dexes where models are used to save storage, ML techniques,
especially deep learning techniques, are widely applied to
aforementioned problems due to their powerful capability of
complex correlation modeling and decision making.

7. CONCLUSION
In this paper, we propose the Stable Learned Bloom fil-

ter to solve the approximate membership testing problem

2365

on data streams. SLBF extends the existing learned Bloom
filter framework but conducts specific optimizations for data
stream applications. The experimental studies demonstrate
the effectiveness of our SLBF considering space efficiency.
Nevertheless, there are still some optimization opportuni-
ties, e.g., how to update an out-of-date classifier w.r.t. new
data to achieve satisfying FPR and FNR. We would like to
leave them as our future work.

Acknowledgments
Lei Chen’s work is partially supported by the Hong Kong
RGC GRF Project 16209519, CRF Project C6030-18G, C10
31-18G, C5026-18G, AOE Project AoE/E-603/18, China
NSFC No. 61729201, Guangdong Basic and Applied Ba-
sic Research Foundation 2019B151530001, Hong Kong ITC
ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft
Research Asia Collaborative Research Grant, Didi-HKUST
joint research lab project, and Wechat and Webank Research
Grant.

APPENDIX
A. FILTER SELECTION CRITERIA

Though the learned Bloom filter framework has demonstrated
its potential on further compression of storage, learned filters are
not silver bullets for any scenario that requires approximate set
membership query processing.

BF LBF SBF LSBF

static set ◉ ◎ ◎ ◎
classifier available ◎ ◉ ◎ ◉

FN sensitive ◉ ◉ ✕ ✕
unbounded stream ✕ ✕ ◉ ◉
◉ best choice ◎ applicable but not optimal ✕ not applicable

Figure 12: Choice among Bloom filter variants.

We categorize the requirements to BFs from real-world appli-
cations into 4 aspects as illustrated in Figure 12. First, if the ele-
ment set is static (knowing the whole set or the expected set size),
standard BF is usually the best choice considering FPR/storage
trade-off and implementation complexity. Second, the learned fil-
ters are powerful when a reasonable membership classifier (learned
oracle) can be easily obtained. This can be explained using the
inequality in Eq. (4) where LBF is better than BF when the Fp
and Fn of the classifier satisfy certain conditions. This means that
LBF is less appropriate in some applications where the member-
ship prediction is extremely hard (e.g., using UUID to represent
an element). Third, for applications relying on the one-sided er-
ror property (e.g., distributed join processing), SBF as well as
our LSBF are not applicable due to the inevitable false negative
issue. Finally, if the application cannot foresee a specific number
of the element set and the total available storage to store a filter
is limited, SBF and our LSBF are better choices to control the
insertion-sensitive FPR with a sacrifice of possible FNR.

B. APPLICATION SCENARIOS
Consider an online malicious URL checking service which main-

tains a dynamically updated database of malicious links. A stan-
dard solution will be dynamically inserting the identifier of a URL
to an updatable Bloom filter, i.e., the stable Bloom filter which
uses limited space with a tolerable FNR. An alternative is to
utilize the features like hostnames, primary domain and path to-
kens to build a classifier [37] to give a prior guess on the URL’s,
based on which deriving backup filters for making final decisions.
Building a learned Bloom filer using the features to detect part of
the malicious URL’s can effectively reduce the storage cost since
storing a classifier is usually much cheaper. Such storage reduc-
tion is especially meaningful since we can deploy such service to
mobile devices like mobile phones and routers with limited RAM
(hundreds of MBs to several GBs).

C. FNR CALCULATION
To enable the simulation of FNR of g-SLBF, we extend the

model used in [13] to give the detailed calculation of pN (δi, kij) in
Eq. (15). Denote Ci is one of the Kj counters mapped to element
xi, Al as the event Ci is not set in recent l insertions, then

pN (δi, kij) =

δi−1∑
l=Maxj

Pr(Ci = 0|Al) Pr(Al)+

Pr(Ci = 0|Aδi) Pr(Aδi)

Pr(Ci = 0|Al) =

l∑
h=Maxj

(l
h

)(Pj
mj

)h (
1−

Pj

mj

)l−h
Pr(Al) =kij(1− kij)l

Pr(Anj) =(1− kij)δi .

(21)

Note that, under our parameter setting strategy, once the FPR
upper bound ε is provided, the parameter Pj can be determined
by only Kj , Maxj and ε according to Eq. (19). Thus, pN (·) can
be regarded as a function of Kj , Maxj and gap δi. In practice,

the gap value δi for xi is presumed as some average gap δ̃ based
on the knowledge towards the insertion and query workloads.

D. EXPERIMENTS ON GAP
As we discussed in Section 3.3, the FNR of both SBF and our

LSBF depends on the average gap value (δ) of the data stream,
i.e., the number of timestamps between an element being inserted
and queried. To investigate the effect of δ, we vary δ in range
[10, 2000]. The results (Figure 13) show a clear positive correla-
tion between FNR and δ for SBF, s-SLBF and g-SLBF. Specif-
ically, for small value of δ (i.e., 10), the FNR is nearly 0 since
Pr(SBF [hj(xi)] = 0|δ)) → 0 when δ → 0 (see Eq. (14)). Such
observation indicates that the false negative issue can be further
alleviated if the incoming data streaming has a small gap.

10 100 500 1,000 2,000
(gap)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

FN
R
 (

%
)

SBF
s-LSBF
g-LSBF

(a) Attack: FNR v.s. δ.

10 100 500 1,000 2,000
(gap)

0

5

10

15

20

25

FN
R
 (

%
)

SBF
s-LSBF
g-LSBF

(b) Higgs: FNR v.s. δ.
Figure 13: Results of varing δ (gap) on Attack and Higgs.

E. EXPERIMENTS ON ROBUSTNESS
We add experiments where the incoming data does not fol-

low the training data distribution to show the robustness of our
proposed data structures. To simulate such effect, for the stream
of elements to be inserted to the filter, we randomly flip a frac-
tion of labels (i.e., positive to negative and negative to positive).
Since the training data of the classifier has not been disturbed,
the label flipping fraction (from 5% to 50%) can be regarded as a
measurement of the deviation between the incoming data distri-
bution and training data distribution. The evaluation results are
shown in Figure 14.

0 5 10 20 50
distortion (%)

0

5

10

15

20

25

30

35

40

FP
R
 (

%
)

s-LSBF
g-LSBF

(a) Amazon: FPR vs distortion

0 5 10 20 50
distortion (%)

0

10

20

30

40

50

60

FP
R
 (

%
)

s-LSBF
g-LSBF

(b) Higgs: FPR vs distortion
Figure 14: Results of FPR vs different levels of distribution
distortion on Amazon and Higgs.

2366

8. REFERENCES
[1] xxhash. http://cyan4973.github.io/xxHash/.

[Online; accessed 28-Feb-2020].

[2] Amazon.com - Employee Access Challenge.
https://www.kaggle.com/c/

amazon-employee-access-challenge/data, 2020.
[Online; accessed 2-July-2020].

[3] CatBoost - open-source gradient boosting library.
https://catboost.ai/, 2020. [Online; accessed
2-July-2020].

[4] UCI Machine Learning Repository: HIGGS Data Set.
https://archive.ics.uci.edu/ml/datasets/HIGGS,
2020. [Online; accessed 2-July-2020].

[5] UCI Machine Learning Repository: Kitsune Network
Attack Dataset Data Set. https://archive.ics.uci.
edu/ml/datasets/Kitsune+Network+Attack+Dataset,
2020. [Online; accessed 2-July-2020].

[6] P. S. Almeida, C. Baquero, N. M. Preguiça, and
D. Hutchison. Scalable bloom filters. Inf. Process.
Lett., 101(6):255–261, 2007.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[8] K. Bratbergsengen. Hashing methods and relational
algebra operations. In VLDB, pages 323–333. Morgan
Kaufmann, 1984.

[9] A. Z. Broder and M. Mitzenmacher. Survey: Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2003.

[10] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In SODA, pages 30–39. SIAM,
2004.

[11] S. Cohen and Y. Matias. Spectral bloom filters. In
SIGMOD Conference, pages 241–252. ACM, 2003.

[12] Z. Dai and A. Shrivastava. Adaptive learned bloom
filter (Ada-BF): Efficient utilization of the classifier.
CoRR, abs/1910.09131, 2019.

[13] F. Deng and D. Rafiei. Approximately detecting
duplicates for streaming data using stable bloom
filters. In SIGMOD Conference, pages 25–36. ACM,
2006.

[14] J. Ding, U. F. Minhas, H. Zhang, Y. Li, C. Wang,
B. Chandramouli, J. Gehrke, D. Kossmann, and D. B.
Lomet. ALEX: an updatable adaptive learned index.
CoRR, abs/1905.08898, 2019.

[15] S. Dutta, A. Narang, and S. K. Bera. Streaming
quotient filter: A near optimal approximate duplicate
detection approach for data streams. PVLDB,
6(8):589–600, 2013.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and
M. Mitzenmacher. Cuckoo filter: Practically better
than bloom. In CoNEXT, pages 75–88. ACM, 2014.

[17] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[18] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and
network applications of dynamic bloom filters. In
INFOCOM. IEEE, 2006.

[19] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The

dynamic bloom filters. IEEE Trans. Knowl. Data
Eng., 22(1):120–133, 2010.

[20] G. H. Hardy, J. E. Littlewood, G. Pólya,
D. Littlewood, G. Pólya, et al. Inequalities. Cambridge
university press, 1952.

[21] S. Idreos, N. Dayan, W. Qin, M. Akmanalp,
S. Hilgard, A. Ross, J. Lennon, V. Jain, H. Gupta,
D. Li, and Z. Zhu. Design continuums and the path
toward self-designing key-value stores that know and
learn. In CIDR. www.cidrdb.org, 2019.

[22] N. Jain, M. Dahlin, and R. Tewari. Using bloom filters
to refine web search results. In WebDB, pages 25–30,
2005.

[23] A. Kirsch and M. Mitzenmacher. Less hashing, same
performance: Building a better bloom filter. Random
Struct. Algorithms, 33(2):187–218, 2008.

[24] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and
V. Nathan. Sagedb: A learned database system. In
CIDR. www.cidrdb.org, 2019.

[25] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
SIGMOD Conference, pages 489–504. ACM, 2018.

[26] A. Kumar, J. Xu, and J. Wang. Space-code bloom
filter for efficient per-flow traffic measurement. IEEE
J. Sel. Areas Commun., 24(12):2327–2339, 2006.

[27] R. C. Marcus, P. Negi, H. Mao, C. Zhang,
M. Alizadeh, T. Kraska, O. Papaemmanouil, and
N. Tatbul. Neo: A learned query optimizer. PVLDB,
12(11):1705–1718, 2019.

[28] R. C. Marcus and O. Papaemmanouil. Plan-structured
deep neural network models for query performance
prediction. PVLDB, 12(11):1733–1746, 2019.

[29] A. Metwally, D. Agrawal, and A. El Abbadi.
Duplicate detection in click streams. In WWW, pages
12–21. ACM, 2005.

[30] M. Mitzenmacher. A model for learned bloom filters
and optimizing by sandwiching. In NeurIPS, pages
462–471, 2018.

[31] J. K. Mullin. Optimal semijoins for distributed
database systems. IEEE Trans. Software Eng.,
16(5):558–560, 1990.

[32] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska.
Learning multi-dimensional indexes. CoRR,
abs/1912.01668, 2019.

[33] J. W. Rae, S. Bartunov, and T. P. Lillicrap.
Meta-learning neural bloom filters. In ICML,
volume 97, pages 5271–5280. PMLR, 2019.

[34] J. Sun and G. Li. An end-to-end learning-based cost
estimator. PVLDB, 13(3):307–319, 2019.

[35] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le,
S. Qiao, and S. Rao. Towards a learning optimizer for
shared clouds. PVLDB, 12(3):210–222, 2018.

[36] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan,
P. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan,
and I. Stoica. Deep unsupervised cardinality
estimation. PVLDB, 13(3):279–292, 2019.

[37] P. Zhao and S. C. H. Hoi. Cost-sensitive online active
learning with application to malicious URL detection.
In KDD, pages 919–927. ACM, 2013.

2367

http://cyan4973.github.io/xxHash/
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://catboost.ai/
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attack+Dataset
https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attack+Dataset

	Introduction
	Preliminaries
	Standard Bloom Filter
	Learned Bloom Filter
	BF Stability on Data Streams
	Problem Statement

	Stable Learned Bloom Filter
	Single SLBF
	Grouping SLBF
	Analytical Results
	False Positive Rate and Stability
	Convergence Rate
	False Negative Rate
	Time Complexity

	Parameter Setting
	Experimental Study
	Baselines and Implementation Details
	Datasets, Parameters and Metrics
	Experimental Results

	Related Works
	Conclusion
	Filter Selection Criteria
	Application Scenarios
	FNR Calculation
	Experiments on Gap
	Experiments on Robustness
	References

